بررسی منحنی‌های همدما جذب و دفع رطوبت بذر ذرت (هیریدهای تری و کراس ۶۴۷ و سیبگل کراس ۷۰۴)

مجد سلیمانی و محمد شاهدی

چکیده
منحنی‌های همدما در کنترل رطوبت بذر و رطوبت نسبی محیط اطراف از طی دوره نگهداری و همچنین کنترل فرآیند خشک‌شدن و طراحی خشک‌کن حائز اهمیت است. با توجه به اهمیت این منحنی‌ها، پژوهشی در قالب دو آزمایش فاکتوریل با ۴ مدل کراس: هیرید۶۴۷ (شامل هیریدهای ۶۴۷ و ۷۰۴)، دما (در ۴ سطح در دامنه ۴ تا ۶۳ درجه سانتی‌گراد) و رطوبت نسبی (در دامنه ۱۰ تا ۹۰ درصد) به طور مستقل برای پذیرفته‌های جذب و دفع رطوبت انجام گرفت. برای فراهم ساختن رطوبت نسبی در دامنه مورد نظر از محلول گلسول استفاده شد. آزمایش‌ها نشان داد که محلول این ماده می‌تواند شرایط مورد نظر را تأمین کند. نتایج حاصل از مقایسه منحنی‌ها نشان داد که عوامل درجه حرارت، رطوبت نسبی و هیرید، هر سه بر رطوبت تا حدود ۱/۰ درصد و در سطح دما اثر معنی‌دار مستند که این در این دو متغیر محدودیت و تأثیر بمستر برخورد این است. مقایسه هیریدهای ۶۴۷ و ۷۰۴ رطوبت تا حدود محدودیت بالاتری نسبی به هیرید۶۴۷ دارد که این مثال برای نگهداری پس از شباهت نگهداری و فعالیت بکر هیرید۶۴۷ است. اطلاعات مشاهدات بر مدل‌های ریاضی غیرخطی هندسی، چانگ، فاست و اسوسین پس از انتخاب منحنی باید مدل‌های ذرت، جذب و دفع هیرید۶۴۷ و دفع هیرید۷۰۴ و مدل چانگ- فاست برای منحنی دفع هیرید۶۴۷ مدل‌های دقیق تر و مناسب‌تر است.

واژه‌های کلیدی: منحنی‌های همدما، ذرت، جذب رطوبت، دفع رطوبت، مدل‌های رطوبتی

مقدمه

منطقه، ایجاد می‌کند تا ارتباط با مشکلات نگهداری و حفظ یکی از پژوهش‌های جامع و کامل ضرورت گیرد. تا در دوره نگهداری، کاهش قابلیت جوانگردانی و میزان صمدی به بذر به

1. مربی پژوهش مرکز تحقیقات کشاورزی دوقول
2. استاد علوم و صنایع غذايي، دانشگاه كشاورزي، دانشگاه صنعتي اصفهان
حطاقل مشخص کرده است که عدم کنترل عوامل محیطی در جهت کاهش دما و رطوبت نسبی باعث افزایش فعالیت کمیک الی دوران نگهداری نشد و اولین فاصله که توسط همدایان عوامل فشار مورد حمله و تجزیه قرار می‌گرفت، روند بدر است.

این پدیده خود باعث کاهش ماده خشک، افزایش نسبی و افت قوه نامی می‌شود. این به نسبی به درک است که درجه حرارت و رطوبت به زیاد که خودی خود بر عمر انبار اثر طولانی‌تری تأثیر گذارید.

زاوری افزایش فعالیت آنزیم‌های مصرفی نشان می‌دهد که افزایش حرارت موجب افزایش درجع حرارت نشده است. اگرچه افزایش مصرفی نشان می‌دهد درجه حرارت نشده است.

در سال 1989 چین و موری، منجم‌های هم‌سایی درخت را در دامنه 0-5 درجه سانتی‌گراد مورد بررسی قرار دادند. نتایج نشان داد که منجم‌های هم‌سایی درخت رطوبت نسبی و رطوبت محصول در نزدیکی و در درجه حرارت و رطوبت نسبی از عوامل مؤثر بر تغییرات منجم‌های هم‌سایی در دامنه 0-5 درجه سانتی‌گراد است. نتایج نشان داد که بدین‌گونه که در دامنه 0-5 درجه سانتی‌گراد تغییرات منجم‌های هم‌سایی درخت رطوبت نسبی در دامنه 0-5 درجه سانتی‌گراد وجود دارد (2).

در سال 1989 چین و موری در دمای 15/5 درجه سانتی‌گراد که عوامل بسیاری از قبیل اجرای محصول (مواد معدنی، محیط‌زیستی، زمین و محیط) در رطوبت و شرایط محیطی به درجع رطوبت نسبی، اندازه‌گیری و سنجش عوامل آزمایش و بهتری نسبی تغییرات منجم‌های هم‌سایی درخت رطوبت نسبی در دامنه 15/5 درجه سانتی‌گراد شد. نتایج نشان داد که در دمای 15/5 درجه سانتی‌گراد تغییرات منجم‌های هم‌سایی درخت رطوبت نسبی در دامنه 15/5 درجه سانتی‌گراد وجود دارد (2).

در سال 1989 چین و موری در دمای 15/5 درجه سانتی‌گراد که عوامل بسیاری از قبیل اجرای محصول (مواد معدنی، محیط‌زیستی، زمین و محیط) در رطوبت و شرایط محیطی به درجع رطوبت نسبی، اندازه‌گیری و سنجش عوامل آزمایش و بهتری نسبی تغییرات منجم‌های هم‌سایی درخت رطوبت نسبی در دامنه 15/5 درجه سانتی‌گراد شد. نتایج نشان داد که در دمای 15/5 درجه سانتی‌گراد تغییرات منجم‌های هم‌سایی درخت رطوبت نسبی در دامنه 15/5 درجه سانتی‌گراد وجود دارد (2).
پرسی متغیرهای همدامی جذب و دفع رطوبت بذر درخت
و درخت و معادلات جانگ - فاست و هندرسین را برای دانه‌های
حاوی ترکیب شیمیایی در محدوده‌ای بی‌طرف و نشان‌دهنده‌ای بالاتر از اسپرای نمودند (5).
سپس در سال 1994، مهندس پرست زاینیک برای درخت
درخت در دامنه‌ای 0-40 درجه سانتی‌گراد و فعالیت‌های
برای ارزیابی مدل‌های مختلف در پرست و رطوبتی تعادل، 6 مدل را مورد بررسی قرار
دادند و در هر مدل هندسی‌ها را به‌عنوان بهترین مدل از این چهار
درخت انتخاب شدند. این نتایج در نهایت کلیدی گردیده و از
ولی بهتر از پرست و رطوبتی تعادل (12).
در سال 1383، زمین‌الا و تولکی بی‌طرف دفع رطوبت را برای
سه سیستم ایرانی پرست و رطوبتی قرار دادند و مدل‌های اسپرای،
اسمیت و چانگ- فاست را به‌عنوان برتر انتخاب از شرایط
کلمه‌نامه و عناوین مناسب گزارش کردند. همچنین پژوهشی اجرای
و درآمده در شرایط تعادل سیستم، معنی گزارش کردند (1).
هدف از انجام این پژوهش عبارت است از:
الف) برای تأثیر عوامل محیطی شامل دما و رطوبتی نسبی و
ب) تنظیم دما و رطوبتی تعادل محصول
برای تعیین مدل‌های مناسب برای پرست و دفع رطوبت
از ارور مورد نظر.
مواد و روش‌ها
برای تعیین متغیرهای همدامی بذر درخت دانه‌ای و همچنین
بررسی تأثیر شرایط محیطی بر آن، هیبریدهای متنوع از
یعنی سیستگاه کراس 704 و تریکراس 624 از مزراع کشت و
صنع شدند. این گروه‌ها در شرایط
پرست و رطوبتی تعادل به‌طور دقیق در شرایط
متفاوت برای تأثیر رطوبتی تعادل و فعالیت بذر درخت
بر اثر از گلبرد در شرایط
قوطیت‌های ایزوپلی‌کربو و پلی‌کربوکسیل از
پلی‌کربوکسیل (Plexy Glass) به‌عنوان گرمایش پرستی
2400 وات و برای تعیین طرح حسابی از یک
پرسی متغیرهای همدامی جذب و دفع رطوبت بذر درخت
219
هویک از دماهای ذکر شده، مدل‌هایی یک متغیره برای رطوبت نسبی بر اساس غلظت محلول گلیسرول به دست آمد. در نهایت با روش سعی و خطا، غلظت‌های دقیق لازم برای فرآیند جدا شدن از 5 سطح رطوبت نسبی (0، 20، 30 و 50 درصد) در دماهای 15، 25 و 35 درجه سانتی‌گراد مشخص گردید که نتایج آن در جدول 1 ارائه شده است. برای محلول‌های رطوبت جهت جلوگیری از آلودگی به کیفیت یا از دو قطعه محلول اشتباه سوالات مس استفاده شد.

برای بررسی تأثیر شرایط محیطی بر مرگ و میر رطوبت تبادلی (EMC) بذر دزی، مطالعه‌ای در قابل آزمایش فاکتوریل و پایه کاملاً تصادفی شویی فاکتورهای رقم (در دو سطح شامل هیبریدهای 70 و 702) در جوار باغ (در 5 سطح در دامنه 55 درجه سانتی‌گراد به فاصله 10 درجه از یکدیگر) و رطوبت نسبی (در 5 سطح مذکور) و هر تیم از 3 نکتر صورت گرفت. بررسی نظر رطوبت تبادلی در 3 حالت جذب (Desorption) و دفع (Adsorption) مورد آزمایش قرار گرفت. در حالی که نتیجه‌های 5 گرم نمونه خشک و در حالی دفع حدود 5 گرم نمونه مرطوب (که با استفاده از پارچه کتانی...

شکل 1 (الف) محظوره مورد استفاده برای تعیین ویژگی‌های محلول گلیسرول و (ب) محظوره مورد استفاده برای نمونه‌ها.

به طور دقیق توزیع نمونه در گونه‌های مختلف شده و روزی صفحه مشکی داخل غلاف نمونه از جنس شیشه (که حذف یک مس حجم آن را محلول گلیسرول، تأمین کننده رطوبت نسبی و فشار بخار مورد نظر، تشکیل می‌داد) انتقال یافته. فشار محتوی نمونه‌ها در داخل محظوره نمونه‌ها از جنس باکسی‌اوس مطالعه 2 ـ بر قرار گرفته و در دمای مورد نظر حدود 30 روز به آن زمان داده شد تا در حالت استاندارد، نظارت بر توزیع (ارتباط توزیع متوالی نشان داد که بعد از روی هژدهم، تغییر وزن در نمونه صورت نمی‌گیرد). بعد از سه و دو ماه زمان، نمونه از داخل محظوره Sartorius خارج کرده و با دقت 1/001 گرم توسط ترازوی ساختمان آلومین توزین گردید و در نهایت رطوبت آن در دمای 1030°C به مدت 72 ساعت تعیین شد و بر اساس وزن خشک کرزارد شد (2). لازم است که برای نامنی این گروه در محظوره نمونه‌ها گرم کننده با توان 800وات و برای تنظیم دما، تزریق‌های غلظت بر چنین مشخصاتی برای محفظه قبل (شکل 1 - الیف) فک کننده شد. هنگامی که برای اندازه‌گیری دما در محظوره نمونه‌ها از دمای 1030°C، به دقت 1/013 درایه گیری انجام...
جدول 1. غلظت‌های مورد نیاز گلیسرول (٪ w/w) برای تأمین رطوبت نسبی مورد نظر

<table>
<thead>
<tr>
<th>RH(%)</th>
<th>T(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>64/1</td>
</tr>
<tr>
<td>70</td>
<td>79/8</td>
</tr>
<tr>
<td>50</td>
<td>90/2</td>
</tr>
<tr>
<td>30</td>
<td>97/5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

(5/89)	(25/8)	(3/77)	(1/94)	(6/5)
(11/51)	(11/88)	(7/13)	(2/38)	
(34/9)	(14/43)	(21/9)	(2/22)	
(21/38)	(11/88)	(7/13)	(2/38)	
(35/9)	(50/25)	(21/9)	(2/22)	
(11/51)	(25/45)	91	97/7	
(34/9)	(50/25)	91	97/7	
(21/38)	(11/88)	(7/13)	(2/38)	
(35/9)	(50/25)	(21/9)	(2/22)	
(11/51)	(25/45)	91	97/7	

اعداد داخل پراپترا در جدول بیانگر فشار بخار ابر در برابر هدهایه در حالی است که در حالت ابر، مقدار مورد نظر می‌باشد.

در اینها برای بررسی امکان برآورد دقیق رطوبت تعادلی بر
مبنای د قلم کنگر، بر اساس فاکتورهای محیطی درجه حرارت
و رطوبت نسبی محیط داده‌های به دست آمده بر مدل‌های
رباضی و تجربی معتبر موجود منطق‌گردد. انطباق داده‌ها بر
مدل‌های غیر خطی که در دیل ارائه شده است با استفاده از
روش گوس-بونت (Gauss-Newton) و به کمک نرم افزار
ساختار فرآیند. این مدل‌ها عبارت‌اند از:

Modified Henderson Equation:

\[
RH = 1 - \exp \left(-A \times (T+C) \times M^B \right)
\]

در این نسبت مدل Memmert ساخت آلمان با دقت دما 1°C ± استفاده شد. پس از آن
داده‌های به دست آمده در قالب آزمایش فاکتوره 3 فاکتوره
برای هرنیک از پیدایش رطوبت بر دفع به طور جداگانه مورد
تجزیه و سپس با آزمون دانکن، مایگین‌ها مورد مقایسه قرار
گرفت (در سطح 0/1).

برای تعیین بیشتر، یک ریک هر رقم در دمای مناسب
تقارن میان محتمال رطوبت بر دفع در حالت اجرایی و در حالت
دفع به عنوان کمیت ای بر دیده‌گر درگیر که اثر تغییرات
رطوبت نسبی و دما بر آن در قالب منحنی ارائه شده است.
Chung-Pfost Equation:

\[RH = \exp \left(\frac{-A}{T + C} \times \exp \left(-B \times M \right) \right) \]

Modified Oswin Equation:

\[RH = \frac{1}{1 + \left(\frac{A + B \times T}{M} \right)^{C+1}} \]

In the original text, the equation was written as:

\[RH = \exp \left(\frac{-A}{T + C} \times \exp \left(-B \times M \right) \right) \]

\[RH = \frac{1}{1 + \left(\frac{A + B \times T}{M} \right)^{C+1}} \]

The equations are used to calculate relative humidity (RH) based on temperature (T), pressure (P), and moisture content (M).

T=5°C: RH=(101.45-1.01C) /(1-0.0074C), R²>0.99
T=15°C: RH=(101.78-1.02C) /(1-0.0075C), R²>0.99
T=25°C: RH=(102.11-1.02C) /(1-0.0075C), R²>0.99
T=35°C: RH=(102.45-1.02C) /(1-0.0076C), R²>0.99
T=55°C: RH=(103.05-1.03C) /(1-0.0076C), R²>0.99

MRD=(1/n)Σ(|M-M̅|/M)

MRD is the Mean Relative Deviation, which measures the average magnitude of error in the predicted values relative to the actual value.

The equations were derived from empirical data and are used to predict relative humidity under different temperature and moisture conditions.
جدول 2. تجزیه و اریانس رطوبت تعادلی بذر در پدیده‌های جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>میانگین مرتبات (دفع)</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/09/00</td>
<td>1</td>
<td>هیرپید</td>
</tr>
<tr>
<td>5/02/05</td>
<td>5</td>
<td>دما</td>
</tr>
<tr>
<td>2/41/021</td>
<td>4</td>
<td>رطوبت نسبی</td>
</tr>
<tr>
<td>3/03/09</td>
<td>5</td>
<td>هیرپید × دما</td>
</tr>
<tr>
<td>0/09/00</td>
<td>4</td>
<td>هیرپید × رطوبت نسبی</td>
</tr>
<tr>
<td>0/09/00</td>
<td>4</td>
<td>دما × رطوبت نسبی</td>
</tr>
<tr>
<td>0/1055</td>
<td>20</td>
<td>هیرپید × دما × رطوبت نسبی</td>
</tr>
<tr>
<td>0/1055</td>
<td>120</td>
<td>خطأ</td>
</tr>
</tbody>
</table>

نَس، غیرمعنی‌دار

** معنی‌دار در سطح احتمال 1%

![شکل 2. مقایسه میانگین‌های رطوبت تعادلی ناشی از تغییرات دما در پدیده‌های جذب و دفع](image1)

![شکل 3. مقایسه میانگین‌های رطوبت تعادلی هیرپید‌های ذرات در پدیده‌های جذب و دفع (به طور مستقل)](image2)
شکل ۴ مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محوطه در پذیده‌های جذب و دفع (به طور مستقل)

شکل ۵ مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محوطه در پذیده‌های جذب

بیشتر است، بنابراین کنترل حاصل همیثت می‌باشد. طبق جدول تجزیه واریانس، اثر متفاوت دما در رطوبت نسبی دما در اثر ثابت با افزایش رطوبت نسبی، رطوبت تعادلی افزایش می‌یابد که بهره این افزایش منطبق بر یک تابع نمایی سپیدگویی است و بر عکس با افزایش ذره حرارت، رطوبت تعادلی کاهش پیدا می‌کند. به عبارتی دیگر می‌توان با ترکیب مناسب از این عوامل، رطوبت محصول را در سطح مطلوب حفظ کرد با به سطح مورد نظر رسیدن. با توجه به شکل ۵ اثر رطوبت نسبی محوطه نیز مطلوب جدول ۲ و شکل ۴ بر رطوبت تعادلی بذر در سطح ۰% معنی‌دار به دست آمده است.

مقایسه میانگین‌ها در شکل ۷ با توجه به دسته‌بندی است، می‌توان بهره این افزایش منطبق بر یک تابع نمایی سپیدگویی است و بر عکس با افزایش ذره حرارت، رطوبت تعادلی کاهش پیدا می‌کند. به عبارتی دیگر می‌توان با ترکیب مناسب از این عوامل، رطوبت محصول را در سطح مطلوب حفظ کرد با به سطح مورد نظر رسیدن. با توجه به شکل ۵ اثر رطوبت نسبی محوطه نیز مطلوب جدول ۲ و شکل ۴ بر رطوبت تعادلی بذر در سطح ۰% معنی‌دار به دست آمده است.
در شکل‌ها بیانگر نمودار بودن رطوبت نسبی در تغییرات رطوبت تعادلی بذر با کربن دی اکسید کربن است. با توجه به این که کربن دی اکسید کربن از افراز فشار نشان دهنده به همراه با کربن دی اکسید کربن که است. با توجه به این که کربن دی اکسید کربن از افراز فشار نشان دهنده به همراه با کربن دی اکسید کربن که است. با توجه به این که کربن دی اکسید کربن از افراز فشار نشان دهنده به همراه با کربن دی اکسید کربن که است.
جدول ۳: ضرایب معادلات هندرسن، چانگ، فاست و اسون در پیدایش جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>نوع پدیده</th>
<th>رطوبت نسبی (%)</th>
<th>فرمول</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>رقم هندرسن</th>
</tr>
</thead>
<tbody>
<tr>
<td>جذب ۵°C</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
</tr>
<tr>
<td>دفع ۵°C</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td>۰ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱ ۲ ۴ ۶ ۸ ۱۰</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶: مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در پدیده دفع
بحث

نتایج به دست آمده از تحقیق نشان داد که رطوبت نسبی با افزایش حرارت کاهش و با افزایش رطوبت نسبی، به صورت نابعی سبب افزایش افزایش می‌باشد که البته اثر رطوبت نسبی بر این تغییرات خیلی محسوس بر است. در آزمایش‌های چنین هم‌مردانه و همچنین سویپ و هموکار نتایج مشابه به دست آمده است (4 و 12). هیبرید ۷۰۴ در هر دو حالت جذب و دفع، رطوبت بهترین مدل، مدل اسوسین می‌باشد و برای هیبرید ۶۲۷ بهترین مدل در حالت جذب، مدل اسوسین است در حالی که در حالت دفع رطوبت؛ مدل چانگ فاست دارای کمترین خطای را دارد. منحنی‌های حاصل از مدل‌های مناسب در شکل‌های ۹ تا ۱۲ ارائه شده است.
شکل ۹: منحنی‌های همدمای چند هبه‌برد ۶۴۷ محاسبه شده بر اساس مدل اسون پر از تعیین ضرایب

شکل ۱۰: منحنی‌های همدمای دفع هبه‌برد ۶۴۷ محاسبه شده بر اساس مدل چانگ - فاست پس از تعیین ضرایب

شکل ۱۱: منحنی‌های همدمای چند هبه‌برد ۷۰۰ محاسبه شده بر اساس مدل اسون پس از تعیین ضرایب
برای این همراه، مدل چانگ - فاست است. سوپید و همکار نیز رفتار ارقام مختلف را در اطمینان بر مدل‌های موجود، مفایات از یک‌پذیری گرانش کردن که به‌طور کلی در اغلب موارد، مدل هدسرسن به عنوان بهترین مدل معرفی شده است (12).

نتایج‌گیری

1. با استفاده از منحنی‌های ارائه شده در این پژوهش (منحنی‌های ۹ تا ۱۲) و با استفاده از مدل‌های منطق‌شده برای همراه‌های ۷۰۴ و ۶۷۷ می‌توان رطوبت را در شرایط محیطی متفاوت به دست آورد و با کنترل عوامل محیطی، رطوبت برقرار را با حد مطلوب و مورد نظر تعیین داد.

2. با توجه به این که مطالعات نشان داده که در رطوبت نسبی کمتر از ۷۰٪ (که برای همراه ۷۰۴ در پیشگویی جذب و دفع به ترتیب رطوبت معادل ۱۷/۵۰ و ۱۷/۵۵ درصد برای خشک و برای همراه ۶۵۵ در پیشگویی جذب و دفع به ترتیب رطوبت معادل ۱۷/۵۰ و ۱۷/۵۵ درصد برای خشک ایجاد می‌کند) از فعالیت کی‌ها جلوگیری می‌شود و نیز با توجه به این که کاهش رطوبت توده بذر تا حد خیلی باین، مستلزم صرع انرژی خیلی زیاد است، حتی افزایش سه شود مطالعه‌ای دقیق در خصوص حد بحرانی رطوبت بذر به منظور نگهداری سالم آن ضرورت گیرد.

همچنین نتایج نشان می‌دهد که در شرایط محیطی پکسیان، همراه ۷۰۴ نسبت به همراه ۷۰۷ رطوبت تعادلی بالاتر و در نتیجه قابلیت نگهداری آب بالاتری را دارد. به عبارتی دیگر چنانچه به منحنی‌ها مراجعه شود، چنین نتایج گیری می‌شود که در رطوبت تعادلی پکسیان، همراه ۷۰۴ رطوبت نسبی تعادلی بالاتر ایجاد می‌کند که این مطالعه خود ناگهان افراش فشار بخار و فعالیت آبی محصول است. نتایج مورد جستجو و نظر محتوای رطوبتی، همراه ۷۰۴ می‌تواند از دوام و قابلیت نگهداری بهتری برخوردار باشد.

پدیده سبیم که باعث ایجاد منحنی‌های جذب و دفع رطوبتی می‌شود با توجه به نتایج با افزایش میزان ۵ می‌دانم که کاهش پیدا می‌کند و غالباً در رطوبت نسبی ۱۰ و ۹۰ درصد می‌باشد. در این مقاله از طول تغییرات رطوبت نسبی به حداقل خود می‌رسد. نتایج حاصل از بررسی چن و همکاران نیز مؤید این مطلب است (۴).

مقایسه مدل‌های غیر خطی با پارابول تصحیح شده، نشان می‌دهد که مدل‌های غیر خطی بهتر از مدل‌های مورد استفاده در این پژوهش، از دقت بیشتری برای همراه ۷۰۴ در هر دو پدیده جذب و دفع رطوبت بهره‌بردار است در حالی که برای همراه ۷۰۴ مدل‌های پیشنهادی نه برای پارابول رطوبت تعادل جذب، قطع بالاتری نسبت به سایر مدل‌ها دارد. مدل پارابول در پدیده دفع