بررسی اثرات استفاده از درصد‌های مختلف آرد یولاف و کربن اضافی در فرمولاسیون

تهیه نان بر خصوصیات حسی و بیشترین بافت نان

مانیا صالحی فر، محمد شاهدی و غلامحسین کیار

چکیده

نام در کشور ما و پس از اکثریت از کشورها غلایه اصلی مورد را تشکیل می‌دهد. با توجه به اینکه کشت عمده نان به شدت در کشور ما از آرد گندم می‌باشد و با در نظر گرفتن اینه که پروتئین گندم به دلیل عدم تمایل انسان به تخلیه قیمتی، درجه قیمتی این تغذیه‌ای غنی می‌باشد. لذا در سال‌های اخیر تعداد زیادی از ارباب‌های کشورهای تغذیه‌ای نان با اثرات این انجام شده است. یکی از راه‌های مناسب و ارزان استفاده از مخلوط آرد گندم و گندم سایر غلات در تهیه نان می‌باشد. در پی گزارش‌های افزایش غلات یولاف از تغذیه‌ای نسبت به سایر غلات، بایستی ارزیابی نان قیمت‌های یولاف با نان سایر غلات و بیشترین بافت نان است. در این پژوهش آثار بافت و خصوصیات نان از نمونه‌های 0، 30، 60 و 100 درصد یولاف در نتیجه آزمایش پری نانایی در فرمولاسیون نهایی شده و بهینه نشده، در درجه حرات نهایی (دبای اتاق و درجه 4°C) و چهار زمان رنگ‌داده (0، 24 و 48 ساعت) بررسی شده. منظر از نان فرمولاسیون نهایی به آزمایش شده، نانایی است که یولاف مورد استفاده در تهیه آن‌ها انزیم مایز دم‌بار (1/5 درصد چربی برای بهبود بافت و پوشاندن طعم نان و 700 ppm آسکوربیک اسید برای تقویت آرد اولیه) به آنها اضافه شده است. نان‌هایی که با فرمولاسیون معمولی هزینه شدند و یولاف به کار رفته در تهیه آنها انزیم بری نشده است. تحت عناوین بهینه نشده تام در پی و خصوصیات ارگانولپاتیک نان با فرمولاسیون بهینه و بهینه نشده به طور خاص گذشته در زمان‌های 0 و 48 ساعت نگهداری پرسی شده. خصوصیات دلنتلورینی خشک‌ریز حاصل بررسی و با نمونه گندم به عناوین شاهد مقایسه شد. نتایج به استدلال آمد که از آزمایش‌های کافی نبوده در قالب طرح کاملاً تصادفی مورد تجربه و تحلیل فاصله‌گرفته. برای مقایسه معنی‌گذاری از آزمون حداکثر تفاوت معنی‌دار (LSD) در سطح احتمال 5% استفاده شد. نتایج نشان داد که با افزایش درصد آرد یولاف، نرمی و سنی نان افزایش یافت و این بات بیشترین نان قیمت‌های بهینه برای 20 درصد آرد یولاف در نهایی‌سازی بهینه شده، طعم نان و در نهایی‌سازی بهینه شده پس طعم نان محسن شد.

واژه‌های کلیدی: نان، گندم، یولاف، نرمی، بهینه، بری، حسی، بیاتی

مقدمه

کشورهای خاورمیانه و خاور نزدیک، 70/20 انرژی مورد نیاز روزانه خواهند داشت. این نیاز در آدرس یولاف به دست آمده و سایر غلایه‌های که از آن‌ها طعم نان شده است.

1. دانشجوی سابق کارشناسی ارشد، استاد و استاد دانشگاه علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

233
تأمین می‌کنند (۱۲). در ایران نیز بیش از ۹۰٪ انرژی مصرفی، از غذایی گیاهی تأمین می‌شود و سهمیه‌اند در این میان ۴۰٪ در شرکه و ۵۰٪ در روستاها باشد (۶).

به طور کلی هر تغذیه‌ای در ایران شمار ۲۳٪ نان و غلات، ۲۵٪ سیریچات، میوه جات، گوشت و لبنیات و ۱۰٪ سایر مواد غذایی می‌باشد. بررسی گزاره‌های نسبی‌ترین تحصیلات تغذیه و کنترل امیتی غذایی در سال ۱۳۸۷ هر تغذیه جمعیت ایران نشان می‌دهد که نان توانسته کمبود سایر مواد غذایی را ناچیز (۶۴).

جدول: نهاده و انواع غذایی استفاده‌ای: از افزایش غذایی و کاهش قدرت خرید در مردم و سرانجام روند کاهشی می‌باشد (۵).

قسمت اعظم نان در کشور ما از این گذشته به می‌شود. پروتئین‌های نهاده از نظر امیت‌های آمینه لیزین بی‌بی‌بی و تربیت‌فوانی قوی است. هدف از غذای کمبود مواد غذایی عبارت است از:
- جذب مواد غذایی از بین رفته در هنگامی با اضافه کردن
- در مراحل عامل آوری و خیزین به ماده غذایی

از وود مواد غذایی به علت کافی نبوده آنها در مواد غذایی
- قرار دادن مواد غذایی در استرس اکثریت مردم با توجه به

کمبودها و نارامسی‌های موجود (۲).

با توجه به مصرف روژاوزن نان در جهان و با در نظر گرفتن این که به بسیاری از کشورها، نان غذای اصلی مردم را تشکیل می‌دهد، با برآوری غذایی و آمار دریایی و لازم به نظر رسید. منظر از غذایی نالا‌باید از نظر مصرف کننده مواد پنسری باشد و ناباید از نظر

Ⓒ محصول ناشی (۷۷).

محصولات دانه‌ی بولاف دارای ارزش زیادی از نظر تغذیه‌ای می‌باشند. در قدم بولاف به عنوان گیاه دارویی مصرف می‌شده است. بولاف می‌تواند خوب پروتئین با ارزش تغذیه‌ای و در غذایی محسوس‌ترین کمبود پروتئین دارد، می‌توان از آن به عنوان یک منبع مناسب استفاده نمود. پروتئین بولاف به صورت یک ناخواست‌های دانه فسفات‌های دانه توزیع شده است. به طوری که بسیاری آن ناهو توسط شاخص ۴۲مگا و انوپتیپ نشاستهای بیشتری با کل پروتئین بولاف را به خود اختصاص داده می‌باشد (۷۷).
که در دانه‌های مختلف تفاوت‌هایی در این مقادیر دیده می‌شود. از نظر کمی، پیوند نسبت به سایر غلات پروتوشیمی دارد. همچنین کیفیت پروتوشیمی آن در مقایسه با غلات دیگر، بیشتر می‌باشد و توسط FAO/WHO در سال 1993 از نظر تناوای اسیدهای آمینه، تأیید شده است. پروتئین پیوند بیولوژیکی بالا دارد و ارزش بیولوژیکی آن با افزایش میزان پروتوشیمی کاهش می‌یابد. زیرا نسبت آنیون (پروتئین-پیوند) به پروتوشیمی کل تغییر نمی‌کند. برخی انواع پیوند تا 20% (8) و 37% (7) پروتئین دارد.

پروتئین از سایر غلات بیشتر است، مقدار چربی پیوند ممکن است از 9 تا 12 تغییر کند. از نظر تغذیه‌ای، چربی پیوند حاوی اهمیت بوده زیرا تغییر مقدار زیادی اسیدهای چرب غیر‌اشتعال از جمله اسیدهای اسیدهای اولیک اضافی، استاندارد و نظر مقدار در مقایسه به قاره نور داده می‌شود. نسبت مطلوب اسیدهای چرب غیر‌اشتعال به اشباع (0.2) در پیوند مفید

می‌باشد. میزان ترکیب و اسیدهای محدودگرای غلات به شمار می‌رود. مقدار لیزین در پیوند نسبت به سایر غلات بیشتر است ولی با یکین وجود لیزین بیش از هم‌مقداری محدودگرای پیوند در پیوند محسوس می‌شود. در همه غلات رابطه منفی بین پروتوشیمی کل و درصد لیزین مشاهده می‌شود و این در حالت است که چنین ویژگی در پیوند دیده می‌شود و با به مقدار سبیار انکدیده می‌شود و ترکیب آمیز اسیدهای آن در محدود و سبیار از پروتوشیمی، تأثیر

می‌باشد. ترکیب خوب اسیدهای آمیز محدود و خصوصیات عملکردی مناسب از جمله قابلیت هیدراتاسیون و امولوسیون کندیگی، سپس شده است که پروتوشیمی پیوند در سطح پروتوشیمی سویا و با حاتی بالاتر از آن نیز گیزد. پروتوشیمی پیوند در تغییر امولوسیفایشی مشابه گلوتن گندم و بیشتر از پروتوشیمی سویا می‌باشد. ظرفیت هیدراتاسیون پروتوشیمی پیوند، مشابه پروتوشیمی سویا به و نسبت به گلوتن، بیشتر است (19) و 37%.

بر اساس گزارش پترسون و اسانتی، مهم‌ترین جزء پروتئین پیوند، گلوتوپین است. درصد بالای گلوتوپین، احتمالاً دهلیز اصلی سرال باید کمتر از نسبت پروتئین بیولوژیکی است. این می‌باشد و عمل این امر، وجود مقدار بیشتر لیزین در جزء بیولوژیکی نسبت به گلوتن و پروتئین است (جدول 1-8). بیشتر غلات درصد زیادی پروتئین دارد و این جزء محصل از الکا نظر اسیدهای آمیز، کم‌عوم دارد. در حالت که پیوند و برخی از این

می‌باشد. بیولوژیکی بالا دارد و ارزش بیولوژیکی آن با افزایش میزان پروتوشیمی کاهش می‌یابد. زیرا نسبت آنیون (پروتئین-پیوند) به پروتوشیمی کل تغییر نمی‌کند. برخی انواع پیوند تا 20% (8) و 37% (7) پروتئین دارد.

می‌باشد. میزان ترکیب و اسیدهای محدودگرای غلات به شمار می‌رود. مقدار لیزین در پیوند نسبت به سایر غلات بیشتر است ولی با یکین وجود لیزین بیش از هم‌مقداری محدودگرای پیوند در پیوند محسوس می‌شود. در همه غلات رابطه منفی بین پروتوشیمی کل و درصد لیزین مشاهده می‌شود و این در حالت است که چنین ویژگی در پیوند دیده می‌شود و با به مقدار سبیار انکدیده می‌شود و ترکیب آمیز اسیدهای آن در محدود و سبیار از پروتوشیمی، تأثیر

می‌باشد. ترکیب خوب اسیدهای آمیز محدود و خصوصیات عملکردی مناسب از جمله قابلیت هیدراتاسیون و امولوسیون کندیگی، سپس شده است که پروتوشیمی پیوند در سطح پروتوشیمی سویا و با حاتی بالاتر از آن نیز گیزد. پروتوشیمی پیوند در تغییر امولوسیفایشی مشابه گلوتن گندم و بیشتر از پروتوشیمی سویا می‌باشد. ظرفیت هیدراتاسیون پروتوشیمی پیوند، مشابه پروتوشیمی سویا به و نسبت به گلوتن، بیشتر است (19) و 37%.

بر اساس گزارش پترسون و اسانتی، مهم‌ترین جزء پروتئین پیوند، گلوتوپین است. درصد بالای گلوتوپین، احتمالاً دهلیز اصلی سرال باید کمتر از نسبت پروتئین بیولوژیکی است. این می‌باشد و عمل این امر، وجود مقدار بیشتر لیزین در جزء بیولوژیکی نسبت به گلوتن و پروتئین است (جدول 1-8). بیشتر غلات درصد زیادی پروتئین دارد و این جزء محصل از الکا نظر اسیدهای آمیز، کم‌عوم دارد. در حالت که پیوند و برخی از این

می‌باشد. بیولوژیکی بالا دارد و ارزش بیولوژیکی آن با افزایش میزان پروتوشیمی کاهش می‌یابد. زیرا نسبت آنیون (پروتئین-پیوند) به پروتوشیمی کل تغییر نمی‌کند. برخی انواع پیوند تا 20% (8) و 37% (7) پروتئین دارد.

می‌باشد. میزان ترکیب و اسیدهای محدودگرای غلات به شمار می‌رود. مقدار لیزین در پیوند نسبت به سایر غلات بیشتر است ولی با یکین وجود لیزین بیش از هم‌مقداری محدودگرای پیوند در پیوند محسوس می‌شود. در همه غلات رابطه منفی بین پروتوشیمی کل و درصد لیزین مشاهده می‌شود و این در حالت است که چنین ویژگی در پیوند دیده می‌شود و با به مقدار سبیار انکدیده می‌شود و ترکیب آمیز اسیدهای آن در محدود و سبیار از پروتوشیمی، تأثیر

می‌باشد. ترکیب خوب اسیدهای آمیز محدود و خصوصیات عملکردی مناسب از جمله قابلیت هیدراتاسیون و امولوسیون کندیگی، سپس شده است که پروتوشیمی پیوند در سطح پروتوشیمی سویا و با حاتی بالاتر از آن نیز گیزد. پروتوشیمی پیوند در تغییر امولوسیفایشی مشابه گلوتن گندم و بیشتر از پروتوشیمی سویا می‌باشد. ظرفیت هیدراتاسیون پروتوشیمی پیوند، مشابه پروتوشیمی سویا به و نسبت به گلوتن، بیشتر است (19) و 37%.

بر اساس گزارش پترسون و اسانتی، مهم‌ترین جزء پروتئین پیوند، گلوتوپین است. درصد بالای گلوتوپین، احتمالاً دهلیز اصلی سرال باید کمتر از نسبت پروتئین بیولوژیکی است. این می‌باشد و عمل این امر، وجود مقدار بیشتر لیزین در جزء بیولوژیکی نسبت به گلوتن و پروتئین است (جدول 1-8). بیشتر غلات درصد زیادی پروتئین دارد و این جزء محصل از الکا نظر اسیدهای آمیز، کم‌عوم دارد. در حالت که پیون
باتنوفکر و گامتوکوفر در مراتب بعدی قرار دارند (۱۴). گیلریل استرس‌های هیدرولوژیکی سیستمیک، فولایک و کافین همکار این بیماری‌ها هستند و انتقال آنها در بخش‌های مختلف پوشاک به‌طور مجزا و همکاراند.

۲. نسبت به مصرف بکر و بی‌بکر بیماری‌ها: بی‌بکری بکر و یا مشابه آن در بیماری‌های خاصی مانند پوشاک بکر و بی‌بکر بیماری‌ها، بیشتر از ۱۵/۰۰ درصد افراد مبتلا است. این نتایج از کاربرد داده‌های پیشنهادی است. یکی از موارد آنها مصرف بکر بی‌بکر بیماری‌ها است. یکی از موارد مصرف بکر بی‌بکر بیماری‌ها است. یکی از موارد مصرف بکر بی‌بکر بیماری‌ها است.

۳. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و در متابولیسم مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۴. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۵. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۶. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۷. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۸. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۹. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۱۰. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۱۱. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۱۲. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.

۱۳. تشکیل شده است. به طوری که اختلالات (۱۰۱-۱۰۵) و با استفاده از مصرف بکر بی‌بکر بیماری‌ها است. برای این انتقال افراد می‌تواند در پوشاک بکر و بی‌بکر بیماری‌ها است.
بتری‌های اس‌بی‌آی مختلف آرد بولاف و چربی اضافی در…

فرآیند مهدیانه گفته می‌شود که تندی و تخلیه در بولاف در اثر فعالیت لیپولاتس آزمایی‌ها، اکسیداسیون چربی‌ها و حضور ترکیبات مانند
وانتیلین، کاتیفلکل‌ها، نیتریدکس و بی‌پایان ترکیب‌ها و اسید اکسیژن 60 ppm (در بهینه سازی استفاده شد). رفاه: 1/5 (در بهینه سازی استفاده شد).

روش‌های تهیه خمیر و پخت: نان، بیان تهیه خمیر، ابتدای مقداری از آب مرذور ناز با شکر و نمک به مخلوط و پس از آن مخمر و سایر مواد مرذور استفاده به داخل مخلوط کن اضافه گردید. و بعد شماره یک دستگاه خوب مخلوط شد. سپس نمونه آرد مرذور نظر به ترتیب به مخلوط کن اضافه شد و به
باقی ماده‌آب مخلوط گردید و عمل اخلاق تا فرم گرفت کامل خمیر ادامه پذیرفت. خمیر تهیه شده به مدت 2 ساعت در دستگاه تخمیر که حضور آن قابل به 3-27°C رصد است. قرار داده شد تا عمل تخمیر صورت گیرد. پس از طی زمان مورد نظر، نمونه‌ها از دستگاه به تیر ترورت اورده شدند و به چانه‌ها 50-100 گرم مقدار گردیدند و بعداً ظرف دستگاه تخمیر قرار گرفتند و سپس چانه‌ها به پخت شدند. عملیات پخت به تور صحتی در دمای 289°C به مدت 80 ثانیه صورت گرفت.

بتست به‌نیتی نان بسته تهیه شده در فیلم‌های
یلی یا پولی‌ولانسیه ضخامت 20 میکرون، نوشت دستگاه پرس حرارتی که نسبتی صورت گرفت.

آزمون‌های آرد و خمیر

1. آزمون‌های شبیه‌آرد

آزمون‌های شبیه‌آرد انداره‌گیری رحویتی با استفاده از روش مصوب به AACC شماره 14-46 انجام گرفت. مقدار خاکشی با استفاده از روش مصوب به شماره 8-21 تعیین گردید. مقدار پروتئین به AACC مصوب شماره 12-46 تعیین گردید. برای اندازه‌گیری چربی نمونه‌ها، از روش مصوب به AACC شماره 10- انجام گرفت. برای اندازه‌گیری مقدار فیبر خام نمونه‌ها از روش مصوب به AACC شماره 237
\[SS = \frac{F}{TD} \]

\[(\text{cm}^3/\text{cm}) \times \frac{\text{mg}}{\text{cm}} \]

\[(\text{cm}^3/\text{cm}) \times \frac{\text{mg}}{\text{cm}} \]

\[F = \text{ف قدرت} \]

\[T = \text{ت زمان} \]

\[D = \text{د دما} \]

\[\text{SS} = \text{س سریع} \]

\[\text{TD} = \text{تی زمان دما} \]

\[\text{mg} = \text{مگا گرام} \]

\[(\text{cm}^3/\text{cm}) \times \frac{\text{mg}}{\text{cm}} \]

\[(\text{cm}^3/\text{cm}) \times \frac{\text{mg}}{\text{cm}} \]

\[F = \text{ف قدرت} \]

\[T = \text{ت زمان} \]

\[D = \text{د دما} \]

\[\text{SS} = \text{س سریع} \]

\[\text{TD} = \text{تی زمان دما} \]

\[\text{mg} = \text{مگا گرام} \]
جدول 1. مقایسه میانگین‌های خصوصیات مختلف آرد گندم و یولاف مورد استفاده

<table>
<thead>
<tr>
<th>نوع آرد</th>
<th>درصد پروتئین</th>
<th>درصد چربی</th>
<th>درصد رطوبت</th>
<th>درصد خاکستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرد یولاف</td>
<td>16/92</td>
<td>6/10</td>
<td>1/80</td>
<td>3/4</td>
</tr>
<tr>
<td>آرد گندم</td>
<td>11/19</td>
<td>11/19</td>
<td>11/19</td>
<td>11/19</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین‌های مقاومت برگی بافت تیمارهای پهنه شده و پهنه نشده با درصدهای مختلف جایگزینی آرد یولاف در زمان‌های مختلف نگهداری در دما اثاثی

<table>
<thead>
<tr>
<th>عامل آزمایشی (gr/cm²)</th>
<th>نوع آرد</th>
<th>زمان صفر</th>
<th>24 ساعت</th>
<th>48 ساعت</th>
<th>72 ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرد یولاف</td>
<td>107/5/55</td>
<td>132/1/33</td>
<td>222/8/82</td>
<td>172/0/56</td>
<td>119/4/42</td>
</tr>
<tr>
<td>آرد گندم</td>
<td>156/8/05</td>
<td>98/6/28</td>
<td>95/2/80</td>
<td>144/0/80</td>
<td>112/3/27</td>
</tr>
<tr>
<td>آرد یولاف</td>
<td>81/1/22</td>
<td>22/2/88</td>
<td>48/0/8</td>
<td>81/1/22</td>
<td>48/0/8</td>
</tr>
<tr>
<td>آرد یولاف</td>
<td>383/5/65</td>
<td>719/31</td>
<td>76/9/33</td>
<td>42/1/38</td>
<td>42/1/38</td>
</tr>
</tbody>
</table>

مقدار پروتئین آرد یولاف بیشتر از آرد گندم بوده ولی ویژگی‌های خاص یولاف است. برای مقایسه این کاهش با آرد گندم به استفاده از مقدار بیشتر و توزان انداخته شده است. پهنه نشده وسایل پهنای است به‌سوی افزایش درصد خاکستر اثر نمی‌گذارد. بیشتر از آرد یولاف اثر خواهش گذاشت و موجب ایجاد نرم در تن تهیه شده می‌شود به طوری که با افزایش زمان بیانی کمتر ایجاد می‌کند. همچنین در برخی موارد موجات خارجی سینه‌های طمع را فراهم می‌کند (20).

مقدار بیشتر محسوب در آن می‌باشد. از طرف دیگر حضور سیسوس در آرد یولاف موجب گشتهٔ افزایش فیبر در آن نیز بیشتر از آرد گندم باشد. مقادیر بیشتر آرد یولاف به طور قابل ملاحظه‌ای بیشتر از آرد گندم و آرد سایر علات می‌باشد و همین عامل بر خصوصیات تکنولوژی محسولات حاصل از یولاف اثر خواهد گذاشت و موجب ایجاد افزایش نرم در تن تهیه شده می‌شود به طوری که با افزایش زمان بیانی کمتر ایجاد می‌کند. همچنین در برخی موارد موجات خارجی شدن طعم را فراهم می‌کند (30).
ملاحظه: می‌شود نمونه‌های یکه‌پایه شده که در ۱/۱۰ ثانیه به صورت دستی به آنها اضافه شده است، بافت نرم تر و مطبوع و ریز نسبت به نمونه‌های یکه‌پایه شده داخلی، با نمایش داده‌شده‌اند. پژوهشگران (۱۲) عنوان کرد که ناهایی در تهیه آنها از چربی بیشتر استفاده شده است. بافت نرم تری داده‌اند. یا قرار گرفتن در اطراف سطح خارجی گرانول‌های ناشی از قرار گرفتن و انتقال آنها در حین یکچیپ گل‌زده گازهای جالب‌الحال از تخمیر شده و در یک یا دو تا نیاز واقع شده است. به طور کلی باید به عنوان یک عامل لازم‌بوده‌ی موجه تومر را فراموش نکنیم.

می‌شود می‌توان که مقابله می‌باشد با تغییرات یکه‌پایه شده در دیعیات اثرات متغیرهای نگهداری شده در دیعیات یکه‌پایه شده در دیعیات یکه‌پایه شده.

همان طور که در جدول ۳ مشاهده می‌شود، روند تغییرات بافت تحت تأثیرهای ازامیشی در دما پیچیده و تغییر در شاخص این دما در متابولیسم و پنجم شده که استحکام بیشتری پیدا کرده است. در مدارهای پذیرایی گل‌زده موجب شده که احتمال بیشتری ایجاد شود. زیرا گل‌زده به عنوان اسکلر بیشتری از عمل آن می‌کند و در این ماست گروهی موجب مثبت انرژی درمان آن کرده است. اسکلر که به عنوان یک اصل قابلیت نیست، می‌تواند با بافت گل‌زده در آن بیشتره مشاهده نشده و نان حاصل این در ویژگی ماهیت شکل‌شده در نزد و نان بیشتره مشاهده مست."
جدول 3. مقایسه میانگین‌های اثر مقاومت برخی بافت تیمارهای بهینه شده و بهینه نشد با درصد‌های مختلف چاپگذایی آرد یولاف در زمان‌های مختلف نگهداری در دماهای مختلف

<table>
<thead>
<tr>
<th>نوع آزمایشی</th>
<th>عامل آزمایشی</th>
<th>زمان صفر</th>
<th>زمان 2 ساعت</th>
<th>زمان 24 ساعت</th>
<th>زمان 48 ساعت</th>
<th>زمان 72 ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرد گندم</td>
<td>بهینه شده</td>
<td>294/75</td>
<td>268/36</td>
<td>278/79</td>
<td>159/75</td>
<td>132/12</td>
</tr>
<tr>
<td>آرد حاوی 10% یولاف</td>
<td>آرد حاوی 20% یولاف</td>
<td>آرد حاوی 30% یولاف</td>
<td>آرد حاوی 40% یولاف</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهینه نشده</td>
<td>294/75</td>
<td>268/36</td>
<td>278/79</td>
<td>159/75</td>
<td>132/12</td>
<td></td>
</tr>
</tbody>
</table>

کمپلکس‌هایی سبب به تأخیر انداختن بافت نان می‌شوند. در هنگام نیک، آب از نشاسته خارج و جذب گلوبن می‌گردد. چرخه‌ها از انتقال آب به بیشترین گلوبن جلوگیری کرده و معادن از کربنات‌های نشاسته می‌شود (23). به همین علت نمونه‌های بهینه شده که نظریه به صورت دستی به آنها اضافه شده است، نسبت به نمونه‌های بهینه شده نیست. بافت كمتری داشته‌اند. کم (15) گزارش کرد که آوازه‌ی مقصر پروتونی، بافتی نان را به تعویق می‌اندازد و علت آن را تعقیب سازی نشاسته و کاهش پیوستگی ذرات نشاسته به یکدیگر باعث می‌شود. آپولنیا و زنگ (11 و 20) گزارش کرد که در اثر اضافه شدن آرد یولاف، جذب آب آرد و قابلیت نگهداری رطوبت مغز نان افزایش می‌یابد. از نتایج ناحیه حجم آرد آرد به بیانی آن به تعویق می‌اندازد. آپولنیا هیچ‌چیز گزارش کرد که در اثر اضافه کردن آرد یولاف به آرد گندم، نشاسته‌های کم چرخم و از آن جا که نشاسته‌گذاری رفع می‌شود و از یولاف و یون‌لو فیت‌باید، با تحقیق شدن نشاسته‌گذاری بافت به تعویق می‌اندازد. بیان (27) می‌گوید:
تمایل به تحقیق در مورد مقالات از طرف دیگر مقایسه بالای آنریم لیپوز و لیپوکسینزیاز می‌تواند به عوامل مهم ایجاد فلور ناهموار بدن و موجب ایجاد تندی و طعم صابونی نیز می‌گردد و نتایج در صورت عدم مصرف آنریم لیپوز و لیپوکسینزیاز موجب تولید آنفیده‌های طعم ناهموار بدن و تغییر ایجاد می‌شود (18).

به طور کلی هدف اصلی ما از بهینه سازی، غیر فعل کره‌ای آنریمی‌ها می‌باشد. عامل ایجاد چنین فلور ناهموار بدن و طعم، چربی ناشی از جمله لیپوکسینزیاز و فعالیت آنریم لیپوز و لیپوکسینزیاز موجب تولید آنفیده‌های طعم ناهموار بدن و تغییرات مصرفی دریافت گردیده و به بهینه سازی و تغییرات فیزیولوژیک مربوط باید توجه شود.