ارزیابی و مقایسه بازدهی تراکتورهای مسی فرگوسن (U) و پونیرسال (650)
در اجرای شخم با گاوانه برگداندار

محمد لغوی و احمد ملاصداقی

چکیده
با زدی کنشی در نوع تراکتورهای مورد نیاز مبنا در ایران، پیشنهاد تراکتورهای مسی فرگوسن 260 و پونیرسال 650 در عملیات شخم تنظیم گاوانه برگداندار و مغایبی را که در آزمون تحقیقاتی انجام شده، تکنیک‌هایی که در این مقاله ارائه شده، و جهت افزایش تراکتوره در این شرایط استفاده می‌شود.

تاریخچه
در صلیبیو تراکتور، مسی فرگوسن 260 و پونیرسال 650 در سطح تراکتورهای مسی فرگوسن 260 و پونیرسال 650، به صورت تکنیکی در هر دو نوع تراکتور، به طور معمول استفاده می‌شود. در این مقاله، بررسی عملکرد تراکتورهای فرگوسن 260 و پونیرسال 650 در شرایط مختلف و در نهایت به صورت مقایسه‌ای آنها با گاوانه برگداندار در عملیات شخم با گاوانه برگداندار مطرح می‌شود.

واژه‌های کلیدی: بازدهی کنشی، تراکتور، گاوانه برگداندار، افزایش تنظیم، تراکتورهای گاوانه، مقایسه

1. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد مانیهی کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

177
مقدمه
با رشد روزافزون جمعیت، محدودیت منابع آب و خاکی و نیاز فراوانی به افزایش پایه تولید محصولات کشاورزی، نقش و اهمیت مکاتبه‌سازی کشاورزی به ویژه در کشورهای در حال تقویی ابعاد کشاورزی در ترین دهه اقتصادی مستمر می‌باشد. کشاورز به عنوان اصلی ترین منبع در تولید توان زراعی، کشاورزی مکاتبه‌سازی جایگاه ویژه‌ای را به خود اختصاص می‌دهد.

متداتیون کاربرد تراکتورها در کشاورزی ایران. استفاده از توان مالی‌بندی آنها از اجرای عملیات خاک‌ورزی و مخصوصاً شکن توسط گاوهای به‌گردان در است. در میان بهره‌برداری از توان تراکتور، بعنوان توان توان‌دهی، توان هیدرولیکی و توان کششی (مالی‌بندی)، روش سوم متداتیون ترین و علی‌اون می‌باشد. نمونه‌های ناشر شرایط محیطی خاک و یا محدوده‌درکی می‌باشد. در این محدوده تراکتورها در شرایط کشاورزی یک‌بعدی به کار رفته، و آنان به‌زیاده کشاورز در شرایط غیر کاملاً مناسب شرایط محیطی خاک، به عنوان مهم‌ترین شناخت استفاده بهینه از انرژی تراکتور، که به صورت نسبی توان مالی‌بندی به توان محوری جریان محیطی تعیین می‌شود، ارزیابی و مقایسه آن به روش‌های تجربی و تحلیلی همواره مورد نظر پژوهشگران بوده است.

نتایج
پژوهش‌های آنالیز شده در تأثیرات افزایش توان‌دهی تراکتور به‌روز از مرحله تبیین آن توان کششی می‌باشد. در نتیجهسد، در بخش مورد به استفاده از روش‌های تجربی-تحلیلی، اثبات‌های 35 درصد توان تراکتور به تن‌دان افزایش یافته است (۲۲). به‌خاطر این تأثیرات تولید شده صرف مسترک نمونه‌ها در تجربه شرایط محیطی مناسب آن برای رشد و توزع ریشه‌های می‌شود، و نهایتاً ممکن است موجب کاهش محصولات کشاورزی گردد (۱۳).

متأثر از توسل وهم‌سازی و اصلاح عملکرد کشاورزی تراکتورهای ایجاد هماهنگی مناسب بین توان تراکتور و مهار شرایط محیطی سرعت بخش روی تراکتور و مقاومت کشاورزی اندواده‌های خاکی می‌باشد. پژوهش‌هگان بسیاری تلخان

۱۷۸
ارتقای آج (لاستیک باشید) از جهت تجهیز و تحلیل نشانه‌های بررسی و عمومی در صفحه تمام این لاستیک و خاک استوار بوده و عالیه مقاومت برخی خاک انعطاف‌پذیری آج آج (لاستیک باشید) از جهت نشانه‌های شاخص‌های عمکرده کشی ملحوظ می‌دارد. اعتبار این مدل با مقایسه نتایج حاصل از آزمون مربوط، با استفاده از دستگاه آزمایشگاهی جرخ (Wheel traction tester) نتایج این ارزیابی حاجی از تحقیق مناسب شاخص‌های عمکرده کشی در شرایط خاک سخت بود است.

به نظر می‌رسد این مدل باند عمدی کلمه‌ای تراکتورها با در شرایط خاک‌های ایران، که عموماً به علت فقر مواد آلی و کمی رطوبت در ریفه خاک‌های سخت می‌گردد (2)، با درجه اعتبار بالار زیرپیشین نماید، ویژه تاکنون اقدامی در این خصوص صورت نگرفته است.

در مورد ارزیابی عمکرده کشی تراکتورهای متفاوت در ایران پژوهش‌های انجام گردیده است. که از جمله می‌توان به بررسی تأثیر عواملی نظیر بار ومعنی بر مورد محکر، فشار به لاستیک و عمل به میزان لغزش چرخ‌های محکر تراکتورهای جانبدار، می‌توان به ماهی‌سی فرآیند 285 و 250 تراکتور بالا 500 پدرباز و استمرار مایع 18/8 درصد، کمترین و مناسب ترین میزان لغزش را داشته.

است.

مواد و روش‌ها

از جمله می‌توان به بررسی تأثیر عواملی نظیر بار ومعنی بر مورد محکر، فشار به لاستیک و عمل به میزان لغزش چرخ‌های محکر تراکتورهای جانبدار، می‌توان به ماهی‌سی فرآیند 285 و 250 تراکتور بالا 500 پدرباز و استمرار مایع 18/8 درصد، کمترین و مناسب ترین میزان لغزش را داشته.

است.

در این پژوهش ترکیبی تکنولوژی مسی فرآیند 285 و 250 تراکتور بالا 500 در اگرای عملیات خاک‌ورزشی به سیلیکا کوه‌های پرکرداکداز و قلمی ارزیابی و مقایسه گردید. در این پژوهش لغزش چرخ‌های محکر میزان مصرف سوخت و ظرفیت مزرعه‌ها در عملیات خاک‌ورزشی به عنوان شاخص‌هایی از عمکرده کشی اندازه‌گیری شد. نتایج نشان داد که تراکتور مسی فرآیند در مقایسه با پژوهش‌های دارای لغزش چرخ و مصرف سوخت بیشتر و ظرفیت مزرعه‌های کمتری بود. عمکرده کشی ضعیف
پارامترهای اصلی‌تر مورد انتخاب‌گیری در طی آزمون‌ها عبارت بودند از، نرخ‌کشش مالایندی، نرخ نسبت مقدار غلظت‌های جرخ‌های تراکتور. و دو نرخ لعشه جرخ‌های محرک آزمایش‌ها در طول 27 هر یک هزینه 150 متر و عرض چهار متر اجرا گردید. هر دو تراکتور عمر کاری نسبتا مشابه داشتند و مهم نبود که تراکتور، دو نرخی از نوع معمولی و دو یا آنجام‌سازند. در مورد تراکتور پنترال 250 کیلومتر در هر دو وضعیت بارگذاری، برای یک 70 کیلومتر بالاست بود. سرعت سئول‌های تراکتور مسی فرگوسن، 25 درصد حجم داخلی استیکس با مخلوط آب نمک بنا گلخانه و 30 درصد پر گردید.

گزاره آخر استفاده یک دستگاه گاز ایوان برگرداند. سه جرخ‌های مورد انتخاب‌گیری در نرخ پوششی، باید تنها عمق جرخ‌های اجرا شده با تراکتور واژگون شده باشد. در هر اینجا، سرعت بیشتری پشتوانه مجازبی دیگر با توجه به اینکه در کارخانه، سرعت بارگذاری تا دور نظر مونت شده بود، برای توجه به اینکه در کالی و ت pracowników نه انجام شد که سرعت معمول در اجرای عملیات شکم با گاز ایوان برگرداند در شرایط خاصی ایرانی می‌باشد.

با استفاده از مقادیری دست آمده برای نرخ کشش (R) و

S(%) = [(A - B) / A] × 100

درصد لغزش جرخ‌های محوره در روش استاندارد RNAM و استفاده از رابطه 1 تعیین گردید.

مالایندی بر طبق روش (Agricultural Machinery استفاده گردید. چگونگی اجرای این روشه توسط رهبر و افراد زاده (3) گزارش شده است.

CLP-5B دیماوند با کار رفته یک دستگاه لوله شاری مدل مجهر به مانیتور دیجیتال بود. هر نوع یک قابل ملکه فایل انعطاف‌پذیری را تاثیر دو متغیر مختلف یک نوع بالا که در تراکتور، شامل تراکتور، شالي راکتور، باینورال 750 در وضعیت استاندارد نوسیم شده و تراکتور مسی فرگوسن 285 در وضعیت عادی (بدون سنگ‌سازی) چرخ‌ها و در وضعیت سنگ‌سازی شده (بدون نموان جرخ‌های محور با آب نمک) در طول حرکت بیش از هشته داده است. و میانگین آنها به عنوان مقادیر کشتی کرت منظور شد.

RNAM درصد لغزش جرخ‌های محوره در روش استاندارد س(%) = [(A - B) / A] × 100

درصد لغزش جرخ‌های محوره در روش استاندارد RNAM و استفاده از رابطه 1 تعیین گردید.

S(%) = [(A - B) / A] × 100

درصد لغزش جرخ‌های محوره در روش استاندارد RNAM و استفاده از رابطه 1 تعیین گردید.

مالایندی بر طبق روش (Agricultural Machinery استفاده گردید. چگونگی اجرای این روشه توسط رهبر و افراد زاده (3) گزارش شده است.

CLP-5B دیماوند با کار رفته یک دستگاه لوله شاری مدل مجهر به مانیتور دیجیتال بود. هر نوع یک قابل ملکه فایل انعطاف‌پذیری را تاثیر دو متغیر مختلف یک نوع بالا که در تراکتور، شامل تراکتور، شالي راکتور، باینورال 750 در وضعیت استاندارد نوسیم شده و تراکتور مسی فرگوسن 285 در وضعیت عادی (بدون سنگ‌سازی) چرخ‌ها و در وضعیت سنگ‌سازی شده (بدون نموان جرخ‌های محور با آب نمک) در طول حرکت بیش از هشته داده است. و میانگین آنها به عنوان مقادیر کشتی کرت منظور شد.

RNAM درصد لغزش جرخ‌های محوره در روش استاندارد S(%) = [(A - B) / A] × 100

درصد لغزش جرخ‌های محوره در روش استاندارد RNAM و استفاده از رابطه 1 تعیین گردید.

S(%) = [(A - B) / A] × 100

درصد لغزش جرخ‌های محوره در روش استاندارد RNAM و استفاده از رابطه 1 تعیین گردید.
درصد لغزش چربی‌های محرک (S)، و به کارگیری رابطه 2، با یاده کشی (T) که عبارت است از نسبت توان مالبندی به توان محرک چربی‌های محرک، برای هر آزمایش معنی‌دار گردد.
\[
T.E. = \frac{P}{(P + R)} (1 - S)
\]
در این رابطه S به صورت اعتبار وارد می‌شود.
نتایج حاصل بر میانگین آزمایش‌های فلاکورiel و با استفاده از آنالیز واریانس مورد تحلیل قرار گرفت، و مقایسه میانگین‌های مقاومت غلتی، درصد لغزش چربی‌های محرک و با یاده کشی تراکتورها در سطوح مختلف عمق شکم به روش داتانک و یک کم نرم‌افزار MSTATC انجام گردید.

نتایج و بحث
نتایج حاصل از تجربه واریانس آمار اصلی و متقابل نوع یا حالت تراکتور و عمق شکم برحسب مقاومت غلتی، درصد لغزش چربی‌های محرک و با یاده کشی تراکتورها در جدول 1 ارائه گردیده است.

مقاومت غلتی
نتایج نشان می‌دهد که عامل نوع یا حالت تراکتور اثر معنی‌داری بر نرخ مقاومت غلتی به جای گذشته است. به سخن می‌گردد، نوع یا حالت تراکتور با احتمال 0.05 درصد، بر میانگین نرخ بر نرخ مقاومت غلتی تراکتور مؤثر است. در حالی که عمق شکم اثر معنی‌داری را بر مقاومت غلتی نشان نمی‌دهد. با توجه به نتایج، گریز مقاومت غلتی در حالی که گاواهن خارج از حاصل قرار دارد، معنی‌دار نبودن اثر عمق شکم بر مقاومت غلتی بعده به نظر می‌رسد. اثر برینی که عمق شکم بر نرخ مقاومت غلتی معنی‌دار نبوده است.

لغزش چربی‌های محرک
جدول 1: نرخ مقاومت غلتی در اندازه‌گیری با از توان اصلی هر یک فاکتور نوع یا حالت تراکتور و عمق شکم، و اثر متقابل آنها بر لغزش چربی‌های محرک در سطوح اختلاف (1) بیان می‌شود. جدول 2: مقایسه میانگین‌های درصد لغزش چربی‌های محرک در...

می‌گردید، و در اینجا به توضیح کاهش پانه و در نهایت نگیر زندگی در مقاومت غلتی کل تراکتور حاصل می‌گردید.

مقایسه میانگین‌های مقاومت غلتی در سطوح مختلف نوع یا حالت تراکتور و عمق شکم با استفاده از آزمون چند دامنه‌ای داتانک (جدول 2) نشان می‌دهد که بر نرخوند استیک تراکتور مسی فرگوسن از آن‌ها می‌تواند مقاومت غلتی آن گردد. است. این پدیده ناشی از تأثیر تجارب بار شکمی بر مقاومت غلتی آن می‌باشد. زیرا بر اساس بررسی‌های تجربی و روابط ارائه شده برای محاسبه مقاومت غلتی (13)، این نیرو با بهره عضوی وارد بر چربی نسبت مستقیم دارد. بندها یادان توجه دیرگرز در جدول 3 بود اختلاف معنی‌دار بین مقاومت غلتی تراکتور مسی فرگوسن در حالت سانگیش، و تراکتور پنورسال، به رغم وجود اختلاف در میزان بر عضوی وارد بر محورها چربی‌های محرک از می‌باشد.
(26/1 و 31/8 کیلوتن، به ترتیب برای تراکتورها مسی فرگوسن سانگیش و پنورسال)، به یکدیگر می‌توان ناشی از تفاوت در ابعاد فیزیکی چربی‌های محرک آنها دانست. به نوعی که تراکتور پنورسال، به دلیل دارا بودن استیک‌های قطرات (در تنظیم طول ناماس برگ‌زدایی) از تراکتور مسی فرگوسن (به ترتیب 1/17 و 1/42 متر)، به رغم برزگ‌تر بودن بر عضوی آن، دارای مقاومت غلتی بیشتری با تراکتور مسی فرگوسن می‌باشد. به سخن دیگر، کاهش مقاومت غلتی ناشی از قطرات بودن چربی‌ها (13)، افزایش مقاومت غلتی ناشی از برزگ‌تر بودن بر عضوی محور را خنثی نموده است.

لغزش چربی‌های محرک
جدول 1: نرخ مقاومت غلتی در اندازه‌گیری با از توان اصلی هر یک فاکتور نوع یا حالت تراکتور و عمق شکم، و اثر متقابل آنها بر لغزش چربی‌های محرک در سطوح اختلاف (1) بیان می‌شود. جدول 2: مقایسه میانگین‌های درصد لغزش چربی‌های محرک را در...
جدول 1. مياغين مربوطات آثار أصل و مقابل نوع ب حالي تراكتور و عمق شحم بر مفاعلات غلى شم. درصد لغش

<table>
<thead>
<tr>
<th>مياغين مربوطات</th>
<th>درصد لغش</th>
<th>مقاومت غلى شم</th>
<th>تغيير آزادي</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارده كشى</td>
<td>0/15*</td>
<td>48/24*</td>
<td>2</td>
</tr>
<tr>
<td>بارده كشى</td>
<td>0/10*</td>
<td>48/24*</td>
<td>2</td>
</tr>
<tr>
<td>بارده كشى</td>
<td>0/11*</td>
<td>48/24*</td>
<td>4</td>
</tr>
<tr>
<td>بارده كشى</td>
<td>0/09</td>
<td>48/24*</td>
<td>15</td>
</tr>
<tr>
<td>بيچه مناسب</td>
<td>2/8</td>
<td>48/24*</td>
<td>2</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین‌های مقاومت غلقی (بر حسب کیلوپیوتن) در سطوح مختلف نوع ب حالت تراکتور و عمق شحم

<table>
<thead>
<tr>
<th>نوع حالت تراکتور</th>
<th>عمق شحم (سانتی‌متر)</th>
<th>میانگین</th>
<th>X</th>
<th>20-25</th>
<th>25-30</th>
<th>30-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسی فرگوسن 285 (سنگین نشده)</td>
<td>1/88*</td>
<td>1/84*</td>
<td>1/83*</td>
<td>1/89*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مسی فرگوسن 285 (سنگین نشده)</td>
<td>1/83*</td>
<td>1/82*</td>
<td>1/81*</td>
<td>1/86*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 پونور سال</td>
<td>1/84*</td>
<td>1/83*</td>
<td>1/82*</td>
<td>1/86*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین‌های لغش های مریح (درصد) در سطوح مختلف نوع ب حالت تراکتور و عمق شحم

<table>
<thead>
<tr>
<th>نوع حالت تراکتور</th>
<th>عمق شحم (سانتی‌متر)</th>
<th>میانگین</th>
<th>X</th>
<th>20-25</th>
<th>25-30</th>
<th>30-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسی فرگوسن 285 (سنگین نشده)</td>
<td>2/8*</td>
<td>2/81*</td>
<td>2/82*</td>
<td>2/83*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مسی فرگوسن 285 (سنگین نشده)</td>
<td>2/81*</td>
<td>2/82*</td>
<td>2/83*</td>
<td>2/84*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 پونور سال</td>
<td>2/8*</td>
<td>2/81*</td>
<td>2/82*</td>
<td>2/83*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های X به حروف کوچک مشترک نشان داده شده‌اند در انتخاب میانگی‌دار نمی‌باشند (دانکل 5%).

میانگین‌های که با حروف بزرگ مشترک نشان داده شده‌اند در انتخاب میانگی‌دار نمی‌باشند (دانکل 5%).

میانگین‌های X، X به حروف بزرگ مشترک نشان داده شده‌اند در انتخاب میانگی‌دار نمی‌باشند (دانکل 5%).
اعزایی و متقاضی باده، کشتی تراکتورهای مسئولیت (285) و پیوند ها (160) در

(عقب) این تراکتورها (به ترتیب 25/1/29 و 17/6/29) کلیو‌بین
برای تراکتورهای مسئولیت فلزپرستی مناسب، تنکیکی و
پیوند ها) دانست.

اختلاف میانگین‌های لغش چرخ‌های محرک در سطوح
مختلف عمق شکم نیز به احتمال 99٪ معنی‌دار است، به طوری که در عمق شکم سطحی (0-10 سانتی‌متر) کمترین لغش
(2/100)، و در عمق عمقی (20-25 سانتی‌متر) بیشترین مقدار
لغش (3/100) وجود دارد. دیگر این که در تراکتور در شکم
سطحی دارای برخی از لغش‌هایی باعث نجات تراکتور است، و
تراکتور مسئولیت الف در سطوح برخی از حالت‌های فاقد
و یا در حالت دارای برخی از حالت‌های فاقد
فرآیند است، تراکتور مسئولیت الف در هر دو حالت درصد
لغش حداکثر 2/3 برای حد قابل قبول داشته است که
فرآیند دیده است و تجربه مسافرتی خاک از جمله
عوامل تاثیرگذاران آن می‌باشد. این نتایج نشان می‌دهد که تراکتور
مسی مسئولیت الف در حالت‌های محرک نیز قابل
رقابت با تراکتور پیوند است در اجرای شکم عمق
نیز هم می‌باشد.

(ب) کشتی

نتایج تجزیه‌واریس آثار اصلی و متقابل نوای و حالت تراکتور
و عمق شکم بر بازده کشتی تراکتورها (جدول 1) نشان
می‌دهد که عمق شکم هر دو فاکتور اثر معنی‌دار آن دو بر بازده
کشتی در سطح احتمال 1٪ معنی‌دار می‌باشد. در جدول 4
میانگین بازده کشتی تراکتورها در سطوح مختلف نوع با
حالت و هم‌چنین عمق شکم با استفاده از آزمون دانکان در
سطح احتمال 1٪ مقایسه گردید. این نشان می‌دهد که داده‌ها
بیشترین بازده کشتی مربوط به تراکتور پیوند ه و کمترین
آن مربوط به تراکتور فلزپرستی می‌باشد. تراکتورهای

جدول 3 همچنین نشان می‌دهد تراکتور مسئولیت فلزپرستی در
هر دو حالت به همانگام افزایش عمق شکم از سطحی به
سطح عمقی، و بسیار معمایی با افزایش معنی‌داری در حالت
لغش چرخ‌های محرک مواجه گردیده است. این در حالت
است که در تراکتور پیوند ها به همین تغییرات عمق شکم,

183
جدول 4. مقایسه میانگین‌های بازده کششی تراکتور (درصد) در سطوح مختلف نوع با حالت تراکتور و عمق شخم

<table>
<thead>
<tr>
<th>نوع با حالت تراکتور</th>
<th>میانگین (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(25-30)</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (سنگین نشده)</td>
<td>۷۶/۱۰</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (سنگین شده)</td>
<td>۷۶/۴۵</td>
</tr>
<tr>
<td>بوئینورسال ۶۵۰</td>
<td>۷۳/۸۴</td>
</tr>
<tr>
<td>میانگین X</td>
<td>۷۰/۷۹</td>
</tr>
</tbody>
</table>

میانگین‌های X که با حروف کوچک مشترک نشان دادند اختلاف معنادار نمی‌باشند (دالان 5).

میانگین‌هایی که با حروف کوچک مشترک نشان دادند اختلاف معنادار نمی‌باشند (دالان 5)

طور معناداری بروکنش از جنگل سنگین نشده آن (۵۳/۷) و کوچکتر از تراکتور بوئینورسال (۷۳/۸) است. این پیدایش را با توجه به نتایج قبلی می‌توان به روند تغییرات درصد غرفش جرخ‌های محیط این تراکتور نسبت داد. تراکتور بوئینورسال که پیش‌تر نسبت کمتری با کمترین میانگین درصد غرفش نشان می‌دهد، دارای پیش‌ترین بار (۲۱/۳۴ کیلویی) روح‌محور محیط بوده و تراکتور مسی فرگوسن سنگین نشده که کمترین بازده کششی با پیش‌ترین میانگین درصد غرفش را دارد، کمترین بار (۲۵ کیلویی) وارد بر محیط جرخ‌های محیطی را تحمل می‌نماید. جدول ۴ همچنین کاهش معنادار بازده کششی را با افزایش عمق شخم نشان می‌دهد که این روند نیز با توجه به افزایش معنادار درصد غرفش با افزایش عمق شحم (جدول ۳) منطقی می‌باشد.

از نتایج شاخصی، دانسته‌نامه جدول ۴ معنادار نبودن اختلاف بازده کششی به نسبت بازده تراکتور در اجرای شحم سطحی است. که در این حالت هر میزان بازده کششی زیاد و مطلوب می‌باشد. تراکتور مسی فرگوسن سنگین شده تا شرایط شحم

منابع مورد استفاده

1. میلانی، م. ه. بهرامی و م. شیخ داوودی. ۱۳۶۹. اندکی گزیده و مقایسه درصد غرفش جرخ‌های محیطی (عقب) تراکتورهای

منابع در خوزستان. مجله علمی کشاورزی ۱۴ (۱ و ۲): ۱۰۶-۱۱۸.

2. کلاسی، م. ۱۳۷۵. وضعیت موارد آن در خاک‌های ایران و نقش کمپود که در خاک ایران، آموزش‌دهی کشاورزی جر. ۱۰ تا ۱۳ شهریور.
3. لغوی، م. و س. ر. اشرفی‌زاده. 1376. مقاومت کشی، مقاومت ویژه و توان مال‌بندی مورد نیاز گاوهای قلمی (چیزل) در سطوح مختلف رطوبت خاک و عمق شخم. علوم کشاورزی و منابع طبیعی (۲): ۱۰۸-۹۴.
4. معصومی، ا. و م. لغوی. 1373. ارزیابی عملکرد کششی دو نوع تراکتور متناول در ایران. تحقیقات کشاورزی ایران ۱۳(۲): ۷۷-۹۵.
5. ملاصدراز کرمانشاهی، ا. و رکن‌آبادی، ا. 1378. ارزیابی و مقایسه بازده کششی دو تراکتور میان قدرت متناول در ایران. پایان‌نامه کارشناسی ارشد مکانیک ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز.