بررسی سر زریه‌های چند وجهی با بلان مستطیلی و U شکل

چکیده

سر زریه‌های چند وجهی به دلیل تغییرات جزئی بر اساسیکی روی تاج در شرایط نوسانات زیاد شدت جریان، در مقایسه با انواع دیگر سر زریه، سازه‌های افتاده برای کنترل سطح آب در شکه‌های آبیاری محصول می‌شوند. این سر زریه‌ها از وجوه نمایش هم تکنیکی که در پلان می‌کنند است به شکل ذوزنقه، مثلث و یا شکل‌های دیگری با نگاه چند سیکل دیده شوند. در این تحقیق، سر زریه‌های چند وجهی که در پلان به شکل مستطیلی و U یا بالان، مورد بررسی قرار گرفته‌اند. آزمایش‌های روی 15 مدل آزمایش‌گاهی سر زریه انجام گرفته‌است.

مواد و شکل شمانا 8 سر زریه چند وجهی مستطیلی، 6 سر زریه چند وجهی U شکل با طول و ارتفاع مشابه و یک مدل سر زریه خطی می‌باشد.

این مدل‌ها در یک فلز به طول 12 عرض 3/2 و ارتفاع 2/35 متر آزمایش گردیدند. نتایج آزمایش‌های این پژوهش نشان داد که در صورت کلی سر زریه‌های چند وجهی، ضرب دی‌های نسبت به H1/P: افتاده افزایش یافته و پس از رسیدن به یک ماکزیمم، شروع به کاهش می‌نماید. با افزایش ارتفاع سر زریه، مقدار ضرب دی‌های در یک بیشتر می‌شود. نتایج همچنین شکل افتاک‌های طول موازی با جهت جریان در سر زریه‌های چند وجهی به‌طور کلی کاهش ضرب دی‌های افراش طول عمود بر جهت جریان باعث افزایش آن می‌شود. همچنین، ضرب دی‌های در سر زریه‌های چند وجهی U شکل بیشتر از سر زریه‌های دو زنده‌ای با زاویه α برابر 8 و 12 درجه بوده و همچنین ضرب دی‌های در سر زریه‌های مستطیلی کمتر از ضرب دی‌های در سر زریه‌های چند وجهی U شکل است.

واژه‌های کلیدی: سر زریه چند وجهی، سر زریه خطی، ضرب دی‌های در آزمایش‌گاهی

مقدمه

یکی از مشکلاتی که شکه‌های آبیاری با آن مواجه هستند، تغییر میزان دی‌های از سازه‌های آبیاری به واسطه نوسانات شدید سطح آب در مجري اصلی است. با توجه به رابطه

1 بهترین استدلال، استاد و دانشجوی سابق کارشناسی ارشد آب‌پز، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
است. این سرریزها که اخیراً مورد استفاده زیانداری قرار می‌گیرند، به تهیه‌نامه‌های کرده‌نامه‌ی اجازه، چند و وجهی و متقارن نامیده می‌شوند. سرریزهای چند وجهی برای عبور جریان با بار یا هیدرولیکی کم، به عنوان سازه مناسبی برای آبگیری از کانال، معمولاً، سازه کششی وروی‌های به‌نیروگاه و به طور بیشتر، قرار می‌گیرند و برای سرریز سد‌ها و گاز رسیده شده‌اند. این نوع سرریزها در پلاک به علت ذوب‌اف، ممکن و با یا نوک ارگزی دیده می‌شوند و می‌توانند به صورت چندین سیکل نکران شوند. شکل ۱ سیکل از یک سرریز چند وجهی را که در پلاک به صورت ذوب‌اف دیده می‌شود، به‌همراه بارهای هندسی و هیادرهولیکی مربوط به نشان می‌دهد (۱).

اولین تلاش برای تحلیل سرریزهای چند وجهی را می‌توان به های و تیلور (۵) نسبت داد. این محققین [Q/LQ نیم‌پیمان باده سرریزهای چند وجهی با نسبت QL/QN بنامند. این رابطه QL از سرریز چند وجهی با طول QN و L مشتق شده است (۶) عرض آبراهه اصلی) در یک بار هیدرولیکی مشخص می‌باشد. این مطالعات نشان داد که بازه سرریزهای چند وجهی در یک بار هیدرولیکی کم طول می‌باشد. داروی (۳) نتایج آزمایشگاهی مدل سرریزهای چند وجهی سد مشابه و نورتوپ و آن واقع در استرالیا را مورد استفاده قرار داده و منحنی‌های برای طراحی این نوع سرریزها ارائه نمود. این رابطه را با استفاده از نتایج آزمایشگاهی، تأثیر گوشه سرریز چند وجهی را روی دی‌بی جریان مورد بررسی قرار داده و نتایج را به‌عنوان نتایج رابطه این مبحث دی‌بی در این گونه سرریزها ارائه دادند. سازمان عمران ایالات متحده آمریکا (USBR) مطالعات روی مدل آزمایشگاهی سرریزهای چند وجهی سد مشابه به همان این انجام داده است (۷، ۸ و ۹). گزارش‌های منطقه‌ای درجه توسط این سازمان نشان می‌دهد که بین نتایج به دست آمده از حداقلی USBR
بررسی سریزه‌ها

اصلی می‌رید. قلم آزمایشگاهی مورد استفاده در این تحقیق دارای کف فولادی و دیواره‌هایی از جنس پلکسی گلاس بوده و روی خرپای فلزی نصب شده است. شکل ۲ نمای قلم آزمایشگاهی مورد استفاده در این پژوهش را نشان می‌دهد.

به منظور تعیین ضریب دبی سریزی لازم است دبی عبوری از سریز و همچنین بار هیدرولیکی روی آن اندازه‌گیری شود. دری این جریان با به کارگیری روش حجمی محاسبه شده است. اندازه‌گیری عمق آب در بالادست و پایین دست به وسیله یک کولس و رنگ که به انتهای یک ارتفاع محاسبه شده است و با دقت ۰/۰۵ میلی‌متر صورت گرفت. این ارتفاع نشان دهنده قدر بود که در طول و عرض کانال حرکت کنن.
شکل ۲. نمای فلوم آزمایشگاهی مورد استفاده

شکل ۳. شماتی سریزه‌های چند وجهی با پلان U و مستطیلی شکل

سریزه‌های مستطیلی و U شکل آزمایش شد.

C_d محاسبه ضریب دی‌بی

ضریب دی‌بی با توجه به رابطه زیر محاسبه گردیده است (۱):

$C_d = \frac{Q}{\frac{3}{2} \sqrt{g LH_1}}$

جریان بر ضریب دی‌بی سریزه‌ی چند وجهی مستطیلی مورد آزمایش قرار گرفته است. هم‌چنین چهار ارتفاع ۶، ۸، ۱۰ و ۱۲ سانتی‌متری (U۱، U۲، U۳ و U۴) برای برسی اثر ارتفاع و سه طول ۴۰، ۴۲ و ۱۲۲ سانتی‌متری (U۵ و U۶) برای بررسی اثر طول بر ضریب دی‌بی سریزه‌ی چند وجهی U شکل مورد آزمایش قرار گرفته است. مدل سریزه‌ی خطی به ارتفاع ۱۰ و طول ۳۲ سانتی‌متر به منظور مقایسه ضریب دی‌بی این سریزه با

که در آن:
جدول 1: مشخصات هندسی مدل‌های آزمایشگاهی (با توجه به پارامترهای تعیین شده در شکل 1)

<table>
<thead>
<tr>
<th>شکل پلان</th>
<th>شماره سری‌بندی</th>
<th>حداکثر L (سانتی‌متر)</th>
<th>حداکثر P (سانتی‌متر)</th>
<th>حداکثر CD (سانتی‌متر)</th>
<th>حداکثر $BC=ED$ (سانتی‌متر)</th>
<th>حداکثر $AB=EF$ (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td></td>
<td>92</td>
<td>6</td>
<td>14</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>92</td>
<td>8</td>
<td>14</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td>92</td>
<td>10</td>
<td>14</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>W4</td>
<td></td>
<td>92</td>
<td>12</td>
<td>3</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>W5</td>
<td></td>
<td>122</td>
<td>8</td>
<td>14</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>W6</td>
<td></td>
<td>152</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>W7</td>
<td></td>
<td>92</td>
<td>10</td>
<td>24</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>W8</td>
<td></td>
<td>92</td>
<td>10</td>
<td>18</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>U1</td>
<td></td>
<td>92</td>
<td>6</td>
<td>14</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>U2</td>
<td></td>
<td>92</td>
<td>8</td>
<td>14</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>U3</td>
<td></td>
<td>92</td>
<td>10</td>
<td>14</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>U4</td>
<td></td>
<td>92</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>U5</td>
<td></td>
<td>40</td>
<td>8</td>
<td>14</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>U6</td>
<td></td>
<td>122</td>
<td>8</td>
<td>14</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>U7</td>
<td></td>
<td>32</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

نتایج و بحث

انفصال سری‌بندی چند وجهی با پلان مستطیلی شکل

1. تأثیر ارتفاع سری‌بندی بر ضریب دی

برای بررسی تأثیر ارتفاع سری‌بندی بر ضریب دی، سری‌بندی برای H_4 (جدول 1) مورد استفاده قرار گرفتند.

تعریف

$$C_g = \frac{g}{Q}$$

$$d_i = \frac{Q}{L}$$

$$H_i = \frac{H}{Q}$$

$$\Delta H_i = H - H_i$$

$$\Delta L_i = L - L_i$$

شکل نمودار

1. شکل 4 نحوه تغییرات ضریب دی را نشان می‌دهد.

2. برای بهترین پاسخ آزمایشگاهی، نیاز به H_i و L_i می‌باشد.

3. در صورتی که H_i و L_i به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند، C_g و d_i به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

4. در این شکل، عکس‌های آزمایشگاهی (W1-W7) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

5. در صورتی که H_i و L_i به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند، C_g و d_i به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

6. در این شکل، عکس‌های آزمایشگاهی (U1-U7) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

7. در این شکل، عکس‌های آزمایشگاهی (U8-U10) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

8. در این شکل، عکس‌های آزمایشگاهی (U8-U10) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

9. در این شکل، عکس‌های آزمایشگاهی (U8-U10) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

10. در این شکل، عکس‌های آزمایشگاهی (U8-U10) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

11. در این شکل، عکس‌های آزمایشگاهی (U8-U10) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.

12. در این شکل، عکس‌های آزمایشگاهی (U8-U10) به دلیل عدم دقت در اندازه‌گیری نیاز به H_i و L_i ندارند.
مقدار شیب در شکل 2، تغییرات ضرب دی سریز مستقل به طول می‌باشد. همان‌گونه که در شکل 2 مشخص است با افزایش ارتفاع سریز، منحنی‌های مرتبه به یکدیگر نزدیک می‌شوند و گونه‌ای که منحنی مرتبه به ارتفاع‌های 10 و 12 سانتی‌متر بسیار به یکدیگر نزدیک می‌باشند. این مسئله به این خاطر است که در ارتفاع‌های زیاد داخل سرفه‌های ریزه‌ای با دی‌بی‌پکسکمتر می‌باشد. همان‌گونه که از این شکل مشخص است، به طور کلی با افزایش ارتفاع سریز، برای H_p/p ثابت، ضریب دی افزایش می‌یابد. و لی این افزایش ضریب دی در بخش نزدیک منحنی چایی که داخل سرفه‌های ریزه‌ای وجود دارد بهبود از بخش صعوبی منحنی چایی که داخل سرفه‌های ریزه‌ای وجود دارد می‌باشد.

محدوده ناه تاب سریز و در پایین دست ایجاد خواهد شد. حدوث این استقرار به طور جستجوی در کاهش بالاکردن سریز مؤثر بوده و یکی از عوامل مؤثر در کاهش ضریب انگازی می‌باشد.

از طرف دیگر تداخل سرفه‌های ریزه‌ای آب در پایین دست سریز سبب کاهش هواهده در این محدوده می‌گردد. در نتیجه فشارهای منفی موجود در زیر لایه جیرین مستقل نمی‌شود. با افزایش داخل لایه‌های جیرین، بخش شاخه نزدیک منحنی شروع شده و با افزایش ضریب دی سریز به کاهش H_p/p شروع می‌شود. کلیه منحنی‌ها در این دستاورد شیب H_p/p ثابت می‌شود و لی این افزایش ضریب دی سریز در یک H_p/p به تابیده که مقادیر ضرب دی به استقلال سریز در پایین H_p/p به مقادیر نزدیک به کاهش H_p/p با ارتفاع سانتی‌متر، ضریب دی در H_p/p برای 0 به مقادیر نزدیک به کاهش H_p/p می‌تواند مقدار به نتیجه‌ای است. همان‌گونه که یک شاخه نزدیک منحنی ناشناخت از دی افزایش به سرفه‌های ریزه‌ای است. با ادامه تداخل سرفه‌های پکسک و افزایش ضریب H_p/p حالات استقرار کامل در سریز اتفاق می‌افتد و منحنی حالات ثابت به مدت مری. بررسی شکل 4 نشان می‌دهد که با افزایش ارتفاع سریز، ثابت شدن ضریب دی در مقادیر بیشتری از H_p/p اتفاق می‌افتد. این نکته را به این صورت می‌توان نشان داد که ثابت شدن ضریب دی (حدوث حالات استقرار کامل) در ارتفاع‌های کم سریز. در
بررسی سری‌زهای جند و جهی با پلان مستطیلی و اسکلت

شکل ۴. منحنی تغییرات ضرب دی در مقادیر مختلف سری‌زهای W7 و W7 W3

این گرفته‌های همان‌گونه که از جدول ۱ مشخص است، این سری‌زهای دارای پلان مستطیلی بوده و در تمام آنها ارتفاع و طول‌های تابی در نظر گرفته شده است (P = ۱۰ cm) و BC AB EF و تغییرات طول در مقادیر (BC = ED = ۳۰ cm) صورت گرفت. به این ترتیب می‌توان گوشواره‌های ۵ و ۹ سانتی‌متر به منظور مقایسه به کار گرفته شدند و طول کلی برای تمامی سری‌زهای مستطیلی و برابر ۹۲ سانتی‌متر بود.

H/P

شکل ۵. تغییرات ضرب دی در طول‌های مختلف و ارتفاع ۸ سانتی‌متر

هر سوط مشابه می‌باشد. توضیحاتی که در پنجم قیلی برای توصیف روند تغییرات ضرب دی با ذکر شد در اینجا نیز صادق است. نتایج نشان می‌دهد که در یک بار حیدرولیکی مشخص (و یا یک) افزایش طول سری‌زهای ضرب دی کاهش می‌یابد. این کاهش ضرب دی در شاخه صعودی منحنی قابل مشاهده می‌باشد. ولی در شاخه نزولی با منحنی‌هایی از یکدیگر فاصله می‌گیرند. دلیل این مسئله را این گونه می‌توان نوشت که در شاخه صعودی منحنی و برای مقادیر کم H/P افزایشی جشن‌اند. افزایشی H/P قابل توجهی به‌طور قابل‌توجهی در کل ناحیه بزرگی به‌طور تنا و تقی به‌طور متوسطی شد که با افزایش طول AB این مقطع برگزار شده و باعث افزایشی ضرب دی می‌شود. توجه به این نکته ضروری است که افزایش طول H/P تا وقتی AB قابل توجهی است که داخل سری‌زهای زیاد نایب‌شده. در این آزمایش تأثیر مقطع افزایشی بین‌متر از تأثیر داخلی سری‌زهای زیاد به‌شکل AB می‌باشد. به‌طوری‌که در این قسمت می‌تواند با توجه به زیادی بودن ارتفاع‌های (P = ۱۰ cm) داخل سری‌زهای زیاد تشکیل‌شده.

3. تأثیر طول دماهگی نسبت به طول گوشواره بر ضرب دی

همان‌گونه که در پنجم بالا ذکر گردید، تغییر در طول‌های دماه (EF) و گوشواره (CD) تغییر در طول کلی سری‌زهای (AB و CD) نیز انجام نمی‌شود ولی این تغییر ضرب دی را تحت تأثیر قرار می‌دهد. به منظور بررسی تأثیر طول دماه و گوشواره‌ها بر
1. تاثیر ارتفاع سریزهای BP بر ضرب دی
پژوهشی تئورئی ارتفاع سریزهای BP بر ضرب دی، بیماری‌های انسانی در سطح‌های مختلف و ارتفاع 8 سانتی‌متر

2. تاثیر طول سریزهای BP بر ضرب دی
برای بررسی تأثیر طول سریزهای BP بر ضرب دی، سریزهای U7 و U6 مورد استفاده قرار گرفته‌اند. همان‌گونه که از شکل 7 مشخص است این سریزهای دارای طول 20، 40 و 80 سانتی‌متر طول‌های (شکل 3) حداکثر 1 مانند در پنجم سانتی‌متر طول‌های EF و AB از یک نیمه‌داره به قطر 14 سانتی‌متر و دو طول 9 سانتی‌متر تشکیل شده‌است. سریزهای با طول 12 سانتی‌متر در پانزده دقایق نیمه‌داره به قطر 14 سانتی‌متر، دو طول EF و AB بی‌شکل شده‌است. سریزهای با طول 24 سانتی‌متر در پانزده دقایق نیمه‌داره به قطر 14 سانتی‌متر، دو طول EF و AB بی‌شکل شده‌است. سریزهای با طول 60 سانتی‌متر در پانزده دقایق نیمه‌داره به قطر 14 سانتی‌متر، دو طول EF و AB بی‌شکل شده‌است.
پرسی سربرزهای چند و جهی با پلان مستطیلی و \(U \) شکل

چ) مقایسه سربرزهای چند و جهی با پلان مستطیلی و \(U \) شکل و سربرز خطی

برای مقایسه عملکرد سربرزهای چند و جهی مستطیلی و \(U \) شکل به‌عنوان فناوری سطحی خطر کم در سطح خطر خنثی همان گونه که از شکل مشخص است ضربه در سطح خطر با تغییر \(H_{p} \) مقادیر \(H_{p} \) در ابتدا افزایش یافته و سپس به یک مقادیر ثابت می‌رسد. در مورد سربرز خطی خنثی و انجایی که فقط یک سطح ریژن برای پایین دست سربرز وجود دارد نشان دهنده عملکرد این منحنی \(\gamma \) برای سربرز خطی نشان می‌دهد که عملکرد این سربرز شبیه به سربرزهای خطی می‌باشد.

همان‌گونه که از شکل ۸ مشخص است برای طول‌های ۹۶ \(H_{p} \) و ۱۲۲ سانتی‌متر روند تغییرات ضرب دیب نسبت به همبندی سربرزهای چند و جهی با پلان مستطیلی باشند. به این صورت که ضرب دیب تا مقادیر مشخصی از افزایش و سپس به دلیل داخل سربرز‌های ریژن و وجود کانال‌های اتفاقی کاهش می‌یابد. در این گونه سربرز حساس شیب به سربرزهای مستطیلی با افزایش طول سربرز ضرب دیب در یک مشخص کاهش می‌یابد. همان‌گونه که بین گردید تغییر \(H_{p} \) طول سربرز از ابتدا حالت در جهت جریان سربرزهای چند و جهی با پلان مستطیلی (ED و BC) افزایش این تغییر باعث افزایش طول داخل سربرزهای ریژن و همچنین افزایش طول کانال‌های اتفاقی شده و در نتیجه باعث کاهش ضرب دیب می‌گردد.
همگان مطالعه شده، نشان می‌دهد. سری‌های سری‌های ذوزنقه‌ای بررسی شده در مطالعات تولیس و همگان در اداره وزارت از (شکل 1) از 8 تا 12 درجه بوده که در این پژوهش وزایای 8 و 12 درجه به منظور مقایسه، مورد استفاده قرار گرفته‌اند. همان‌گونه که در شکل 10 مشخص است تولیس و همگان به این ترتیب سدیدان که در مورد سری‌های چند وجهی با پلان ذوّنجهای برای یک منحنی مشخص، با افزایش وزایی α، ضریب به‌یاد افزایش می‌یابد. نتایج شناسی‌داده شده در شکل 10 نشان‌گرفته است که روند تغییرات ضریب دیتا تغییر در مطالعات H/P شکل بیشتر از سری‌های مستطیلی U و شکل سری‌های ذوزنقه‌ای است (22).

همچنین عمک‌پذیری سری‌های مستطیلی کمتر از سری‌های ذوزنقه‌ای H/P شکل بیشتر از سری‌های ذوزنقه‌ای با وزایی 8 و 12 درجه می‌باشد. همان‌گونه که نتایج نشان دهد عمک‌پذیری سری‌های U شکل بیشتر از سری‌های ذوزنقه‌ای با وزایی 8 و 12 درجه می‌باشد. این مسئله را می‌توان این گونه توجیه نمود که سری‌های مستطیلی U را می‌توان یک سری‌های ذوزنقه‌ای در نظر گرفت که در این زاویه α برای صفر بوده و در این حالت داخل سفیدهای ریزی شدید می‌باشد و همین‌طور در این حالت داخل سفیدهای ریزی لایه با وزایی α این داخل کمتر شده و ضریب دیب افزایش می‌یابد. نتایج نشان داده است که در صورتی که کوه‌های سری‌های احتمال در سرنگان و سردبیر به صورت U شکل ساخته شود، با هم داخل سفره‌های ریزشی کاهش یافته و عمک‌پذیری سری‌های بهبود می‌یابد.

در مقایسه نتایج مطالعه حاضر با نتایج سایر محققین

همگان که در پیش فرض مقدمه ذکر گردید سری‌های چندوجهی که این مورد مطالعه برای قرار گرفت‌اند سری‌های چند وجهی با پلان ذوّنجهای H/P و با مثلث مستطیل‌و و سری‌های با پلان مستطیل و یا U شکل کمتر مورد توجه قرار گرفته است. شکل 10 مقایسه‌ای شامل عمک‌پذیری سری‌های چند وجهی با پلان مستطیل و U شکل که در این تحقیق مورد بررسی قرار گرفته است، با سری‌های چند وجهی با پلان ذوّنجهای شکل که توسط تولیس و

متابع مورد استفاده

1. روشی زمدی، ع.ر. 1379. بررسی سری‌های چند وجهی موجود در شکه‌های آبیاری کشور، آب و انتقال و مثابه‌ی عمک‌پذیری آنها با روابط به‌دست آمده از مدل‌های آزمایشگاهی، پایان نامه کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه

