پیشینی بارش فصلی با استفاده از پیوند از دور: مطالعه موردی حوزه آبریز دریاچه ارومیه

امحمد فاطمی مرخ،علیرضا برخانی داریان، محمد حسین مهیدان

چکیده
حواس آبریز دریاچه ارومیه از نقطه نظر منابع آب و محیط زیست یکی از مناطق مهم کشور به حساب می‌آید. در این حوزه بارندگی، نقص عمدی در منابع آب‌های سطحی و زیرزمینی دارد و بیشترین بارندگی به‌ترتیب در فصل بهار، تابستان و پاییز به‌طور میانگین به‌وجود می‌آید. با توجه به اینکه این حوزه از نظر اقلیمی نیمه خشک محروم می‌شود، پیشینی بارندگی برای برنامه‌ریزی منابع آب مخصوصاً دره‌های خشک‌سالی و چلوگیری از خسارات ناشی از آن می‌تواند نقش اساسی داشته باشد. بررسی‌های موجود نشان می‌دهد که به‌دیده‌های ارتباطی از دور بر میزان نیروزهای جوی نشان دهنده کننده‌های اصلی در این مطالعه تأثیر گذار بر بارندگی حوزه (Teleconnections patterns) دریاچه ارومیه مورد تحقیق قرار گرفته است و با استفاده از روابط بین آنها، بارندگی در فصل‌های مختلف سال نظیر پیشینی‌های گردیده است. این ایستگاه‌های بارندگی در حوزه، تعداد 18 ایستگاه که آمار بارندگی آنها بیش از 35 سال بود انتخاب و شاخص SPI به‌همراه می‌باشد. از بین PNA، PDO، نانو3.4 (North Pacific Oscillation) و NAO (North Atlantic Oscillation) و PNA (Pacific Decadal Oscillation) و SOI (Southern Oscillation Indez) شاخص‌های اقلیمی، پیش‌بینی شاخص‌های اقلیمی، پیش‌بینی HMI (Hydrological Model Index) و NAO (North American Oscillation Index) است. برای اینکه بارندگی در دو فصل با استفاده از شاخص‌های اقلیمی فصل قبل وارد‌های کلیدی: بارندگی، پیش‌بینی، حوزه دریاچه ارومیه، خشک‌سالی، شاخص‌های اقلیمی، PNA، NIN03.4، NOI، SOI، SPI

مقدمه

منطقه در جهان وجود دارد که ارتباط بارندگی آن مناطق با

بوده‌های اقلیمی و بر عبارت‌های طبیعی دیگر سیگنال‌های اقلیمی

پربررسی تائید تحقیقات انجام شده به سطح جهان نشان می‌دهد

1. بطور ترتیب دانشجوی دکتری و استادیار مدریت منابع آب، دانشکده عمران، دانشگاه خواجه نصیرالدین طوسی
2. استادیار پژوهشگر دانشگاه شاخه آب و ایلدرداری

45
گروه اقیانوس آرام شمال آمریکا با (American Pattern) یکی از شاخص‌های مرجع آن است. تغییرات اقیانوسی در این محدوده باعث می‌شود مناطقی در زمین‌شناسی و اقیانوس‌شناسی از PNA تحت تاثیر قرار گیرند. هدف از درک رابطه بین این دو نواحی است. تغییرات اقیانوسی در این محور از نظر موانع مختلف اقیانوسی هرگونه تاثیرگذاری و استفاده از PNA در تحلیل زمین‌شناسی و اقیانوس‌شناسی استفاده می‌شود که مختصاً مورد استفاده در هر دو حوزه استفاده می‌شود.

پدیده نوسانات اقیانوسی PNA در ارتفاعات اقیانوسی NAO به عنوان یکی از مهم‌ترین تغییرات اقیانوسی در تاریکی‌های اقیانوسی و جویی در میانه آب دریا باید با توجه به اینکه تنها در استواهای باشند. به‌طور عمومی، افزایش در ارتفاعات اقیانوسی NAO می‌تواند باعث شود تغییرات در بارش و حجم آب و هوایی در مناطق مختلف شود. این تغییرات باعث تغییراتی در جو و همچنین در منطقه جنوب شرق آسیا می‌شود.

انسان‌سازی (ENSO) یکی از مهم‌ترین تغییرات در اقیانوس‌شناسی است. این تغییرات باعث تغییراتی در جو و همچنین در منطقه جنوب شرق آسیا می‌شود.

نوسانات جنوبی (Southern Oscillation) یکی از مهم‌ترین تغییرات در اقیانوس‌شناسی است. این تغییرات باعث تغییراتی در جو و همچنین در منطقه جنوب شرق آسیا می‌شود.

نوسانات طولانی‌مدت (PDO) یکی از مهم‌ترین تغییرات در اقیانوس‌شناسی است. این تغییرات باعث تغییراتی در جو و همچنین در منطقه جنوب شرق آسیا می‌شود.
پیش‌بینی بارش فصلی با استفاده از پیوند از دور: مطالعه موردی حوادث آب‌زی دریاچه ارومیه

نواحی جنوبی برزیل بررسی کردن. آنها این نوآخذ را به منطقه همگن تغییر و ناهنجاری‌های بارندگی را در دوران ENSO تمکن داده است. در این بررسی مشخص شد که در این

شاخ‌های NINO3.4 و SOI برای همبستگی با بارندگی استفاده کردن. آنها این همبستگی ماهانه، فصلی و سالانه بین بارندگی و NINO3.4 استفاده و به این ترتیب رصد کننده همبستگی بارندگی فصلی (دوره مارس، آوریل و می) با همبستگی NINO3.4 فصلی (دوره دسامبر، زارنوش و فوریه) از همبستگی ماهانه و سالانه بیشتر است. در این بررسی بیک همبستگی مثبت دیده می‌شود که مرکز آن در هند، شمال فرانسه و انگلستان است. در بررسی دیگری که در شمال آفریق انجام شده، یک همبستگی منفی که مرکز آن در الجزایر و شمال مراکش می‌باشد دیده شده است.

نیکلسون (17) از آمار بارندگی ماهانه استاندارد شده 225 ایستگاه در 7 منطقه اقیانوس آرام و 10 منطقه اقیانوس اطلس طی دوره آماری 1948 تا 1966 استفاده نمود و برای پیش‌بینی بارش شاخ‌های NINO3.4 و SOI ENSO برای تعیین سال کردن. آنها در این تحقیق از این استفاده نمودند و به این ترتیب این مشخصه در ارورونه در انتظار شد.

ENSO که توسط رایسون (19) انجام شده، شدت ENSO در سال 1899 تا 1983 در جنوب ایالات متحده، به چهار طبقه (ضعیف، تیمینه) تقسیم و طبقات 2 و 3 با به دلیل فاصله برتر آنها استفاده نمود. در 24 واقعه ENSO واقع در طبقات 2 و 3 جای گرفت. در این تحقیق مشخص شد که فاصله ترین واقعه باعث افزایش بارندگی در جنوب ENSO غربی ایالات متحده (مخصوصاً در فصل پایان سال شروع واقعه و همچنین در بهار بعد از آن) می‌شود. سیلوردر درکوب (20) پس از بررسی ارتباط بین بارندگی ماهانه و شاخ‌های NINO3.4 و ENSO مشابه شد که همبستگی این شاخ‌های با باردندگی خفیف نبوده و به وسیله مدل‌های آماری جنگ مربوطی نیز قبلاً نشان داده شد. منطقه عصبی بیانگر این ارتباطات را مشخص کند. بنابراین، آنها کل منطقه یا به همان اطلاعات از تعداد زیادی از شاخ‌های اقیانوسی استفاده کردن. آنها از داده‌های ماهانه استفاده و میزان بارندگی را برای سال آینده با استفاده از شبکه عصبی در ENSO گریم و همکاران (10) تأثیر بر این بارندگی در
پیشینه کردن.

کانونی که در جنوب آمریکا جنوبی انجم شده است نشان می‌دهد. ناهنجاری مسئولیت باران غربی در سال‌هاهایIni و ناهنجاری مسئولیت باران غربی در سال‌هاهای Ini در طول قرن بهار و بازتاب است در مطالعه هم چنین مشخص شد این آب‌های لاکچری چند روز باران در نیروی تولید محلول شدیدتر از نیاز

است. سپس این بازتاب در سال‌های Ini در استرالیا استفاده از آزمون‌های آماری به این ترتیب رسید که خشکسالی بارشی عموماً طی لاکچری (فاز سرد) به قبوض ناکافی نتایج ساده و قاسی (6) و ارتباط آن با به دیده‌ای است در نتایج و بلند‌ترین مورد بررسی قرار دادن. آنها با این استفاده در داده‌های بارندگی ماهانه 5 استفاده واقع در استان و داده‌های SOI انسی را بررسی نمودند. آنها به این ترتیب عمل یافتند که بارندگی انسی و تأثیر در نتایج بارندگی را پایه‌ای باید باعث کاهش بارندگی یابند. ولی میزان بررسی باعث این نتایج منفی در این بررسی متفاوت فرق می‌کند. همچنین در تصویر دیگری توسط تاکیدات و همکاران (16) در شمال غرب ایران انجام شده نشان می‌دهد توزیع بارندگی پایین این منطقه از استرالیا به طور New South Wales قادر به نشان دادن نقش نهایی در نتایج بارندگی در شمال غرب ایران است از استرالیا. بالاخره این نقش در New South Wales

فوتیت از تأثیر آن در بالای رابطه با NAO و ENSO غربی از این رابطه و از نتیجه میانگین بارش سال‌های Ini به میانگین دراز مدت بارش در هي‌سیگه‌ها. میزان تأثیر بارش در هي‌سیگه‌ها با روش میانگین خطی. میزان تأثیر بارش بر باش را با NAO و ENSO نشان داد. برای میزان تأثیر Ini به طورکلی بارش باعث افزایش بارش بازسازی به این است. میزان Ini رابطه با NAO و باش صورت داشته‌اند در این آب‌های لاکچری چند روز باران در نیروی تولید محلول شدیدتر از نیاز.
پیشینه بارش فصلی با استفاده از پیوند از دور: مطالعه موردی جوهره آب‌زی دریاچه ارومیه

![شکل 1. موقعیت استگنهاهای باران‌سنجی در جوهره دریاچه ارومیه](image)

روی هم رفته 135 استگنها باران‌سنجی وجود دارد که از این میان 18 استگن دارای آمار بیش از 35 میلی‌مایل است. در این بین، طول دوره آماری در دسترس است. این استگنها با استفاده از ابزارهای مختلف سازمان، اطلاعات است. از سال 1550 تا 2001، میلادی و میلادی می‌باشد و به‌صورت ایستگاه‌ها متعلق به وزارت نیرو بهره و طول آماری آنها عموماً از سال 1966 تا 2001 قابل دسترس است. با توجه به استفاده وزارت نیرو از ماه‌های ابرنز و سازمان هوشمند استقلال میلادی، به منظور حفظ دقت محاسبات از آمار باران‌دگی روزانه برای پرداختن، آمار باران‌دگی ماه‌های استگنها به‌صورت ابزارهای میلادی استفاده شده است. موقعیت استگنهاهای باران‌سنجی که از آمار و اطلاعات آنها استفاده شده در شکل 1 نشان داده شده است.

همچنین، آمار و اطلاعات 11 شاخص آب‌زی جمع آوری شده، با تحلیل خودساختار (Cluster analysis)، 5 مورد از آنها انتخاب گردیده. این شاخص‌ها شامل میانگین NINO3.4, NAO, PNA, PDO, SOI انتخاب گردیده. این شاخص‌ها شامل میانگین NINO3.4, NAO, PNA, PDO, SOI، میانگین NINO3.4, NAO، PNA، PDO و SOI است. نتایج این مطالعه نشان داد که برای پیش‌بینی کردن محیط‌های دریاچه ارومیه، فصول مختلف در جوهره دریاچه ارومیه، می‌توان با استفاده از آنها بارش‌ها را برای فصول آینده پیش‌بینی کرده معرفی می‌گردد.

مواد و روش‌ها

در جوهره دریاچه ارومیه با مساحت حدود 5100 کیلومتر مربع،
و در این حاله همبستگی آن شاخص و شاخص‌های دیگر با همان فاصله و فصول آن‌ها، با استفاده از همبستگی ساده (Spearman) بررسی شد.

روش‌های مطرح‌شده (Nearest Neighbor Linkage) و روش ارتباط نزدیک‌ترین همسایه (Wards method) وجود دارند که در اینجا از روش وارد به خاطر طبقه‌بندی مناسب‌تر آن استفاده شد. با این‌که دارای جمع عملیات بدنی این کار تأثیری در نتایج داشته باشد به‌مدت کافی توجه کشیده بود.

شاخص‌های اقلیمی نیز به صورت ماهانه از سال 1951 تا 2001 و مناسب با دوره آماری ایستگاه‌ها استفاده شد. از آنجایی که شاخص‌های اقلیمی به صورت نرم‌ال و استندارد در سال‌هایی می‌باشد، با نیاز به ترجیح به‌صورت نرم‌ال و استندارد با نیاز بهبود گزارش می‌گردد آن‌ها همبستگی بین دو متغیر در دوره‌های زمانی مختلف تغییر می‌کنند (خیبر(5).

نتایج و بحث

بر اساس آمار و اطلاعات ایستگاه‌ها، عدمی بارندگی سالانه به ترتیب در فصل زمستان بهار، پاییز و تابستان است. جدول 1 متوسط بارندگی قصوی مختلف، درصد سالانه و ضریب تغییرات بارندگی به‌طور متوسط در این فصول به تغییرات بارندگی بیشترین آن‌ها را نشان می‌دهند. با توجه به ضریب تغییرات بارندگی بیشترین نوسانات بارندگی در فصل تابستان و کمترین آن در فصل دیگر زمستان است. به‌طور کلی بارندگی نوسانات بارندگی در فصل تابستان و کمترین آن در فصل دیگر زمستان است. به‌طور کلی بارندگی نوسانات بارندگی در فصل تابستان و کمترین آن در فصل دیگر زمستان است.

تأثیر همزمان شاخص‌های اقلیمی و بارندگی

با توجه به اهمیت اقلیمی و بارندگی، محققان به‌طور گسترده‌ای از نظر اقلیمی پی‌کش‌نواخت و دارای اقلیمی نیمه خشک یا فاصله سرد است. بارندگی‌های این جویه ناشی از توده‌های هوای مدیترانه‌ای است که از سمت غرب به‌طور بی‌پایان تغییر می‌کند.
جدول 1. انحراف معیار و ضریب تغییرات فصلی ایستگاه‌های بارندگی حوزه دریاچه ارومیه (2000-2020)

<table>
<thead>
<tr>
<th>ایستگاه</th>
<th>فصل</th>
<th>ضریب</th>
<th>منحنی معیار</th>
<th>تغییرات (میلی‌متر)</th>
<th>ضریب</th>
<th>همکناری</th>
<th>تغییرات (میلی‌متر)</th>
<th>ضریب</th>
<th>همکناری</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایستگاه 1</td>
<td>زمستان</td>
<td>0.39</td>
<td>1</td>
<td>21.9</td>
<td>0.39</td>
<td>1</td>
<td>111.0</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>پاییز</td>
<td>0.44</td>
<td>1</td>
<td>36.6</td>
<td>0.44</td>
<td>1</td>
<td>112.6</td>
<td>0.44</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>تابستان</td>
<td>0.32</td>
<td>1</td>
<td>34.7</td>
<td>0.32</td>
<td>1</td>
<td>115.2</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>بهار</td>
<td>0.36</td>
<td>1</td>
<td>35.4</td>
<td>0.36</td>
<td>1</td>
<td>126.0</td>
<td>0.36</td>
<td>1</td>
</tr>
</tbody>
</table>

شیرین حسینی. پارش فصلی با استفاده از یونیت از دور: مطالعه موردی حوزه آبریز دریاچه ارومیه. اصفهان، سال اول. شماره 3، 1388.

منابع: داده‌های موردی از مرکز ملی آب و ارایه و ملک دانشگاه تربیت معلم تهران.
جدول 2. ضریب همبستگی هم‌زمان بین شاخص‌های پاییز و SPI با پاییز استگاه‌های جوی دریاچه ارومیه (تعداد 23)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مالک کنده</th>
<th>فرمول</th>
<th>نازک</th>
<th>دیرین</th>
<th>پاخشی</th>
<th>باغچه مشت</th>
<th>باربارد</th>
<th>نرخ احتمال</th>
<th>سرمایه‌دار</th>
<th>سرمایه‌دار</th>
<th>دانش</th>
<th>پسر</th>
<th>باغچه مشت</th>
<th>باربارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI</td>
<td>0.131</td>
<td>0.109</td>
<td>0.129</td>
<td>0.127</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO</td>
<td>0.05</td>
<td>0.079</td>
<td>0.057</td>
<td>0.059</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNA</td>
<td>0.02</td>
<td>0.031</td>
<td>0.021</td>
<td>0.022</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAO</td>
<td>0.005</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NINO34</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIO</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** و *: به ترتیب ضریب همبستگی در سطح 99 و 95 درصد معنی‌دار است.

این دو استگاه در یک سمت دریاچه واقع شده‌اند. اما با توجه به این که محصولات جوی آب‌زیاری ارومیه تقریباً دارای یک نوع اقلیم است و استگاه‌های این استیج‌ها سایر است، نیاز به استفاده از مدل‌های استاتیک برای دانستن این دو استگاه با شاخص‌های اقلیمی‌های مانند منابع داده‌های این دو استگاه

همبستگی شاخص‌های پاییز با NINO34 در صدای پاییز استگاه‌های جوی دریاچه ارومیه (75 درصد معنی‌داری دارد)، از آن تا 0.140 متغیر است. بررسی نشان می‌دهد که ضریب همبستگی بین SOI و NINO34 و PNA در سطح 99 درصد معنی‌دار است. باردار V و نیز در صدای پاییز استگاه‌های جوی دریاچه ارومیه (75 درصد معنی‌داری دارد).

فصل پاییز 90 تا 91 دومین سال است. این ضریب تقریباً ترکیبی از ضریب همبستگی میان باردار و نمایش‌های جوی دریاچه ارومیه است. این دو استگاه سازمان طبیعی در این استیج‌ها نیاز به استفاده از استیج‌های NINO34 و PNA و در این سال است. باردار و نمایش‌های جوی دریاچه ارومیه (75 درصد معنی‌داری دارد).
جدول ۲: ضریب همبستگی بین شاخص‌های تایتان و NINO3.4، با توجه به شیب محور و نرخ حرکت (تعداد ۹۹)

<table>
<thead>
<tr>
<th>شاخص تایتان</th>
<th>NINO3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI</td>
<td>PDO</td>
</tr>
<tr>
<td>PDO</td>
<td>PNA</td>
</tr>
<tr>
<td>PNA</td>
<td>NAO</td>
</tr>
<tr>
<td>NAO</td>
<td>NINO3.4</td>
</tr>
<tr>
<td>NINO3.4</td>
<td>SOI</td>
</tr>
</tbody>
</table>

جدول ۳: همبستگی شاخص‌ها با یکدیگر در فصل پاییز (تعداد ۹۹)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>PDO</th>
<th>PNA</th>
<th>NAO</th>
<th>NINO34</th>
<th>NOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDO</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAO</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NINO34</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOI</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تأثیر فاز مثبت و منفی شاخص‌های اقیلی برای بررسی دقیق تأثیر پیش‌بینی اقیلی بر بارندگی حوزه، مقادیر مثبت و منفی شاخص‌ها با مقادیر SHI مناظره می‌شود. مقادیر کمتر از 0:5 را حالت منفی و مقادیر بیشتر از 0:5 را حالت مثبت هر یک از شاخص‌ها در نظر گرفته شده است (۱۲). نتایج این برای شاخص‌های مجموعاً ۱۲ حالت مثبت و منفی وجود دارد که با مقادیر SHI مناظره آنها تا چهار فصل بعد همبستگی دارند. در هر یک از ۱۲ حالت فوق شاخص‌ها با همان فصل و چهار فصل بعد همبستگی دارند. از این حالت مختلف پنج حالت همبستگی‌ها در سطح میانگین است. اگر ایستادگی‌ها معنی دار است، نتیجه این همبستگی برای تمامی ایستادگی‌ها در حوزه ۵ نشان داده شده است. همانطوری که این گزارش می‌باشد، اگرچه همبستگی بین بارندگی زمستان و شاخص زمستان این همبستگی‌ها معنی دارد، اما رابطه NINO34 معکوس شاخص NAO بارندگی مشاهده است. همچنین همبستگی بین این دو مؤلفه که برای بارندگی NAO بارندگی مشاهده است، نیز در هر ایستادگی‌ها معنی دار است. جدول ۵ نشان می‌دهد که کاهش شاخص NAO پاییز باعث افزایش بارندگی زمستان در حوزه دریاچه ارومیه می‌شود.
جدول 5. همبستگی بین شاخص‌های زمستان با SPI زمستان (تعداد 24)

شاخص	مدل کنی	کیهان‌هوران	فاز مالک	فرمول	دنجن	دبیرداری	بارش												
SOI	0.074	0.058	0.041	0.052	0.036	0.031	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048
PDO	0.074	0.058	0.041	0.052	0.036	0.031	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048
PNA	0.074	0.058	0.041	0.052	0.036	0.031	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048
NAO	0.074	0.058	0.041	0.052	0.036	0.031	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048
NINO34	0.074	0.058	0.041	0.052	0.036	0.031	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048
NOI	0.074	0.058	0.041	0.052	0.036	0.031	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048

جدول 6. همبستگی شاخص‌های پاییز با SPI زمستان (تعداد 24)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مدل کنی</th>
<th>کیهان‌هوران</th>
<th>فاز مالک</th>
<th>فرمول</th>
<th>دنجن</th>
<th>دبیرداری</th>
<th>بارش</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI</td>
<td>0.074</td>
<td>0.058</td>
<td>0.041</td>
<td>0.052</td>
<td>0.036</td>
<td>0.031</td>
<td>0.048</td>
</tr>
<tr>
<td>PDO</td>
<td>0.074</td>
<td>0.058</td>
<td>0.041</td>
<td>0.052</td>
<td>0.036</td>
<td>0.031</td>
<td>0.048</td>
</tr>
<tr>
<td>PNA</td>
<td>0.074</td>
<td>0.058</td>
<td>0.041</td>
<td>0.052</td>
<td>0.036</td>
<td>0.031</td>
<td>0.048</td>
</tr>
<tr>
<td>NAO</td>
<td>0.074</td>
<td>0.058</td>
<td>0.041</td>
<td>0.052</td>
<td>0.036</td>
<td>0.031</td>
<td>0.048</td>
</tr>
<tr>
<td>NINO34</td>
<td>0.074</td>
<td>0.058</td>
<td>0.041</td>
<td>0.052</td>
<td>0.036</td>
<td>0.031</td>
<td>0.048</td>
</tr>
<tr>
<td>NOI</td>
<td>0.074</td>
<td>0.058</td>
<td>0.041</td>
<td>0.052</td>
<td>0.036</td>
<td>0.031</td>
<td>0.048</td>
</tr>
</tbody>
</table>

ملاحظه

** و *: به ترتیب ضریب همبستگی در سطح 99 و 95 درصد معنی‌دار است.**

** و *: به ترتیب ضریب همبستگی در سطح 99 و 95 درصد معنی‌دار است.**

این جدول نشان می‌دهد که بین شاخص‌های زمستان و پاییز (ENSO) و نواحی کنی فاصله‌ای می‌باشد. برای این‌که تأثیرات این شاخص‌ها بهتر شود، باید عوامل دیگری بررسی شود. برای این‌که تأثیرات این شاخص‌ها بهتر شود، باید عوامل دیگری بررسی شود. برای این‌که تأثیرات این شاخص‌ها بهتر شود، باید عوامل دیگری بررسی شود.
جدول 7. توابع پیش‌بینی بارندگی فصلی و ضربه هم‌سانتگی بین شاخص‌ها و فصل SPI

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تعداد</th>
<th>پیش‌بینی تمیز</th>
<th>ناگویی</th>
<th>NINO3,4</th>
<th>NAO</th>
<th>SOI</th>
<th>BPI</th>
<th>بارندگی</th>
<th>تقریب</th>
<th>پیش‌بینی تمیز</th>
<th>ناگویی</th>
<th>NINO3,4</th>
<th>NAO</th>
<th>SOI</th>
<th>BPI</th>
<th>بارندگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاهش</td>
<td>177</td>
<td>0.26</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.34</td>
<td>0.26</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>بارندگی</td>
<td>177</td>
<td>0.26</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.34</td>
<td>0.26</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
</tbody>
</table>

* درصد مشاهده شده در سطح 0.05

یپش‌بینی کرد. این نتیجه با هم‌سانتگی معنی‌دار بین NAO و BPI متفاوت است. البته بارندگی در این مطالعه بر اساس SPI، که در دو طبقه بندی (زمستان و تابستان) محاسبه شده‌است، قابل توجهی نبود.

در باشگاه خلیج فارس، ایجاد یک سیستم احتمال‌بردار محاسباتی برای پیش‌بینی بارندگی و ضربه هم‌سانتگی بین شاخص‌ها و فصل SPI مطرح می‌شود. این سیستم قادر به پیش‌بینی بارندگی و ضربه هم‌سانتگی بین شاخص‌ها و فصل SPI در کنار شاخص‌های NAO، NINO3,4 و SOI می‌باشد.

** و * به ترتیب ضربه هم‌سانتگی در سطح 0.05 و 0.001 درصد مشاهده شده است.**
۱۳۸۵

در جدول ۷ نشان داده شده است. اگر چه بعضی از ضریب‌های
سطح ۹۵ به‌صورت معنی‌دار نشان داده می‌شود، ولی از لحاظ مقادیر، تفاوت
چندانی بین ضرایب معنی‌دار ایستگاه‌های دیگر تدارک ندارد. با توجه
به اینکه این ضرایب هم علاوه بر بهبود هستند این عدم معنی‌دار
بودن آنها ناشی از عدم دقیقت داده‌های باعث ایستگاه‌بندی

نتیجه‌گیری

شاخه‌های اقلیمی که توسط مراکز معنی‌دار بین‌المللی تبیین شده‌اند، عموماً دارای طول دوره آماری بیش از ۵۰ سال

ماه‌های

مطالعات بیش از یک دهه هدف‌گذاری سطح جهان نشان می‌دهد که با استفاده از ارتباط بین این شاخص‌ها و

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

طبق این تحقیق، بررسی تأثیر پدیده‌های اقلیمی در حوزه ارتوپی نشان می‌دهد که تأثیر ENSO و NAO

به‌صورت مثبت است. هم‌سنتی مندی دار این موضوع است.

بارندگی باید با استفاده از شاخص

بارندگی‌های محلی امکان پیش‌بینی بارندگی در نواحی مختلف

جهان وجود دارد.

