تأثیر سطح ایستایی کم عمق و شوری آب زیرزمینی بر کمک آب زیرزمینی به تبخیر و تعرق گلرنگ (Carthamus tinctorius L.)

خداکرم بارگاهی و سیدعلی‌اکبر موسوی

چکیده

محدودیت منابع آب ماسه‌ای از عوامل تهیه کننده و مشکلات کشاورزی در ایران می‌باشد. با توجه به بالا بودن سطح ایستایی و شوری آب زیرزمینی در ناحیه‌های مختلف کشور و مقاومت نسبی گلرنگ به شوری، استفاده در زمینه استفاده این گیاه از آب زیرزمینی می‌تواند قدم مؤثری در استفاده بیش از آب در زراعت گلرنگ باشد. در این راستا در این پژوهش تأثیر سطح مختلف ایستایی کم عمق و شوری آب زیرزمینی بر کمک آب زیرزمینی به تبخیر و تعرق گلرنگ در شرایط دم و آب در پیک آمیختگی گلخانه‌ای صورت گرفت. تیمارهای مورد استفاده چهار عمق سطح ایستایی 0/20، 0/70 و 1/20 سانتی‌متر و 2 درصد تبخیر از سطح آزاد آب و 2 درصد آب دو دور 5 روز و 3 درصد آب دو دور 5 روز بودند. آزمایش به صورت فاکتوریل در قالب طرح لوله‌های کامل تصمیم‌گیری سه تکرار انجام شد. برای ثبت نتایج سطح ایستایی در گلخانه‌ها استفاده شد که بر اساس اصول بطری‌مانند کار می‌کرد و میزان کمک آب زیرزمینی به تبخیر و تعرق و با تبخیر از سطح خاک به وسیله آن قابل اندازه‌گیری بود. نتایج نشان داد که شوری آب زیرزمینی، شرایط آبی‌آب یاری و شرایط آبی‌آبی به تبخیر و تعرق گلرنگ اثر محدودی داشت. اثر سطح ایستایی شوری، شرایط آبی‌آبی، برهمکنش سطح ایستایی و شرایط آبی‌آبی، برهمکنش شوری و شرایط آبی‌آبی و بالا رفتن برهمکنش سطح ایستایی کم عمق و شوری و شرایط آبی‌آبی و برهمکنش سطح ایستایی اثر محدودی داشت. اثر سطح ایستایی 0/20 سانتی‌متر با 20 درصد تبخیر و 0 درصد تعرق 0/20 سانتی‌متر با 40 درصد تبخیر و 2 درصد تعرق 0/20 سانتی‌متر با 60 درصد تبخیر و 4 درصد تعرق 0/20 سانتی‌متر با 80 درصد تبخیر و 6 درصد تعرق 0/20 سانتی‌متر با 100 درصد تبخیر و 8 درصد تعرق نتایج کمک آب زیرزمینی به تبخیر و تعرق در دو دوره اصلی می‌باشد. تعداد آب تبخیر و تعرق نسبت به 0/20 تبریزی شوری بین 0/20-0/27 درصد صورت گرفت. هر طور که شوری آب زیرزمینی به گیاه کاهش معناداری در تبخیر و تعرق گیاه‌ها یافت. تبخیر از سطح خاک، تعرق گیاه و کمک آب زیرزمینی به تبخیر و تعرق گردد.

واژه‌های کلیدی: سطح ایستایی کم عمق، تبخیر و تعرق، گلرنگ، شوری آب زیرزمینی

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار آبی‌آبی، دانشکده کشاورزی، دانشگاه شیراز
مقدمه

ایران کشوری با متوسط رزروهای آبی آسیایی ۲۵۷ میلیون متر مکعبی و در زمینه مناطق خشک در برخی از مناطق نهایی جهان، به طبقه‌بندی می‌شود. محصولات منابع آب منابع از عملده‌ترین نگاه‌های مشکلات کشوری در این کشور می‌باشد. از طرف دیگر افزایش روزافزون جمعیت مستر به تولید مواد غذایی بسیار ابزار می‌کند. بنابراین یافتن راهکارهای برای غلبه بر کمبود آب در مناطق خشک و تهیه و توزیع بوده است که بتواند محققین کشاورزی و رایانه‌ای جمعیت را برای این جمعیت نهاده را توپ زای بتواند تولید نمود.

سازمان ملل متحد در برنامه جمعیت و منابع خشک، ایران را در رده ۱۰۰ کشور قرار داده که سرانه آب شیرین تحریک شده و این پایین است. به یک آب‌رسی. سرانه آب در سال ۱۹۸۵ متر مکعب بوده که در سال ۱۹۹۰ به ۲۰۵ متر مکعب رسیده و به پیش‌بینی می شود در سال ۲۰۱۵ به حدود ۲۸۸ متر مکعب برسد که حدود ۲۰ درصد کمتر از سرانه آب در خط فقر (۱۰۰۰ متر مکعب) می باشد. بنابراین برای مقابله معیارهای بین المللی دیری نخواهد که ایران به محرومیت آبی افسرد و در زمینه کشورهای گرینگینگ کشور آب قرار گیرد (۱۱)。

در زمانی است که گزاری در این کشورهای جهان به عنوان گیاهی و خواص برچسب خانه یکی می‌شود. از جمله این خواص مویان به فقیری سازگاری بالا، مقاومت به سرما، مقاومت نسبی به خشکی، شوری و قلبیتیت بالای خواک و موارد مصرف متعدد آن اشاره کرد (۸). این گیاهان از نظر مقاومت به شوری جزء گیاهان نیمه مقاوم می باشند (۱۵).

گزاره این کشور در سال‌هایی مرادی و بر اساس آن در استان‌های همدان، یزد، اصفهان، قم، آذربایجان شرقی، بوشهر، کرمان، اصفهان، خراسان کشت می‌شود. سرانه آب برداری متعلق به کشور از لحاظ‌ها ۲۰۰ کیلوگرم در هکتار دارد حدود ۲/۵ تن در هکتار در منطقه اصفهان کمارش شده است (۳).
مواد و روش‌ها
آزمایش در تاریخ‌های سال 1381 در گلخانه با آب آبی‌آرایی داشته‌کننده کشاورزی شیار واقع در 16 کیلومتری شمال شیراز، با طول و عرض جغرافیایی به ترتیب 36 درجه و 32 دقیقه شرقی و 26 درجه و 43 دقیقه شمالی و 181،100 متر ارتفاع از سطح دریا، انجام شد. گلدان‌هایی به ارتفاع 120 سانتی‌متر از خاک مورد نظر ایجاد شد. این گلدان‌ها در کنار سایر کوان‌های داشته‌کننده کشاورزی قرار داشتند. میزان آب از آبآوری کردن گلدان‌ها به هر کدام از آنها بر اساس میزان 600 کیلوگرم در هکتار، کود فسفاته داده شد و در رسانند رطوبت گلدان‌ها به حالت طبیعتی زراعی قرار گرفت. این هفته بعد از گلگنگ رقم پیشرفته را بهارندگی شده با قارچ‌گونه مجهول جدید شده که در فصل 1381/5/15 شناساری شده است. سپس در تاریخ 1381/5/18 بر اساس 600 کیلوگرم در هکتار حدود 60 درصد کود از آب ایجاد برای بقا گیاهان داده شد. در تاریخ 1381/6/4 عملیات نگهداری کردن صورت گرفته و تعداد گیاهان به میزان 40 درصد کاهش داده شد. این گلدان‌ها در کنار سایر کوان‌های داده شد و بالاخره در تاریخ 1381/6/17 گل‌گذاری کرده و این گلدان‌ها به هر کدام از آنها بر اساس میزان 600 کیلوگرم در هکتار کود داده شد و بنابراین بهترین شرایط برای گل‌گذاری محقق شد.

تأثیر سطح ایستایی کم عمق و شوری آب زیرزمینی بر...
جدول 1. برخی از ویژگی‌های خاک مورد مطالعه در ابتدا آزمایش

<table>
<thead>
<tr>
<th>اجزای تشکیل دهنده خاک</th>
<th>FC (درصد وزنی)</th>
<th>ECe (dS/m)</th>
<th>ماده آلی (%)</th>
<th>گچ (%)</th>
<th>رس (%)</th>
<th>کلسیم (میلی‌گرم)</th>
<th>سدیم (میلی‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20/0</td>
<td>37/2</td>
<td>21/2</td>
<td>28/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

نحوه آنالیز موجود در عصاره اشباع خاک (میلی‌گرم/۱/۰ لیتر)

<table>
<thead>
<tr>
<th>نسبت جذبی سدیم</th>
<th>میلی‌گرم</th>
<th>کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۰۵</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
</tr>
</tbody>
</table>

* اطلاعی و همکاران (۱).
جدول ۲: تجزیه آماری میانگین مربعات صفحات انتشار گزارش شده

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>تبیخ و تعرق</th>
<th>تبیخ از سطح ستون خاک</th>
<th>منابع خطآتی</th>
<th>کمک آب زیرزمینی به تبیخ و تعرق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۲۵۷**</td>
<td>۲۵۷**</td>
<td>۲۱۱۱۷۵</td>
<td>۱۲۳۳۳**</td>
</tr>
<tr>
<td>۱</td>
<td>۲۶۷**</td>
<td>۲۶۷**</td>
<td>۲۱۱۱۷۵</td>
<td>۱۲۳۳۳**</td>
</tr>
</tbody>
</table>

*متغیب در سطح ۰.۰۵ **: معنادار در سطح ۰.۰۱

تاثیر سطح ایستاکیتی کم عمق و شوری آب زیرزمینی بر...

آب‌این جان می‌شود. برای انتخاب گزینه تبیخ، از لوله‌هایی با شرایط مشابه یک دفتر
ساخته شده است (ساخته شده در جدول ۳ متغیرت شده است). به‌طور کلی، معنی‌دار
مقدار تبیخ (از گلدان باید تبیخ و تعرق (از
گلدان گیرنده‌ای گیاه) و با استفاده از معادله بیلی‌که
پارادگمی و آب زهکشی در شرایط گلدان‌های صفر منظم می‌شود.
میزان تعرق در طول دوره آزمایش به دست آمده. تغییرات
به ترتیب خشک شدن گیاهان اقدام به برداشت آنها شد. در
نها و گرگانه‌ای داده‌ها

تجزیه و بحث

تجزیه آماری مربوط به تاثیر عمق سطح ایستاکیتی، شرایط آب‌اینی، شرایط شوری، بهره‌کار

ساخته می‌شود.
جدول 3. نتایج سطح استابیل و شوری آب زیرزمینی در حالت دم و آبی بر تبخیر و تعرق گیاه (سانتی متر)

<table>
<thead>
<tr>
<th>میانگین</th>
<th>دم</th>
<th>آبی</th>
<th>(dS/m)</th>
<th>(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.9 b</td>
<td>653 d</td>
<td>885 c</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>222 a</td>
<td>164 b</td>
<td>261 c</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مشترک هستند طبق آزمون دانکن در سطح 5 درصد نتایج معنی‌داری ندارند.

*اعداد و میانگین‌ها که در هر ستون در یک حرف کوچک و یا در هر رنگ در یک حرف پیکر و یا یک حرف کوچک

ایستابیل و شرایط آبی، برهمکشی شوری و شرایط آبیاری و برهمکشی سطح استابیل شوری و شرایط آبیاری تأثیر معنی‌داری بر میزان تبخیر و تعرق آب زیرزمینی کم‌عمق دارد (جدول 2). در سطح مولفه‌های شوری و شرایط آبیاری سطح مولفه آب شربی به تبخیر و تعرق گیاه شده است.

در میزان کمک آب زیرزمینی به تبخیر و تعرق گیاه شده به میزان کمک آب زیرزمینی به تبخیر و تعرق گیاه شده است.

ولی این تغییر معنی‌داری نبست بی‌افراشی شوری از ۶/۰ به ۱۰ دسی‌زینم‌بر متر کاهش معنی‌داری در میزان تبخیر و تعرق آب زیرزمینی کم‌عمق رخ داده است. در نتایج معمایی سطح

ایستابیل و شرایط آبیاری برهمکشی شوری و شرایط آبیاری و برهمکشی سطح استابیل شوری و شرایط آبیاری کم‌عمق دارد (جدول 2). در سطح مولفه‌های شوری و شرایط آبیاری سطح مولفه آب شربی به تبخیر و تعرق گیاه شده است.

ب) کمک آب زیرزمینی به تبخیر و تعرق (تبخیر و تعرق از آب زیرزمینی کم‌عمق)

جدول 4 میزان کمک آب زیرزمینی به تبخیر و تعرق گیاه را در سطح مختلف استابیلی به شوری آب زیرزمینی در ۱۰ دسی‌زینم‌بر متر و ۱۰ دسی‌زینم‌بر متر در شرایط آبی و آبیاری نشان می‌دهد.

نتایج بانک این است که سطح استابیلی شوری، شرایط آبیاری، برهمکشی سطح استابیلی شوری، برهمکشی سطح

و کمترین مقدار آن (۱۸۶ سانتی‌متر) در سطح استابیلی ۹۰ سانتی‌متر با شوری ۱۰ دسی‌زینم‌بر متر و شرایط دم مشاهده می‌گردد. کاهش تبخیر و تعرق در اثر شوری در پسمه رقم باد ام‌زرندی (۱۰) و دو رقم برخ (۷) تیتر گزارش شده است. بر اساس نتایج تحقیق محمدرضا محمودی (۱۰۰) میزان تبخیر و تعرق پایه‌ای پسند به افزایش دور آبیاری و شوری کاهش می‌یابد.
جدول 4. تأثیر سطح ایستا و شوری آب زیرزمینی در حالت دیم و آب بر میزان کمک آب زیرزمینی به تبخیر و تعرق گیاه (سانتی‌متر)

<table>
<thead>
<tr>
<th>سطح ایستا (cm)</th>
<th>شوری آب (cm)</th>
<th>(dS/m) محاسبه شده</th>
<th>میانگین</th>
<th>دیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>55.3 h</td>
<td>52.4 h</td>
<td>55.3</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>184 h</td>
<td>165 h</td>
<td>184</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>120 h</td>
<td>132 h</td>
<td>120</td>
</tr>
</tbody>
</table>

جدول 5. تأثیر سطح ایستا و شوری آب زیرزمینی در حالت دیم و آب بر میزان تبخیر و تعرق از آب زیرزمینی بر حسب درصدی از کل تبخیر و تعرق گیاه در دوره اعمال تیمار

<table>
<thead>
<tr>
<th>شوری آب (cm)</th>
<th>سطح ایستا (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

است. در کلیه سطوح ایستا و در شرایط آب تغییر شوری آب زیرزمینی به 10 دسی‌گیاه به‌صورت بنابراین کاهش چشمه‌گیری در میزان کمک آب زیرزمینی به تبخیر و تعرق همراه باشد است. در شرایط های مختلف، سطوح ایستا تغییر چندانی در میزان کمک آب زیرزمینی به تبخیر و تعرق نمی‌کند.
جدول 6. تأثیر سطح ایستابتی و شوری آب زیرزمینی در حالت دم و آب بر نسبت تبخیر از سطح خاک هر تیمار به

<table>
<thead>
<tr>
<th>شوری آب (cm)</th>
<th>سطح ایستابتی (m²)</th>
<th>دم (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

در شرایط آب بیشتر از دم انفجار می‌افتد. جدول 7 میزان تبخیر از سطوح مختلف ایستابتی را در شرایط آبی و دم با آب زیرزمینی شور و شیرین نشان می‌دهد. نتایج نشان می‌دهد، همان‌طور که انتظار می‌رفت تأثیر سطح ایستابتی، شوری و بارش آبی و دم، برهمکنش سطح ایستابتی و شرایط آبی و دم، برهمکنش شوری و شرایط آبی و بالاخره برهمکنش سطح ایستابتی، شوری و شرایط آبی بر میزان تبخیر از سطح خاک معنی‌دار است.

(جدول 2)

د) متوسط تعرق گیاهی
تأثیر سطح ایستابتی با آب زیرزمینی شور و شیرین در شرایط دم و آب بر متوسط تعرق گیاه در جدول 8 درج شده است. نتایج نشان می‌دهد که شوری تأثیر معنی‌داری در کاهش تعرق گیاه دارد. همچنین تغییر شرایط از آب به دم نیز باعث کاهش معنی‌داری در میزان تعرق گردده است. اثر برهمکنش دور عامل فوق عیشی شوری و شرایط آبی و سطح ایستابتی؛ برهمکنش سطح ایستابتی و شوری، برهمکنش سطح ایستابتی و دم و همواره باعث کاهش سطح ایستابتی و شوری، برهمکنش شرایط آبی و شرایط آبی و دم شده است. در کل به سطوح نکرد که این موضوع باقی‌اند که است که تغییر سطح ایستابتی از 50 تا 120 سانتی‌متر تأثیری بر کمک آب زیرزمینی به تبخیر و تعرق نداشته است.

نسبت تبخیر به تبخیر و تعرق هر تیمار نیز نشان می‌دهد که در کلیه سطح ایستابتی درصد تبخیر به تبخیر و تعرق آب زیرزمینی شور بیشتر از شیرین است (جدول 6). در شرایط آب زیرزمینی شیرین درصد تبخیر به تبخیر و تعرق بین 30% و 40% (سطح ایستابتی 120 سانتی‌متر و در شرایط دم) تا 20% درصد (سطح ایستابتی 50 سانتی‌متر و در شرایط آب) معنی‌دار بوده است. در حالی که در شرایط آب زیرزمینی شور این مقادیر بین 20% و 26% (سطح ایستابتی 70 سانتی‌متر و در شرایط دم) تا 5% درصد (سطح ایستابتی 120 سانتی‌متر و در شرایط آب) تغییر کرده است. سپاسگزاری و ایلامبور (20) نسبت تبخیر به تبخیر و تعرق لیموتی چشم‌پیلی سا با دور آبیاری و میزان آب آبیاری مناسب 0/3 گزارش کرده‌اند.

چ) تبخیر از سطح خاک
در یک عامل مشخص سطح ایستابتی میزان تبخیر از سطح خاک از آب زیرزمینی شیرین بیشتر از شور می‌باشد. همچنین تبخیر
جدول 7. تأثیر سطح ایستایی و شوری آب زیرزمینی در حالت دم و آب بر تبخیر از سطح خاک نیم‌های (سانتی‌متر)

<table>
<thead>
<tr>
<th>مایع‌کن</th>
<th>دم</th>
<th>آب</th>
<th>شوری آب (dS/m)</th>
<th>سطح ایستایی (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/1 K</td>
<td>37</td>
<td>5</td>
<td>5/6</td>
<td>10</td>
</tr>
<tr>
<td>42/5</td>
<td>42</td>
<td>5</td>
<td>5/6</td>
<td>10</td>
</tr>
<tr>
<td>37/6 E</td>
<td>37</td>
<td>6</td>
<td>5/6</td>
<td>10</td>
</tr>
</tbody>
</table>

جدول 8. تأثیر سطح ایستایی و شوری آب زیرزمینی در حالت دم و آب بر تبخیر گیاه (سانتی‌متر)

<table>
<thead>
<tr>
<th>مایع‌کن</th>
<th>دم</th>
<th>آب</th>
<th>شوری آب (dS/m)</th>
<th>سطح ایستایی (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39/1 H</td>
<td>39</td>
<td>1</td>
<td>7/6</td>
<td>10</td>
</tr>
<tr>
<td>18/3</td>
<td>18</td>
<td>3</td>
<td>7/6</td>
<td>10</td>
</tr>
<tr>
<td>12/1</td>
<td>12</td>
<td>1</td>
<td>7/6</td>
<td>10</td>
</tr>
</tbody>
</table>

*هستند طبق آزمون دانکن در سطح 5 درصد تفاوت معنی‌داری ندارند.

*اعاده و مایع‌کن‌هایی که در هر سنتو در یک حرکت کوچک و پا در هر روزی در یک حرکت بزرگ و یا یک حرکت کوچک مشترک.

ایستایی تغییر شوری از 6/ به 10 دسی‌زمین بمر بر متر باعث کاهش معنی‌داری در میزان تعرق گیاه شده است. بیشترین تعرق در سطح ایستایی 70 سانتی‌متر با آب زیرزمینی با شوری 6/ دسی‌زمین بمر بر متر و در شرایط آبی به دم باید باعث کاهش معنی‌داری میزان تعرق گیاه شده است. بهترین در سطح ایستایی 120 سانتی‌متر تغییر شرایط از

57
نتیجه‌گیری
در این پژوهش ملاحتش‌کردن که شوری آب زیرزمینی، شرایط آبیاری و پرهمکشی شوری و شرایط آبیاری بر تبخیر و تعرق کیاه ری معیار داشت. اثر سطح ایستایی، شوری، شرایط آبیاری، پرهمکشی شوری و شرایط آبیاری و بالاخره پرهمکشی سطح ایستایی، شوری و شرایط آبیاری بر میزان تبخیر از سطح خاک معنی‌دار بوده است. با افزایش عمق

متابع‌های استفاده

1. ابطحی ع. ن. کریمیان و م. صلحی. ۱۳۸۰. "گزارش مطالعات خاکشناسی یکه تفصیلی اراضی منطقه به‌اجناده - استان فارس. دانشگاه شیراز.
2. افونی د. م. ملکو زی و د. رشده کریمی. ۱۳۸۰. "استفاده از سطح ایستایی یکه مکانیزم برای آب‌بری جنگابی". دانشگاه فردوسی مشهد.
5. خوگرکی ز. ۱۳۷۹. "تأثیر شوری گلخانه و سیستم و مصرف روی بر رشد و تکثیر شیمایی گوجه‌فرنگی. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه شیراز."
تأثیر سطح ایستایی کم عمق و شوری آب زیرزمینی بر...

6. سپاسخواه، ع. ر. ۱۳۸۰. راهکارهای دیگر در مدیریت مزرعه برای مقابله با خشکسالی. چکیده سمپارهای ازمیان، اتميز شده در سمپارهای

7. شهدی‌کوهه، ع. ۱۳۸۳. تأثیر منع و سطح شوری و میزان ابتدا بر رشد و ترکیب شیمیایی دو رقم برخی (Oryza sativa L.)

پاوان نامه کارشناسی ارشد آبیاری و زمین‌شناسی، دانشکده کشاورزی، دانشگاه شیراز.

8. فرزان، ک. ۱۳۸۲. گرگ. انتشارات شرکت دانه‌های روغنی، تهران.

9. کریمی، گوپری، ش. ۱۳۸۲. بررسی تأثیر سطح ایستایی کم عمق و شوری آب بر روی منع و میزان جذب آب توسط گیاه پنجه (رقم

بادامی زردی) در شرایط دیم و آبی در گلخانه. پاوان نامه کارشناسی ارشد آبیاری و زمین‌شناسی، دانشکده کشاورزی، دانشگاه

شیراز.

10. محمدی، محمدآبادی، ف. ۱۳۷۴. ارزیابی مقاومت پاوهای متناول پنجه به سطح مختلف شوری آب و رژیم آبیاری. پاوان نامه

کارشناسی ارشد آبیاری و زمین‌شناسی، دانشکده کشاورزی، دانشگاه شیراز.

11. نجات، بورج، ه. ۱۳۸۲. بهبود دهی داری بهینه از منابع آب با استفاده از تکنیک کم آبیاری. پاوان نامه کارشناسی ارشد اقتصاد کشاورزی,

دانشکده کشاورزی، دانشگاه شیراز.

12. وایز، ا. ا. ۱۳۷۵. دانه‌های روغنی. ترجمه فرشته ناصری. مؤسسه چاپ و انتشارات آستان قدس رضوی، مشهد.

sandy soil. Trans. ASAE 27: 1307-1312.

Trans. ASAE 9: 530-533.

water matric potentials. Plant Soil 56: 3-16.

Water Manag. 28: 311-323.