ارزیابی مدل MSM و استفاده از آن برای پیشبرنی محصول و آب مورد نیاز ذرت علوفهای جهت کاشت در یک محدوده زماني مناسب

چکیده

با پیشرفت علم رایانه، محققین امروز کشاورزی با شیب‌سازی رشد گیاهان و عوامل مؤثر بر رشد آنها کامی را در جهت مدیریت تویید برداشته‌اند. با کاربرد این مدلهای ضمن کاستن از هزینه‌های سنتی طرح‌های متفاوت، پیشرفت از عوامل مؤثر بر رشد و راه‌حل از راه‌حل می‌توانید. در این تحقیق برای استحکام و سنجش اختبار مدل شبیه‌سازی رشد علوفهای جهت تخمین ماده خشک تولیدی. آزمایشی در اراضی دانشکده کشاورزی دانشگاه شیراز در سال‌های 1382 و 1383 انجام گرفت. آزمایش‌ها شامل 4 بار و 3 بار کود نیتروژن در گالب طرح بلاک‌کده کامال تصادفی پایه شدند. تیمارهای آبیاری شامل 14، 13 و 11 باران که عمق آب آبیاری به ترتیب یک بار درصد بیشتر از نیاز بالقوه، رابرای نیاز بالقوه، پیش درصد و چهل درصد کمتر از نیاز بالقوه ذرت بودند. تیمارهای نیتروژن شامل N1، N2 و N3 بودند که به ترتیب 300، 150 و صفر کیلوجرم نیتروژن خالص بر هکتار بودند. مدل با داده‌های سال اول کشت برای آبیاری جویی‌های وسیعی شد. با استفاده از داده‌های مدل دوم اعتبار مدل برای پیشرفت ماده خشک و توانایی در بررسی آهسته مدل آب در هر مدل ساخت و تأیید شد (MSM). برای تیمارهای محصول زماني مناسب کاشت، میزان آب مورد نیاز برای زمان متفاوت مختلف کاشت و افزایش سطح ذرت ذرت علوفهای آزمایشی (MSM) محصول زماني مناسب کاشت در حدودی گرفت. در اراضی دانشکده کشاورزی دانشگاه شیراز از آزمایش‌های 10 دیده‌شده ماه تا تاریخ 10 تیر ماه تعیین شد. با اعمال مدلی که تا نه‌سال پیش‌های در پنداره، در شرایط آبیاری بودن آب، سطح زیر کشت ذرت علوفهای 17/90 درصد و علوفه تولیدی به مقدار 1/90 تا بر لیتر در تاریخ یافته بود.

واژه‌های کلیدی: مدل MSM، استحکام مدل، ژستی، بررسی، پیش‌بینی، کاشت، محدودیت آب

۸۳
نتایج و همکاران (2) با توصیه تاریخ‌های کاشت مناسب برای ایالت های آمریکا پیشنهاد می‌کنند که تاریخ کاشت در نزدیک به تغییرات کالری تأثیر گذیده تا سرماهای اول فصل به بستر بند آسیب نرسند. مواد سون و همکاران (2) با بررسی آمار تاریخ کاشت و نقایش‌های روی رشت، تنها مهاد خشک و عملکرد در این پژوهش (الف) مدل شیمه‌سازی رشد دشت جهت توپیده مهاد خشک در آب‌های جویچه‌ای در یک سال آزمایش، ارزیابی گردید. (ب) با استفاده از داده‌های سال دوم اختصاص مدل در سه‌یه‌ی مهاد خشک آزمون گردید. (ج) این محدوده زمانی ممکن کاشت ذرت علوفه‌ای در اراضی دانشکده کشاورزی دانشگاه شیراز تغییر شد (د) با توجه به کشت محدوده تاریخ کاشت، میزان متوسط نیاز آبی خاصی دوره‌ای ذرت تغییر و با کاشت ذرت در زمان‌های مختلف در این محدوده زمانی و نیاز کمتر به دیگ رنک آب آب‌هایی، امکان افزایش سطح ذرت در علوفه‌ای بررسی گردید.

مواد و روش‌ها

شرح مدل

(به) (Maize Simulation Model) MSM

رشد ذرت هیریس۴ (به) به بیانی این مدل دارای یک

آب‌های دانشگاه شیراز تهیه شده است (12). این مدل دارای یک
نزیدیک به زمانی که سکه‌ها حکم دریا گرفته‌اند، ۲۰۰ متری بیش از ۲۰۰ متری در اراضی داشته‌اند که شاخصی برای کشتی‌ها بوده. طول و عرض جغرافیایی منطقه و ارتفاع آن از سطح دریا به ترتیب برای ۲۰۰ متری دریا می‌باشد. برای جلوگیری از آسیب احتمالی به تامین‌های آزمایشی، همچنین برای این بین بردن ارایه در اطراف تامین‌های آزمایشی، به عرض سه متر درد کشتی ثابت شد. مزیت کننده شده کم‌تر دریا، تیمار آی‌بی‌ای‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آی‌بی‌آ

نتایج و بحث

واستجوی و تستچ تهیه مدل MSM در این پژوهش مدل برای شبیه‌سازی ماده خشک تولیدی در رشته جنگل‌گی ملی، استخراج کرده. ماده خشک از هم‌پیمان شدید، به طور استحکاماتی جذب شده، شرایط جوی کود و آب تأمین می‌گردد. برای ارزیابی نحوه پیش‌بینی ماده خشک در روزهای مختلف بعد از کاست، در طول فصل رشد، مرتبی‌دار ماده خشک تیمارهای مختلف اندازه‌گیری می‌شود. مقادیر ماده خشک تولید شده در طول رشد افزایش یافته و در روز برشته به دلایل مقادیر خود رشد سری‌زا می‌باشد. در مدل ارایه مداد خشک تولیدی در قسمت‌های هواپیمایی گیاهی از ۱۶ روز بعد از کاشت به بعد، دیده شده که در مدت ۶۰ ثانیه به دست آمده استفاده با استفاده از مقادیر تنش خاک‌های، دما و رطوبت خاک در روز کاشت و داده‌های هوایی (شامل حجم هوا و حجم هوا) حاصل در طول دمایی (سایر شرایط) وضعیت قطب‌های بارش را نشان می‌دهد. این در سه مدل، مقادیر خشک تولیدی در هتکار عرض می‌شود.

یک چک هواپیمایی از راه‌های محصولات در آب مورد نیاز درت...
در شکل 2، ریگی معلامه در ن odp نرونهن هکل خارجی معلامه در محدوده، به اثربان ناداره از تراکم بیان ناشی از تراکم زیاد بیونه بوده و به تکر جنون زیاد رشد این مشکل کم در کلیه سرگنگ تا کلیه. در سالماه که از اول مزره تراکم سیانتیک نادیده و تیاز به تکر جنون زیاد نیوده، این مشکل مشاهده نمی‌شود.

برای تجزیه و تحلیل آماری، جدولی پیش‌بینی ماده خشک در تیمارهای مختلف در سال مورد کار شده که از آزمون F استفاده شده. در جدول 1، تابعی (R2) (معادله رگرسیونی) بین تفاوت با این تفاوت و شناخت ماده خشک تهیه، متغیر F محاسبه شده مربوط به شیب رگرسیون با عرض از میان‌ردهای رگرسیونی با مقدار صفر، ارده شده است. مقایسه شیب و عرض از میان‌ردهای رگرسیونی به دست آمده با شیب و عرض از میان‌ردهای شیب در سطح اطمنان 99% مشاهده کرد. علائم از میان‌ردهای رگرسیونی در همه 12 تیمار مورد بررسی در طی دو سال آزمایش دارای اختلاف معنی‌داری با عرض از میان‌ردهای شیب مورد به جز در جناد گزارش سایر مکان‌های محدوده و تنش دیده، دارای اختلاف معنی‌داری در سطح اطمنان 99% رصد شد. با شیب خط نمایشگر این اختلافه می‌تواند ناشی از شرایط ناشاک خالی خاک این تیمارها باشد. زیرا در این آزمایش‌ها فرض سه‌شده است که به جز آب و کود، سایر مواد غذایی خاک به مقدار پرینه در خاک موجود هستند در صورتی که ممکن است در برخی از تیمارها این حالات واقع تیازد. در مجموع نتایج به دست آمده توانایی پیش‌بینی مدل را تایید می‌کند.

تعیین محدوده زمانی، پاسخ‌های کاشت

برای تعیین محدوده زمانی، پاسخ‌های کاشت در طول زمان در اراضی دانشکده‌کشاورزی دانشگاه شیراز (واقعات در 18 ارزیابی مدل MSM و استفاده از آن برای پیش‌بینی محصول و آب مورد نیاز در...
روزهای بعد از کاشت
شکل ۲. مقایسه متوسط مقادیر اندازه‌گیری شده و انحراف معیار آنها با مقادیر پیش‌بینی شده ماده خشک تولیدی در فرم‌های هواپیمایی
در تیمارهای مختلف تا روز برداشت سال اول (△ اندازه‌گیری شده، □ پیش‌بینی شده).
شکل 3 مقایسه متوسط مقادیر اندازه‌گیری شده و انحراف معیار آنها با مقادیر پیش‌بینی شده ماده خشک تولیدی در فصل‌های بهاری گیاه در تیمارهای مختلف با روز بردشت سال دوم (□ اندازه‌گیری شده، ▲ پیش‌بینی شده).
I1	N1	y = 0.73x + 0.73	R² = 0.80	F slope = 0.75	F intercept = 0.08
I2	N1	y = 0.92x + 1.20	R² = 0.98	F slope = 0.95	F intercept = 0.00
I3	N1	y = 1.01x + 1.01	R² = 0.99	F slope = 0.99	F intercept = 0.00
I4	N1	y = 1.15x + 0.75	R² = 0.97	F slope = 0.97	F intercept = 0.00

I1	N2	y = 0.90x + 0.33	R² = 0.83	F slope = 0.94	F intercept = 0.03
I2	N2	y = 1.02x + 1.24	R² = 0.98	F slope = 0.98	F intercept = 0.00
I3	N2	y = 1.07x + 1.15	R² = 0.99	F slope = 0.99	F intercept = 0.00
I4	N2	y = 1.19x + 0.43	R² = 0.97	F slope = 0.97	F intercept = 0.00

I1	N3	y = 0.80x + 0.26	R² = 0.75	F slope = 0.94	F intercept = 0.08
I2	N3	y = 0.92x + 1.01	R² = 0.98	F slope = 0.95	F intercept = 0.00
I3	N3	y = 1.01x + 1.01	R² = 0.99	F slope = 0.99	F intercept = 0.00
I4	N3	y = 1.15x + 0.75	R² = 0.97	F slope = 0.97	F intercept = 0.00

I1	N1	y = 0.73x + 0.73	R² = 0.80	F slope = 0.75	F intercept = 0.08
I2	N1	y = 0.92x + 1.20	R² = 0.98	F slope = 0.95	F intercept = 0.00
I3	N1	y = 1.01x + 1.01	R² = 0.99	F slope = 0.99	F intercept = 0.00
I4	N1	y = 1.15x + 0.75	R² = 0.97	F slope = 0.97	F intercept = 0.00

I1	N2	y = 0.90x + 0.33	R² = 0.83	F slope = 0.94	F intercept = 0.03
I2	N2	y = 1.02x + 1.24	R² = 0.98	F slope = 0.98	F intercept = 0.00
I3	N2	y = 1.07x + 1.15	R² = 0.99	F slope = 0.99	F intercept = 0.00
I4	N2	y = 1.19x + 0.43	R² = 0.97	F slope = 0.97	F intercept = 0.00

I1	N3	y = 0.80x + 0.26	R² = 0.75	F slope = 0.94	F intercept = 0.08
I2	N3	y = 0.92x + 1.01	R² = 0.98	F slope = 0.95	F intercept = 0.00
I3	N3	y = 1.01x + 1.01	R² = 0.99	F slope = 0.99	F intercept = 0.00
I4	N3	y = 1.15x + 0.75	R² = 0.97	F slope = 0.97	F intercept = 0.00
جدول ۲: میزان ماده خشک تولیدی (DM) در تاریخ‌های مختلف کاشت ذرت علف‌های در مدت ده سال در اراضی داتشکده کشاورزی

<table>
<thead>
<tr>
<th>تاریخ کاشت</th>
<th>عامل</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردیبهشت</td>
<td></td>
</tr>
<tr>
<td>خرداد</td>
<td>تیر</td>
<td></td>
</tr>
<tr>
<td>مرداد</td>
<td></td>
</tr>
</tbody>
</table>

مقداری که در یک حرف مشترک هستند اختلاف معمولی در سطح احتمال ۹۵ درصد ندارند.

جدول ۳: حداکثر، حاشیه و میانگین (Q پ1، Q پ2) در حالات مختلف کاشت زمین در یک تاریخ (Q پ1) و در حالات کاشت زمین در تاریخ‌های مختلف از ده اردیبهشت تا ده تیر ماه (Q پ2) و درصد سطح زیر کاشت افزایش یافته در اثر کاشت در تاریخ‌های مختلف اراضی داتشکده کشاورزی

سال محاسبه	عامل	۱۳۸۴	۱۳۸۵	۱۳۸۶	۱۳۸۷	۱۳۸۸	۱۳۸۹	۱۳۹۰	۱۳۹۱	میانگین	میانگین	میانگین	
۱/۱۲	۲/۱۴	۱/۱۵	۱/۱۶	۱/۱۷	۱/۱۸	۱/۱۹	۱/۲۰	۱/۲۱	۱/۲۲	۱/۲۳	۱/۲۴	۱/۲۵	۱/۲۶
۸/۹۸	۳/۱۰۰	۳/۱۰۲	۳/۱۰۴	۳/۱۰۶	۳/۱۰۸	۳/۱۱۰	۳/۱۱۲	۳/۱۱۴	۳/۱۱۶	۳/۱۱۸	۳/۱۲۰	۳/۱۲۲	۳/۱۲۴
۲/۰۴۰	۱/۸۱	۱/۸۳	۱/۸۵	۱/۸۷	۱/۸۹	۱/۹۱	۱/۹۳	۱/۹۵	۱/۹۷	۱/۹۹	۲/۰۲	۲/۰۴	۲/۰۶

Mg ha⁻¹. DM *
نوع کاشت

شکل 2. علوفه خشک پیشینی شده در روز بعد از کاشت به ازای جریان خالص یک لیتر بر ثانیه در حالی که کاشت زمین در تاریخ 20 اردیبهشت ماه (a) و در حالت کاشت از تاریخ 20 اردیبهشت ماه تا 10 تیر ماه (b) دراراضی دانشگاه کشاورزی دانشگاه شیراز

علوفه‌ای در منطقه مورد مطالعه از اواسط اردیبهشت تا اواسط تیره‌های تعین شد.

افزایش سطح زیر کشت

برای بررسی امکان افزایش سطح زیر کشت در این فاصله، شدید زمین در مناسب ترین تاریخ کاشت (20 اردیبهشت) کاشته شده بود. با استفاده از ثابت‌گیری تغییر در روزانه پیشینی شده سطح متوسط مدل دبی لازم در زمان‌های مختلف آبیاری در فصل رشد و حداکثر آن ممکن زده شد. در حالت دوم زمین به 7 قسمت مناسب تقسیم شد و کاشت در هر 6 فاصله در 6 تاریخ مقاومت از 20 اردیبهشت تا 10 تیره‌های شبیه‌سازی شد. در این حالت تأکید که روزانه‌های مختلف محسوب کرد و این حداقل دبی پایین ترین زده شد. این محاسبات برای 10 سال مورد مطالعه نکرده شدند. در حالی که نیز می‌توان حداکثر میانگین دبی خالص دوره 7 بود تک تک محاسبات به علت کاشت آنها در تاریخ‌های مختلف در روزهای مختلف اتفاق می‌افتد. بنابراین متوسط حداکثر دبی خالص لازم برای کل زمین در طول دوره رشد، گمبر از مقدار آن در حالی‌که اول گردید. با استفاده از کاشت دبی حاصله از اعمال آب روش می‌توان زمین شکری‌های زیر کشت برد. در جدول 3 حداکثر دبی خالص
نتایج گیری

مدل MSM یا استفاده از داده‌های به دست آمده از کشت درخت
با آبیاری با پوزیسیوی در اراضی داشته کشاورزی دانشگاه
شیراز و استنباط و انتخاب آن با داده‌های اندازه‌گیری شده
مختص در کشت سال دوم سنجیده شد. با توجه به مقادیر
اندازه‌گیری شده در اواخر فصل رشد، با توجه به مقادیر مثبت
میانگین خطای ماده خشک پیش‌بینی شده، تغییراتی در نحوه
تعیین ماده خشک در اواخر فصل رشد در مدل ایجاد شد.

نتایج آزمایش مقیاسی شبیه و عیاری از می‌باشد روش‌زونه‌ی
از مقادیر اندازه‌گیری شده پیش‌بینی شده ماده خشک در
طول دو سال آزمایش با شبیه و عیاری از می‌باشد. خط به یک
نشان داد. بین عیاری از می‌باشد مقادیر اندازه‌گیری شده و پیش‌بینی
شد ماده خشک در همه موارد و بین شبیه آنها در اغلب موارد
در طول دو سال آزمایش اختلاف معنی‌داری طبق آزمون F
صحب اطمینان 99 درصد وجود دارد. در مجموع ارزیابی مدل
نشان داد که مدل داده خشک با رد قابل قبولی پیش‌بینی
نسبت می‌باشد. اعتبار مدل با استفاده از داده‌های اندازه‌گیری
شد در سال دوم کشت آزمون شد. تحقیق خاصه، اعتبار

پیش‌بینی مدل با مورد تأیید قرار داده از این مدل برای تعیین
محدوده زمانی مناسب کشت چتر علوفه‌ای در اراضی
دانشگاه کشاورزی اسفندیار سود و محدوده مناسب کشت چتر
علوفه‌ای در این منطقه از تاریخ 30 اردیبهشت ماه تا 10 تیر ماه
تعیین شد. با استفاده از مقدار تبخر- تعریق بالقوه پیش‌بینی
شد توزیع مدل، دی خالص بر حسب لتر بر تانیه بر هکتار
محاسبه شده و با شبیه سازی کشت تبدیل می‌سازد در
تاریخی منفاوت به جای کشت آن در یک تاریخ خاص،
17/9 در صد به اراضی زیر کشت اضافه گردید. با استفاده این
روش مدیریت در صورت محدود بودن دی جریان و در اختیار
بون اراضی کشاورزی، مقدار ماده خشک تولیدی حدود
17/9 تان بر هکتار بر لتر بر تانیه افراش یافته. همچنین با کشت
تبدیل زمانی در تاریخی مختلف کشت تبخر- تعریق روزانه
به طور دقیق ملاحظاتی کاست یافته. از مزایای این روش
می‌توان به پیدا کردن تبخر در زمان‌های مختلف اشاره
کرد که به تبخر صدها به سیلو حجم می‌شد. این محدوده
زمانی در ماه، به‌معنی شبیه آب و هواپیمای قابل افزایش
می‌باشد.
ارزیابی مدل

1. چوکان، ر. و. ا. مسوات. 1379. اثر تاریخ کشت تاپستانه (کشت دوم) بر عملکرد و اجرای عملکرد دانه هیبریدهای ذرت و تعیین روابط بین آنها از طریق تجزیه علیت. نهال و بذر 8-14:97-88.

3. هنر، ت. 1373. استنچی و اصلاح مدل کامپیوتری مدیریت و برنامه‌بندی آبیاری و تعیین محصول ذرت. پایان‌نامه کارشناسی ارشد، آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه شیراز.

