اثر کاربرد پساب و لجن فاضلاب صنعتی بر غلظت برخی عناصر و عملکرد گندم، چو و ذرت

محمدرضا نظری، حسن شریعتمداری، مجید افیونی، مصطفی میلی و شهرام رحیلی

چکیده

پساب و لجن فاضلاب ساکت نیاز آبی و غذایی گیاه را تأمین نموده، به همین علت به عنوان منابع آبی و کودی ارزان قیمت مورد توجه قرار گرفته‌اند. البته وجود فلزات سنگین در پساب و لجن و امکان جذب آنها به وسیله گیاهان و ورود آنها به زنجیره غذایی انسان و حیوانات نیاز دارد از نظر دوران. هدف از انجام این پژوهش تعمیم آثار پساب و لجن فاضلاب صنعتی بر غلظت تعدادی از عناصر پرمرفول، کم (Zeas mays) و ذرت (Hordeum vulgare)، (Triticum aestivum) مصرف، فلزات سنگین و سدیم و همچنین عملکرد سه گیاه گندم (جور گندم) این مطالعه در شرایط گلخانه‌ای و در قالب طرح کامل تصادفی در چهار تکرار و پنج تیمار شامل آب چاه، آب چه به لجن ۰۵ تن در هکتار) و سپس پساب صنعتی از کارخانه پیلی‌کریلم ایران به تامین پساب خروجی هواداره مربوط به جرج‌های خشک کنده، پساب سربرزی تصفیه پساب و پساب خروجی به رودخانه انجم گرفته. تجزیه پساب‌ها و لجن نشان داد که غلظت عناصر مختلف آنها در محدوده مجارب استانداردی‌های مربوطه می‌باشد. جهت کدام از تیمارها در گیاه در چو ذرت و نیز تیمار پساب خروجی هواداره در گندم و چو نتوانست نیاز گیاهان را به عنصر نیروزن تأمین نماید. همین تیمارها نیاز گندم به فسفر را تأمین نمودند. ولی در مورد ذرت در هیچ کدام از تیمارها به روزنده گوناگون در تیمارهای پساب خروجی هواداره، سربرز تصفیه پساب و خروجی به رودخانه نیاز گیاه به فسفر برآورده نشد. غلظت عناصر کم مصرف و سنگین در گیاهان از تیمارهای دارای لجن و پساب‌های صنعتی پیشرفت از تیمار آب چاه بود. عملکرد و زنخش نشان داد که از تیمارهای پساب‌ها در مقایسه با آب چاه سبب افزایش عملکرد و زنخش اندازه‌های گیاهان شد.

واژه‌های کلیدی: پساب صنعتی، لجن فاضلاب، فلزات کم مصرف و سنگین، گندم، چو، ذرت

مقدمه

ارزی فاضلاب و پساب به عنوان منابع تأمین کننده نیاز گیاهان به آب و عناصر غذایی در پژوهش‌های متعدد نشان داده شده‌اند.

است (4 و 3). طرح‌های انتفاضه‌ای از فاضلاب و پساب در مقیاس و سرعت‌های کم در کشورهای صنعتی و در حالت توسیع در حال اجرای است (7). به طور کلی فاضلاب به ضایعات بی‌ ámb‌های اصلی از فاضلاب و پساب به عنوان منابع تأمین کننده نیاز گیاهان به آب و عناصر غذایی در پژوهش‌های متعدد نشان داده شده‌اند.

1. به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیاران خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیاری ایرانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. کارشناس کارخانه‌پیلی کریلم ایران
پاسداری مقداری زیادی از عناصر غذایی است که می‌تواند در کشاورزی مورد استفاده قرار گیرد و سبب افزایش عملکرد محصول نیز گردد. علی‌رغم این‌که حاصل از کشاورزی و زراعت (صرف مصرف صنعتی، کشاورزی و حیاتی) فضای سبز اداری ترکیبی حدود 99/9 درصد آب و 1/1 درصد مواد جامد می‌باشد (2). بخش جامد، لجن فاضلاب و بخش مایع تحت عنوان پساب شناخته می‌شود.

پاسداری مقداری زیادی از عناصر غذایی است که می‌تواند در کشاورزی مورد استفاده قرار گیرد و سبب افزایش عملکرد محصول نیز گردد. علی‌رغم این‌که حاصل از کشاورزی و زراعت (صرف مصرف صنعتی، کشاورزی و حیاتی) فضای سبز اداری ترکیبی حدود 99/9 درصد آب و 1/1 درصد مواد جامد می‌باشد (2). بخش جامد، لجن فاضلاب و بخش مایع تحت عنوان پساب شناخته می‌شود.

پاسداری مقداری زیادی از عناصر غذایی است که می‌تواند در کشاورزی مورد استفاده قرار گیرد و سبب افزایش عملکرد محصول نیز گردد. علی‌رغم این‌که حاصل از کشاورزی و زراعت (صرف مصرف صنعتی، کشاورزی و حیاتی) فضای سبز اداری ترکیبی حدود 99/9 درصد آب و 1/1 درصد مواد جامد می‌باشد (2). بخش جامد، لجن فاضلاب و بخش مایع تحت عنوان پساب شناخته می‌شود.
جدول 1: تعدادی از ویژگی‌های شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>مقدار</th>
<th>واحد</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>-</td>
<td>مقدار (عصاره انجام)</td>
</tr>
<tr>
<td>0.25</td>
<td>dS/m</td>
<td>ECE</td>
</tr>
<tr>
<td>0.21</td>
<td>%</td>
<td>OM</td>
</tr>
<tr>
<td>0.15</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>0.27</td>
<td>%</td>
<td>قابل جذب K</td>
</tr>
<tr>
<td>0.25</td>
<td>قابل جذب P</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>mg/kg</td>
<td>DTPA Fe</td>
</tr>
<tr>
<td>0.25</td>
<td>Zn</td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td>Mn</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>0.28</td>
<td>Co</td>
<td></td>
</tr>
<tr>
<td>0.29</td>
<td>Ni</td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>Pb</td>
<td></td>
</tr>
</tbody>
</table>

سنسن می‌باشد و تعدادی از ویژگی‌های شیمیایی خاک مورد آزمایش در جدول 1 نشان داده شده است.

در منطقه از اهمیت زیادی برخوردار می‌باشد و مورد مطالعه قرار گرفت.

مواد و روش‌ها

پسابها و لجن مورد استفاده در این طرح مربوط به کارخانه پلی اکریل ایران واقع در 15 کیلومتری جنوب غربی شهر اصفهان می‌باشد. پسابها شامل پساب خروجی همواره مربوط به پلی‌های خنک کننده (Colling tower) (ba دی ۸ تا ۱۰ مترکعب در ساعت) و پساب خروجی به روندی با دیپ۸۰ مترکعب در ساعت و پساب سریع تصفیه پساب غلظی گذاده مترکعب در ساعت و پساب خروجی به روندی با دیپ۱۰۰ مترکعب در ساعت بودند. لجن فاضلاب نیز از نوع صنعتی و هضم شده به روش هوآزی است. در این طرح آب چاپ سنجیده به عنوان آب کشاورزی منطقه جهت تیمار شاهد مورد استفاده قرار گرفت. تیمارهای اعمال شده شامل آب چاپ آب چاپ + لجن (۰.۵ تن در هکتار)، پساب‌های خروجی همواره سریع تصفیه پساب و خروجی به روندی بود. خاک مورد استفاده از نظر رده بندی فلورتیپس هایلوبیومبردیت (Fluventic haplocambids)
نتایج و بحث

یزیگاه‌های شیمیایی یکی از ویژگی‌های شیمیایی لجن مورد استفاده در جدول ۴ نشان داده شده است. این یکی از ویژگی‌های اندازه‌گیری کم مصرف و سرگین، فسفر، باتیسیم و سدیم مورد استفاده قرار گرفت (۲۷). جهت اندازه‌گیری سدیم، کلسیم، نیز، پاناسیم، کلر، کربنات محلول بینه به دلیل جادب الطلبی بودن این ابزار از عصاره یک به پنج لجن و آب استفاده شد. به منظور عصاره‌گیری غلظت کل عناصر مصرف و سرگین در این مخلوط اسید کریک ۷۰ درصد و اسید نتریک غلیظ به تراست دو به یک استفاده گردید (۲۷). غلظت عناصر مصرف و سرگین در گیاه، پاسبه‌ها و لجن به وسیله دستکش جلد سنجی با استفاده از دستگاه اسکنریونی ۲۰ گرم هیچی با پتانسیم و سلولین آنها توسط دستگاه فلیم معیار اندازه‌گیری می‌باشد. لجن مورد آن لجن از روش اکسیداسیون نتیجه‌گیری می‌شود. کلریم بسیاری، لجن و خاک از رو به تیتراسیون با محلول ۲۵۰ مولار نتیجه‌گیری می‌شودرا مجازات عفونت پاتیم و کربنات و براتریکسیون به وسیله اسید سولفوریک ۵۰ مولار در مجازات عفونت قبل نتایج اندازه‌گیری گردید. سولفات موجود در پاسبه‌ها به رو به کدورت سنجی و نتیجه‌گیری نیز به وسیله الکترون نتیجه اندازه‌گیری شد (۱۱).

مورد بررسی ویژگی‌های ترانسپورت، پاسبه‌ها یکی از نظر بیشتر ویژگی‌های مربوط به شوری و قلبیت، کلریم برخی از عناصر غذایی اصلی و کم مصرف و همچنین فلزات سنگین آن اندازه‌گیری شد که تأثیر بر جدول‌های ۲ و ۵ نشان داده شده است. از نظر بیشتر ویژگی‌های مربوط به USEPA و قلبیت استانداردهایی (United States Environmental Protection Agency) و پاسبه‌ها (Food and Agriculture Organization) FAO مورد آزمایش در محدوده‌های مجاز و قابل استفاده قرار دارند (۸ و ۲۷). این‌ها از نظر غلظت کل املاح، پاسبه‌های سرگین
جدول ۲ برخی از ویژگی‌های شیمیایی آب و پساب‌های مورد آزمایش

NO₃⁻	P	SO₄²⁻	HCO₃⁻	CO₃²⁻	Cl⁻	K⁺	Na⁺	Mg²⁺	Ca²⁺	TDS	SAR	EC	pH	

جدول ۳ میانگین غلظت (mg/L) عنصرهای کم مصرف و فلزات سنگین آب چاه و پساب‌های مورد آزمایش

<table>
<thead>
<tr>
<th>Co</th>
<th>Cd</th>
<th>Pb</th>
<th>Ni</th>
<th>Zn</th>
<th>Mn</th>
<th>Cu</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

۱. میانگین چهار نوبت نمونه برداری

۲. کمتر از حد تشخیص دستگاه
جدول ۴: ترکیب شیمیایی لجن فاضلاب کارخانه پلی اکریل ایران

<table>
<thead>
<tr>
<th>مقدار</th>
<th>واحد</th>
<th>وزنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>(عصاره ۱۵)</td>
<td></td>
</tr>
<tr>
<td>dS/m</td>
<td>(عصاره ۱۵)</td>
<td></td>
</tr>
<tr>
<td>نیتروژن کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فسفر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پتاسیم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سدیم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلسیم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مواد آلی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آهی کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>روی کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منگنز کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کالس کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بیکل کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرب کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مس کل</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

غلظت عنصر در گیاه
الف- نیتروژن
غلظت نیتروژن کل ماده خشک اندام هوایی گیاهان گندم، جو و
درخت به ترتیب در جدول های ۶ و ۷ نشان داده شده است.
حد بحرانی کمبود نیتروژن در گندم جو و حدوداً ۲/۶ در
درخت ۳ درصد بیشتر از حداش بیشتره است (۶). غلظت نیتروژن کل در
گندم برای تیمار پساب حروجی متوسط ۲/۵ واحد و در
روش درخت میان پاتیننتر از حد بحرانی آن است ولی در سه تیمار
دیگر بالاتر از حد بحرانی می‌باشد (جدول ۵). در جو فقط
تیمار پساب حروجی متوسط از لحاظ میزان نیتروژن کمی
پایینتر از حد بحرانی است، ولی در درخت در تمام تیمارها
سنگین و کم مصرف مورد نظر بیشتری قرار دارد، زیرا استفاده
درز مدت از این ماده می‌تواند موجب تجمیع این عنصر و در
نهایت آلودگی خاک و سرعت آن با زنجیره غذایی انسان و
حيوان گردد. مقایسه غلظت عنصر مذکور در لجن مورد
آزمایش (جدول ۴) با استاندارد سازمان حفاظت محیط زیست
آمریکا (۹) نشان می‌دهد که غلظت این عنصر در لجن
فاضلاب مورد آزمایش در محدوده معادل بوده و کاربرد آن
مشکل را نخواهد بود. از طرفی با اضافه کربن ۵۰ تن لجن در
هکتار به ترتیب حدود ۱۲۴۰۷،۱۴۷،۱۶۷،۱۸۷ و ۴۱ کیلوگرم از عنصر
آهن، روبی، منگنز و مس به خاک اضافه شده شد که انتظار
می‌رود حداکثر بخشی از نیاز گیاه را تأمین نماید.
جدول 5: غلظت (‰) برازخ عناصر پر مصرف و سدیم در ماده خشک اندام هوایی گندم

<table>
<thead>
<tr>
<th>تیمار</th>
<th>Na</th>
<th>K</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>0/27</td>
<td>2/43</td>
<td>0/3</td>
<td>0/29</td>
</tr>
<tr>
<td>آب چاه + لجن</td>
<td>0/58</td>
<td>2/6</td>
<td>0/31</td>
<td>0/3</td>
</tr>
<tr>
<td>خروجی هوازنا</td>
<td>0/54</td>
<td>2/36</td>
<td>0/27</td>
<td>0/48</td>
</tr>
<tr>
<td>سریز تصفیه پساب</td>
<td>1/3</td>
<td>2/35</td>
<td>0/24</td>
<td>0/3</td>
</tr>
<tr>
<td>خروجی به رودخانه</td>
<td>0/6</td>
<td>2/27</td>
<td>0/15</td>
<td>0/5</td>
</tr>
</tbody>
</table>

: مینیمین‌هایی که در هر ستون دارای حروف مشترک هستند در سطح 1% آزمون دانک اختلاف معنی‌داری ندارند.

جدول 6: غلظت (‰) برازخ عناصر پر مصرف و سدیم در ماده خشک اندام هوایی جو

<table>
<thead>
<tr>
<th>تیمار</th>
<th>Na</th>
<th>K</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>0/74</td>
<td>3/5</td>
<td>0/23</td>
<td>0/6</td>
</tr>
<tr>
<td>آب چاه + لجن</td>
<td>0/98</td>
<td>3/38</td>
<td>0/23</td>
<td>0/1</td>
</tr>
<tr>
<td>خروجی هوازنا</td>
<td>0/78</td>
<td>4/28</td>
<td>0/18</td>
<td>0/5</td>
</tr>
<tr>
<td>سریز تصفیه پساب</td>
<td>1/2</td>
<td>3/47</td>
<td>0/18</td>
<td>0/2</td>
</tr>
<tr>
<td>خروجی به رودخانه</td>
<td>0/6</td>
<td>3/7</td>
<td>0/18</td>
<td>0/1</td>
</tr>
</tbody>
</table>

: مینیمین‌هایی که در هر ستون دارای حروف مشترک هستند در سطح 1% آزمون دانک اختلاف معنی‌داری ندارند.

جدول 7: غلظت (‰) برازخ عناصر پر مصرف و سدیم در ماده خشک اندام هوایی ذرت

<table>
<thead>
<tr>
<th>تیمار</th>
<th>Na</th>
<th>K</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>0/77</td>
<td>2/11</td>
<td>0/21</td>
<td>0/1</td>
</tr>
<tr>
<td>آب چاه + لجن</td>
<td>0/10</td>
<td>1/89</td>
<td>0/21</td>
<td>0/4</td>
</tr>
<tr>
<td>خروجی هوازنا</td>
<td>0/14</td>
<td>2/17</td>
<td>0/19</td>
<td>0/2</td>
</tr>
<tr>
<td>سریز تصفیه پساب</td>
<td>0/6</td>
<td>5/3</td>
<td>0/23</td>
<td>0/7</td>
</tr>
<tr>
<td>خروجی به رودخانه</td>
<td>0/6</td>
<td>0/19</td>
<td>0/24</td>
<td>0/4</td>
</tr>
</tbody>
</table>

: مینیمین‌هایی که در هر ستون دارای حروف مشترک هستند در سطح 1% آزمون دانک اختلاف معنی‌داری ندارند.

می‌تواند نقش بسزایی در تأمین نیتروژن گیاه داشته باشد، ولی به شکلی یکی بوده که به صورت تدریجی و پس از محدوده شدن در اثر گیاه فرار می‌گردد. آزاد شدن تدریجی نیتروژن می‌تواند هرزروی این عصار به شکل‌های مختلف را

غلظت نیتروژن کمتر از حد بحرانی بود(جدول های 6 و 7). بنابراین به نظر می‌رسد در شرایط آزمایش، کاربرد کودهای شیمیایی جهت تأمین نیاز نیتروژن ذرت امروز ایست. تحقیقات مختلف نیز نشان می‌دهند یک بودن و لجن فاضلاب به دلیل دارا بودن شکل‌های مختلف نیتروژن به ویژه ترکیبات آلی این عصار
کاهش دهته که این پدیده نیز اهمیت کارد نیز پساب و لجن در مورد کاربرد آن را بهبود افزایش می‌دهد. این آزمایش معمولاً است بسیاری از خواص مورد نیز توانسته به طور کلی کاربرد لجن و پساب مناسب پیچ و شور و مورد توجه قرار گرفته است (24). به طور کلی، فشارهای نیز غذایی گیاهی تهیه می‌شود و پساب سبب افزایش میزان پیچ و شور و مورد توجه قرار گرفته است (24).

س. فسفر

غلفت فسفر کل ادامه گیاهان در جدول‌های ۵ و ۶ نشان داده شده است. در سه گیاه مردود کشت اختلاف معنی‌داری در سطح ۵٪ بین تیمارهای دیگر وجود دارد. حدود بحرانی کمپوست فسفر در گندم و جو ۲۰۰-۲۰۰ دندان و در درخت ۲۰-۲۰ دندان پیشنهاد شده است. غلفت فسفر کمپوست در تمام تیمارهای بالاتر از حدود بحرانی و در جو در گیاهان تحت تیمار پساب گیاه خروجی هوامد اثر بزرگ‌تری نسبت به پساب و لجن قابل مشاهده بوده است.

ج. پاسیم

غلفت پاسیم شده‌ای نسبت در گندم و جو ۸/۸ و در ده ۱/۷ و در سه گیاه مردود کشت اختلاف معنی‌داری نشان داده شده است. در هر سه گیاه پای دانه در تیمار تیمارهای غلفت پاسیم بالاتر از حد تیمارهای است و تیمارها توانسته‌اند نیاز گیاه و لجن شوری زیاد عموماً دارای غلفت نیازهای بزرگی دیده شده است (۲۶). بنابراین در کاربردهای کشاورزی مخصوصاً در پروبای گیاهان حساس، غلفت این عنصر در خاک و گیاه، باید مورد توجه قرار گیرد (۸).
۵/۷ نشان داد، در حالی که کمترین عملکرد وزن خشک مربوط به تیمار آب چاه بود (جدول ۱۵). در اندام هواپیمای روی نیز بیشترین عملکرد مربوط به تیمار آب چاه + لجن و کمترین مربوط به آب چاه بود. در ریشه یا گیاه بیشترین عملکرد وزن خشک مربوط به تیمار خروجی هوا‌های بود. در اندام هواپیمای درخت نیز بیشترین وزن خشک مربوط به تیمار آب چاه + لجن و مقدار کمتری مربوط به تیمارهای آب چاه و خروجی به رودخانه بود.

از طرف جملات وزن خشک اندام هواپیمای و ریشه در تیمار آب چاه + لجن تقریباً در بیشتر موارد بالاترین مقادیر را نشان داد. این افزایش عملکرد احتمالاً به دلیل نیتروژن و فسفر موجود در لجن و همچنین وجود ماده آلی لجن که باعث بهبود شرایط خاک جهت رشد بهتر گیاهان می‌شود می‌باشد.

نتیجه‌گیری

بسیاری از افراد قابلیت جدی فلزات مصرف و سنتیک در خاک دارد. همچنین فلزات موجود در لجن نیز مهم‌اند که صورت ترکیب آن که به دلیل کنترل بیشتر جزییات می‌باشد. غلظت فلزات تولید‌کننده را در کیفیت آب‌باتریه‌های مورد نمود (۱۹). ۱۰ و (۲۲) در ریشه گندم غلظت انعکاصل به دلیل غیر بی‌سیم اثر بسیار اندام هواپیمای (ماهی‌های جداول ۹ و ۸) در اندام هواپیمای چند بی‌غلظت در دو عنصر آن و روی در بیان انعکاصل مختلف دارد در سطحی ۵/۷ بی‌غلظت و وجود نداشت (جدول ۱۰). غلظت آهن و روی در اندام هواپیمای چند در بیشتر انعکاصل در ریشه یا گیاه مهم‌اند چون تیمار پسپ خروجی به رودخانه بالاترین مقادیر را نشان داد. در اندام هواپیمای درخت نیز عموماً تیمار پسپ خروجی به رودخانه بیشترین غلظت انعکاصل کم مصرف و سنتیک را دارا بود. تیمار آب چاه کمترین غلظت را داشت (جدول ۱۲). در ریشه یا گیاه نیز تیمارهای پسپ خروجی به رودخانه و یا در سریز تصفیه پسپ بیشترین غلظت این انعکاصل را داشت (جدول ۱۳). در مقایسه با حدود پهناوری پیس و جوون (۱۹۷۶) غلظت انعکاصل کم مصرف و سنتیک در اندام‌ها سه گیاه تحقیق انسان‌ها مختلف در محدوده سرم و پاها کمبود فرآیند هنگام (جدول ۱۴).

عملکرد ماده خشک

عملکرد وزن خشک اندام هواپیمای گندم در تیمار آب چاه + لجن بیشترین مقدار بود و با تیمارهای دیگر تفاوت معنی‌دار در سطح

۱۰۵
جدول 8. غلظت (mg/kg) عناصر کم مصرف و سطگین در ماده خشک اندام هوایی گندم

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1/8 b</td>
<td>0/5 b</td>
<td>1/8 b</td>
<td>ND ab</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>3 b</td>
<td>3 b</td>
<td>ND b</td>
<td>2/3 b</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>13 a</td>
<td>13 a</td>
<td>24 a</td>
<td>31 a</td>
</tr>
</tbody>
</table>

تیمار

آب جاه

جدول 9. غلظت (mg/kg) عناصر کم مصرف و سطگین در ماده خشک ریشه گندم

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1/8 b</td>
<td>0/5 b</td>
<td>1/8 b</td>
<td>ND ab</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>3 b</td>
<td>3 b</td>
<td>ND b</td>
<td>2/3 b</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>13 a</td>
<td>13 a</td>
<td>24 a</td>
<td>31 a</td>
</tr>
</tbody>
</table>

تیمار

آب جاه

جدول 10. غلظت (mg/kg) عناصر کم مصرف و سطگین در ماده خشک اندام هوایی جو

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1/8 b</td>
<td>0/5 b</td>
<td>1/8 b</td>
<td>ND ab</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>3 b</td>
<td>3 b</td>
<td>ND b</td>
<td>2/3 b</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>13 a</td>
<td>13 a</td>
<td>24 a</td>
<td>31 a</td>
</tr>
</tbody>
</table>

تیمار

آب جاه

**: میانگین هایی که در هر ستون دارای حروف مشترک هستند در سطح 5% آزمون دانکن اختلاف معنی‌دار ندارند.

* 19 شهریور 1385

4: کمتر از حد تشخیص دستگاه
جدول 11. غلظت (mg/kg) عنصرکم مصرف و سنگین در ماده خشک ریشه چوکوبه

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/28</td>
<td>16</td>
<td>28</td>
<td>35</td>
<td>69</td>
<td>305</td>
<td>190</td>
<td>"a"</td>
</tr>
<tr>
<td>0/22</td>
<td>16</td>
<td>27</td>
<td>33</td>
<td>69</td>
<td>305</td>
<td>190</td>
<td>"a"</td>
</tr>
<tr>
<td>1/5</td>
<td>17</td>
<td>26</td>
<td>32</td>
<td>69</td>
<td>305</td>
<td>190</td>
<td>"a"</td>
</tr>
<tr>
<td>1/0</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>69</td>
<td>305</td>
<td>190</td>
<td>"a"</td>
</tr>
</tbody>
</table>

آب چاه + لجن

جدول 12. غلظت (mg/kg) عنصرکم مصرف و سنگین در ماده خشک انگلیسی دشت

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
</tbody>
</table>

آب چاه + لجن

جدول 13. غلظت (mg/kg) عنصرکم مصرف و سنگین در ماده خشک ریشه چوکوبه

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>"a"</td>
<td>11/8</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
<tr>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
<tr>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
<tr>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
<td>"a"</td>
</tr>
</tbody>
</table>

آب چاه + لجن

* میانگین‌هایی که در هر ستون دارای حروف مشترک هستند در میانگین معنی‌دار هستند.

* کمتر از حد تشخیص دستگاه

107
جدول 12. غلظت (mg/kg) معمول بعضی از فلزات در ماده خشک اندام هوایی گیاهان

<table>
<thead>
<tr>
<th>عناصر</th>
<th>کمیت (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Pb</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1-0.5</td>
</tr>
</tbody>
</table>

برگرفته از منبع شماره 19

جدول 15. اثر تیمارها بر عملکرد وزن خشک (گرم در گلدان)

<table>
<thead>
<tr>
<th>کیه تیمار</th>
<th>گندم</th>
<th>چوب</th>
<th>اندام هوایی</th>
<th>اندام هوایی</th>
<th>اندام هوایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>آب چاه + لجن</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>خروجی هروده</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

نوت: میانگین هایی که در هر ستون دارای حروف مشترک هستند در مساحت 5/0 آزمون داکت نتایج معنی‌دار ندارند.

صدوی که احتیاطی به دلیل مصرف کافی این عنصر در خاک و همچنین غلظت نسبتا کم آنها در پساب و لجن مورد آزمایش می‌باشد. گیاهانی که گل‌های آزمایشی تازه به دلیل غلظت سیدیم گیاهان را است ترسیده است.

عملکرد وزن خشک گیاهان در اثر کاربرد پسابها و لجن افزایش یافته، گرچه گیاهان متفاوت به پاسخ متفاوتی داشته‌اند. تیمار آب چاه + لجن بیشترین عملکرد را در هر سه نوع گیاه آزمایشی تولید نموده که احتیاطی به دلیل وجود عناصر غذایی و همچنین مواد آلو لجن می‌باشد که به‌هیلهٔ شرایط عمومی خاک جهت رشد بهتر گیاهان شده است.

108