توزیع شکل‌های مختلف روي و ارتباط آنها با ویژگی‌های خاک در برخی خاک‌های آهکی استان تهران

عادل رحیمی‌یار، نجفعلی کریمی‌اند، محمد معززادلان، غلامرضا ثوائی و محمدرضا قنادها

چکیده
شاخص شکل‌های مختلف روي در خاک، اطلاعات مفیدی برای ارزیابی وضعیت روی و نیز حاصلخیزی خاک و تپذیری گیاه در اختیار می‌گذارد. به منظور کسب چنین اطلاعاتی، روي کل و توزیع آن در شکل‌های مختلف در 20 نمونه خاک استان تهران به روش عصاره‌گیری دنباله‌ای تعین و رابطه آن شکل‌ها با یکدیگر و با ویژگی‌های خاک مطالعه شد. میزان روي کل 70/9 تا 149/9 بیلی‌گرم به کیلوگرم خاک به‌دست آمد. به طور متوسط روی مسلسل به مواد آلی کمتر از 0/1 محلول + تبادل 0/1، مسلسل به اکسیدهای منگنز 0/9، مسلسل به کربنات ه4/6، مسلسل به اکسیدهای آهن میلیور 3/8 و مسلسل به اکسیدهای آهن به شکل 3/2، و روی هم تبغه 189/3 درصد مجموع شکل‌های اندازه‌گیری شده را تشکیل می‌داد. ضریب محاسبه‌گر pH با تمام شکل‌های روی (به استناد شکل مسلسل به مواد آلی) منفی و معنادار بود. درصد رس و سیلیت با روی کل، تنها و مسلسل به اکسیدهای آهن منیلور هپستگن مثبت معنی دار نشان داد. رابطه ظرفیت بنازی کاتیونی خاک فقط با روی کل معنادار بود. هپستگن درصد کربنات کلسیم معادل نیاز به شکل‌های محلول + تبادل، مسلسل به اکسیدهای منگنز و اکسیدهای آهن به شکل‌های محلول + تبادل، کربنات و مسلسل به اکسیدهای آهن DTPA آهن چه در مسیر دارد. آزمایش عصاره‌گیری شده با روی عصاره‌گیری گردد با ویژگی‌های شاخص شکل‌های مختلف روي به خوبی دارای هسته مثبت معنی داری پودنده که احتیالاً یلانگ وجود یک رابطه پویا بین آنها در خاک مشاهده شد.

واژه‌های کلیدی: شکل‌های روی، خاک‌های آهکی، عصاره‌گیری دنباله‌ای، خاک‌های استان تهران

مقدمه
روی به عنوان یکی از عناصر ضروری گیاه است که نقش‌های متعددی در زیاده را در گیاه ایفا می‌کند. از مهم‌ترین آنها حضور در ساختار سیاتری از آنری‌ها تحت شرایط پرورش ایجاد می‌شود. 1. به ترتیب دانشجوی درکر، دانشیار، استادیار و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه تهران 2. استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه شیراز

پیش‌بازه‌ها و فسفوری‌ورولارها می‌باشد (13). کم‌رود روي یکی از شاخص‌های کم‌رود خاک‌های غلظایی گیاه در به‌دلیل اکسیدهای آهکی و قلیایی بر حساب می‌آید. علت اصلی آن اغلب به کمیت مقدار کل بناه کمی قابلیت استفاده شکل‌های عنصر در این
روش‌های عصاره‌گیری دیپالاسه (Sequential extraction) گوناگونی در برای جداسازی شکل‌های مختلف عصاره‌کم مصرف و از جمله روی در خاک‌های و رسوپ‌ها ابتدای شده است. (5، 6، 22، 23، 24 و 25). اما این روش‌ها استاندارد شده نیستند و هر محقق از روی خاص خود به عنوان تهیه‌کننده روش‌های دیگر استفاده می‌کند. استور و همکاران (29) شکل‌های مختلف عصاره‌کم مصرف در رسوبات را به صورت تابیده، متصول به مواد آلی، متصول به کربنات‌ها و متصول به سولفیدها نام‌گذاری کردند. تاسیس و همکاران (30) شکل‌های عصاره‌کم خاک را تابیده، متصول به مواد آلی، متصول به کربنات‌ها-متصول به اکسیدهای آهن و یا مگنزیوم نتیجه‌گیری کردند. شومن (22) در خاک‌های استیدلی برای عصاره‌گیری دیپالاسه روی شومن ارائه داد که در آن جزء متصول به کربنات‌ها وجود نداشت. عملی این امر از نظر تأثیر مطالعه اشتیاق و کم اهمیت بودن جزء کربناتی بود. علاوه بر در نظر نگرفتن جزء اکسیدهای مصرف متصول به کربنات‌ها، دو ایند مهم دیگر هم به روش شومن توسط محققان وارد شد. نخست آن که در روی شومن برای عصاره‌گیری جزء متصول به مواد آلی از اکسیدهای مگنزیوم (MgO) پیشنهاد شد. علاوه بر توجه به یک بیانیه شده بود که علاوه بر جرز داده‌ها بکار در این سلسله اکسیدهای مگنزیوم خودهایی آهن این مشکل باعث
توزیع شکل‌های مختلف روی و ارتباط آنها با ویژگی‌های خاک در...
میانگین آنها از ترتیب زیر برخوردار است:

تیتانیم > آلی > سیلاکسیدهای آهنا به شکل > معادن به آهن

یکپارچه کربنی > کبریتین

۱۲۸
جدول ۱، برخی از ویژگی‌های خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>نام سری</th>
<th>رس %</th>
<th>رسلاحم %</th>
<th>سبز %</th>
<th>درد نبندی</th>
<th>CEC</th>
<th>% CEC</th>
<th>% OC</th>
<th>pH</th>
<th>cmol$_1$/kg1</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>کونکسک</td>
<td>۳۳۵/۵</td>
<td>۲۲/۵</td>
<td>۴۱/۵</td>
<td>Entisols</td>
<td>۴/۰</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۶/۰</td>
</tr>
<tr>
<td>۲</td>
<td>سودی‌باد</td>
<td>۱۰/۶</td>
<td>۴/۰</td>
<td>۲/۰</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۳</td>
<td>احمد‌باد مستوفی</td>
<td>۲/۰</td>
<td>۴/۰</td>
<td>۱/۲</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۴</td>
<td>کرد امیر</td>
<td>۳/۰</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۵</td>
<td>مزرعه دانشکده کشاورزی</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۶</td>
<td>دماوند ۱ آبرز</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۷</td>
<td>چیتگر</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۸</td>
<td>بومهن</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۹</td>
<td>دماوند ۲ سرنده</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>شیروکه ۱</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۱</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>چیتگر</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۳</td>
<td>بومهن</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>روده</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۶</td>
<td>بومهن</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۷</td>
<td>چیتگر</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۸</td>
<td>بومهن</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۱۹</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>بومهن</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۱</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۲</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۳</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۴</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
<tr>
<td>۲۶</td>
<td>دماوند امیر سلنیا</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۵</td>
<td>Entisols</td>
<td>۲/۵</td>
<td>۴/۰</td>
<td>۰/۸</td>
<td>۸/۴</td>
<td>۱۲/۰</td>
</tr>
</tbody>
</table>

جدول ۲، خلاصه روش عصاره‌گیری دنل‌های و مشخصات شکل روي اس‌کروگر از روش سیستمیک (۶۲) و همبکاران (۴۶)

<table>
<thead>
<tr>
<th>میلی لیتر عصاره‌گیری برابری ۵/۵</th>
<th>۹/۰ میلی لیتر رسانه</th>
<th>عصاره‌گیری</th>
<th>شکل شیمیایی روی</th>
<th>علامت</th>
<th>مدت تکان دادن (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnEx</td>
<td>محصول ظهور</td>
<td>مصرف</td>
<td>ZnEx</td>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>ZnCar</td>
<td>کریستال</td>
<td>مصرف</td>
<td>ZnEx</td>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>ZnMox</td>
<td>مصرف</td>
<td>مصرف</td>
<td>ZnEx</td>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>ZnAFOx</td>
<td>مصرف</td>
<td>مصرف</td>
<td>ZnEx</td>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>ZnFex</td>
<td>مصرف</td>
<td>مصرف</td>
<td>ZnEx</td>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>ZnRe</td>
<td>مصرف</td>
<td>مصرف</td>
<td>ZnEx</td>
<td>۰</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

[۱۲] در مورد عصاره‌گیری می‌شود.
[۲۲] درباره مخلوط منشور HClO$_4$:HF ۱:۵ غلیظ تا ۱ خشک شدن جراحات داده شده و سپس در حضور HNO$_3$ غلیظ حل و به ۱۰۰ میلی لیتر رسانده می‌شود. برای ترکیب به‌سر سیستمیک (۴۳) مراجعه شود. عامل شوی شکل با استفاده یاد شده در جدول. ۱۰۰۰ مول ترکیم الکتریکی در روش سیستمیک (۴۳) مورف‌گری شد.
جدول ۳. توزیع شکل‌های روز (mg kg⁻¹) در خاک‌های مورد مطالعه*

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>ZnRes</th>
<th>ZnFeox</th>
<th>ZnAFeox</th>
<th>ZnOMox</th>
<th>ZnOM</th>
<th>ZnCar</th>
<th>ZnEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۰۸/۵</td>
<td>۱/۱۰</td>
<td>۱/۶۰</td>
<td>۱/۷۰</td>
<td>۱/۹۵</td>
<td>۱/۸۵</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۲</td>
<td>۹۹/۸</td>
<td>۲/۶۵</td>
<td>۱/۷۰</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰۴/۷</td>
<td>۲/۱۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۴</td>
<td>۸۸/۵</td>
<td>۲/۵۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۵</td>
<td>۸۹/۳</td>
<td>۲/۴۵</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۶</td>
<td>۱۰۹/۶</td>
<td>۲/۸۵</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۷</td>
<td>۱۲۰/۶</td>
<td>۲/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۸</td>
<td>۱۰۷/۶</td>
<td>۲/۶۵</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۹</td>
<td>۱۲۰/۶</td>
<td>۲/۵۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۱۴/۲</td>
<td>۲/۶۵</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۱/۷۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۰۸/۵</td>
<td>۱/۶۰</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۰۳/۶</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۰۴/۷</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۴</td>
<td>۹۹/۳</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۵</td>
<td>۹۹/۳</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۶</td>
<td>۸۸/۵</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۰۴/۷</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱۰۸/۵</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۱۹</td>
<td>۹۹/۳</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
<tr>
<td>۲۰</td>
<td>۸۸/۵</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۲۰۴/۲</td>
</tr>
</tbody>
</table>

* برای شرح علامت‌های اختصاصی به جدول ۲ مراجعه شود.
نسبت به مجموع شکل‌های اندازه‌گیری شده.

(۱ mg kg⁻¹)
توزیع شکل‌های مختلف روش و ارتباط آنها با ویژگی‌های خاک در …

این اجزای در محلول آلت خاک‌های مختلف متفاوت است. به‌شکلی باشد که ماده آلت خاک در جر تغییر محلول تنا بنا شود. با توجه پیش از محلول خاک می‌شود. با توجه سلسله مقادیر در محلول تغییر مقدار که نشان از دخالت تأثیر در محلول خاک می‌شود. به‌شکلی باشد که ماده آلت خاک در محلول تغییر مقدار که نشان از دخالت تأثیر در محلول خاک می‌شود. به‌شکلی باشد که ماده آلت خاک در محلول تغییر مقدار که نشان از دخالت تأثیر در محلول خاک می‌شود.

d) محلول تغییر از دخالت تأثیر در محلول خاک می‌شود. به‌شکلی باشد که ماده آلت خاک در محلول تغییر مقدار که نشان از دخالت تأثیر در محلول خاک می‌شود. به‌شکلی باشد که ماده آلت خاک در محلول تغییر مقدار که نشان از دخالت تأثیر در محلول خاک می‌شود.
جدول 4: ضریب‌های همبستگی (r) ساده بین شکل‌های مختلف روی و وزیگ‌های خاک

<table>
<thead>
<tr>
<th>شکل‌های خاک</th>
<th>روی کل</th>
<th>ZnRes</th>
<th>ZnCFeox</th>
<th>ZnAFex</th>
<th>ZnMnox</th>
<th>ZnOM</th>
<th>ZnCar</th>
<th>ZnEx</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnRes</td>
<td>0/55</td>
<td>0/59</td>
<td>0/54</td>
<td>0/59</td>
<td>0/88</td>
<td>0/53</td>
<td>0/49</td>
<td>0/49</td>
<td>0/49</td>
</tr>
<tr>
<td>ZnCFeox</td>
<td>0/54</td>
<td>0/59</td>
<td>0/52</td>
<td>0/59</td>
<td>0/88</td>
<td>0/53</td>
<td>0/49</td>
<td>0/49</td>
<td>0/49</td>
</tr>
<tr>
<td>ZnAFex</td>
<td>0/54</td>
<td>0/59</td>
<td>0/52</td>
<td>0/59</td>
<td>0/88</td>
<td>0/53</td>
<td>0/49</td>
<td>0/49</td>
<td>0/49</td>
</tr>
<tr>
<td>ZnMnox</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
</tr>
<tr>
<td>ZnOM</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
</tr>
<tr>
<td>ZnCar</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
</tr>
<tr>
<td>ZnEx</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
</tbody>
</table>

1: برا ی شرح علاوه‌های اختصاصی به جدول 2 مراجعه شود.

2: برتیب معنی‌دار در سطح احتمال 5% و 1% درصد

جدول 5: ضریب‌های همبستگی (r) ساده بین شکل‌های مختلف روی در خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شکل‌های روی</th>
<th>روی کل</th>
<th>ZnRes</th>
<th>ZnCFeox</th>
<th>ZnAFex</th>
<th>ZnMnox</th>
<th>ZnOM</th>
<th>ZnCar</th>
<th>ZnEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnRes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnCFeox</td>
<td>0/88</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnAFex</td>
<td>0/55</td>
<td>0/55</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnMnox</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnOM</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnCar</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnEx</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1: برا ی شرح علاوه‌های اختصاصی به جدول 2 مراجعه شود.

2: برتیب معنی‌دار در سطح احتمال 5% و 1% درصد

کانی‌های هم‌اندازه روی وجود می‌باشد. درصد در داده‌های جدول 3 نیز ثانی می‌دهد که به طور کلی خاک‌های با رزین شیران روی کل و کربن انتقالاتی می‌باشد. این نتایج معنی‌دار احتمال داده شده که به‌طور مکرر و وجود روی در ساختن کانی‌های رزینی این خاک‌ها باشد. این نتایج با بدنه محققان مختلف (111، 17، و 26) مطابقت دارد. این نتایج این موضوع به اندازه‌گیری‌های بین‌شهر همراه با تشخیص نوع کانی‌ها نیاز دارد.

سایر شکل‌های روی به‌وجود آمده و pH خاک‌ها تأثیر مستقیمی بر این دو شکل روی ندارند. درصد سیلیت و رزین روی کل روی تهمن و زئولیت به‌کسب‌های این مبلور همبستگی معنی‌دار نشان داده‌اند (جدول 4) ولی در معادلات رگرسیون خطی آنها تهمن روی به‌کسب مثبت وارد شده است و سیلیت در هیچ‌یک از معادلات وارد نشده است (جدول 5). این موضوع نشان می‌دهد که محتملاً روی به‌وجود آمده و به‌کسب‌های این مبلور عمده‌تری در...
جدول 6. معادلات رژیم ساده و چند متغیره بین شکل‌های روز و برخی ویژگی‌های خاک

<table>
<thead>
<tr>
<th>معادله</th>
<th>ر² (*** یا ***)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$DTPAZn=1/880+1/78/ZnCar−1/37/ZnMnox$</td>
<td>$R²=0.766$</td>
</tr>
<tr>
<td>$ZnTotal=1/936+1/79/3Clay−1/37/3CCE$</td>
<td>$R²=0.530$</td>
</tr>
<tr>
<td>$ZnRes=1/880+1/93/7Clay$</td>
<td>$R²=0.617$</td>
</tr>
<tr>
<td>$ZnFeox=1/141+1/37/5OC−1/37/3Clay−1/37/5pH$</td>
<td>$R²=0.600$</td>
</tr>
<tr>
<td>$ZnFeox=1/141+1/37/5OC−1/37/3pH−1/37/3CCE$</td>
<td>$R²=0.716$</td>
</tr>
<tr>
<td>$ZnMnox=1/880−1/37/5pH−1/37/3CCE$</td>
<td>$R²=0.818$</td>
</tr>
<tr>
<td>$ZnCar=1/880−1/37/5pH−1/37/3CCE$</td>
<td>$R²=0.733$</td>
</tr>
<tr>
<td>$ZnEx=1/880−1/37/5pH−1/37/3CCE$</td>
<td>$R²=0.946$</td>
</tr>
</tbody>
</table>

1. برای شرح علامت‌های اختصاصی شکل‌ها به جدول 2 مراجعه شود.

** معنی‌دار در سطح یک درصد

$(mg kg^{-1}) = ZnTotal (\%) = O.C (\%) = Clay (\%) = CCE$

میزان فسفر متصل به مواد آلکتری دارد و اندمازی در شکل‌های کلسیم در این مورد از همیشه بخشی برخوردار است. این موضوع در می‌تواند درپره روی نب ساده باشد. از طرف دیگر، جدی روت و سبیل به کلسیم کربناتی، دولیمری و مگنتزی را به تنازلی آن با کلیک‌های مناسب‌تر وجود دارد و این کلیک‌ها نسبت به همیشه مستقیم می‌باشد. از آنجا که در این میزان شفاف کرده و جابجایی مناسبی نمی‌باشد، این بخش شدید و برخوردار این امکان وجود دارد که در مرحله اندام‌گیری روی محلول + تابیده بهینه نتیجه‌های مناسبی این بار مناسبی به داخل کلیک این کلیک‌ها نفوذ کرده و جابجایی روی آنها شود و لذا عملیاتی با اندازه‌گیری شده مربوط به روی کلسیم باشند و بنابراین از ضریب همبستگی روی کلسیم با کلیک‌های کلسیم معادل کمر و آن را غیر معنی‌دار کنیم.

نتهایی مهم دیگر معنی‌دار نشان دهنده ضریب همبستگی خطی بین درصد کلسیم معکوس (CCE) و روی کلسیم مسوب (جدول 2) اکثر چه در معادله رژیم ساده بوده است. هم مورد مدل به زبان (جدول 2) و پناراین انتخاب می‌رود که با اندازه‌گیری کلسیم معادل روی کلسیم هم مخصصی افزایش یابد. واکنش کلسیم کلسیم کلیک به روی در شکل‌ها به سطح ویژه کلسیم کلسیم کلیک این اندام‌گیری در کلیک‌های مربوط به می‌باشد. این امر را می‌توان نشان از آن دانست که روی متصد کلیک‌ها نه

(19) گزارش کردشاند که مقدار کلیک‌های کلسیم کلسیم تأثیر کمی بر
جدول‌های 4 و 6 مشاهده می‌شود بین CEC و هیچ‌کدام از شکل‌های مختلف روی (به استنیات روی کل) هم‌سانتی صاده می‌باشد. در مدل الگوریتمی هیچ‌کدام از شکل‌های روی (به استنیات روی کل) وارد نشده است. به نظر ما رسد که در خاک‌های مورد مطالعه جذب روی به‌صورت ساده فیزیکی (تبدیلی) انجام نشده و این عمل توسط کانی‌ها و اکسیدهای آهن، مکنگ و کربناته با ترکیب جذب ویژه بوده و به‌خروج رس این خاک‌ها بیش از CEC خود روی را جذب می‌کند. بنابراین نباید انتظار داشت که بین CEC و ممتاً شکل تبدیلی روی هم‌سانتی مشاهده شود.

همان‌طور که در جدول 5 مشاهده می‌شود بین شکل‌های مختلف روی در خاک‌های پیش‌بینی و هم‌سانتی عایقی مشاهده گردید. وجود شکل‌های هم‌سانتی ممکن دار احتمالات بیانگر وجود یک رابطه بین شکل‌های مختلف روی در خاک می‌باشد.

سیاستگری

هر یک انجام یک پژوهش از اعتبارات پژوهشی دانشگاه تهران تأیین شده است که به‌دین وسیله سیاستگری می‌گردد.

منابع مورد استفاده

1. مفتون، م. "حقیقت نیا، و. ن. کریمیان. 1379. ویژگی‌های جذب سطحی روی در برخی از خاک‌های زیر کشت بذری استان فارس و رابطه آن‌ها با ویژگی‌های خاک." فارس علوم و فنون کشاورزی و منابع طبیعی (124)، 71-77.

2. قاثی، ه. و. ن. کریمیان. 1382. "توزیع مختلف روی خاک‌های آهکی استان فارس و رابطه آن‌ها با ویژگی‌های خاک." هشتمین نگهداری علم خاک ایران، صفحه 1230-1242، رشت.

27. SPSS, Inc. 2002. SPSS for Windows, Release 11.5. SPSS, Inc., Chicago, IL.