تأثیر انواع مالج رسمی بر میزان مواد فرسایشی یافته بادی

هادی مجدی‌اکبری، محمدرضا کریم زاده و احمد جلالیان

چکیده
یکی از عوامل اصلی مناطق خشک و یابانی ایران مطالعه کنترل شن‌های روان است. استفاده از انواع مالج‌یکی از روش‌هایی است که به شکل گسترده‌ای به مصرف تربیت شن‌های روان به کار می‌روید. هدف از این تحقیق تعیین مناسب‌ترین ترکیب، غلظت و ضخامت مالج رسمی برای تربیت شن‌های روان می‌باشد. بدین منظور، برای تعیین مناسب‌ترین ترکیب، غلظت و ضخامت مالج، انتخاب گردهایی برای تعیین بهترین غلظت مالج، انتخاب شده به عنوان مالج عبارت بودند از: 1) 250 گرم شن روان + 150 گرم خاک رس + 25 گرم کاک، 2) 150 گرم شن روان + 300 گرم خاک رس و (3) 250 گرم شن روان. لازم به ذکر است که برای بهترین غلظت مالج بر روی آنها صورت گرفته. نتایج نشان داد که هر تیمار با 500 میلی‌لیتر آب مخلوط و سیس پاشن انجام شد. به موزار بررسی مطابق ترین ضخامت مالج. با انجام یک بر عامل مالج‌پاشی اجرا شده، نتایج نشان داد که نوع اول و دوم مالج مشابه نسبت به نوع اول مالج خاک رس عملاً تحقیق به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی انجام شد که تیمارها شامل نوع مالج (6 نوع مالج) دو ضخامت (یک یا دو لایه و دو لایه) و دو شکل عبارت آماده کمی و کیفیت است. نتایج نشان داد که تیمارهایی که برای هر کدام سه ترکیب انجام گرفت تیمارهایی که در برابر جریان با مقدار مثبت و نقش زمانی که تحت تأثیر بیماران مولود موجود در جریان با دار قرار گرفته، بود و مبالات مالج را به نوع مالج منافاتی خواهد بود. مطالعات مالج‌ها که در آن کاهب به کار رفته، به دلیل افزایش استحکام ساختمانی از دیگر انواع مالج‌ها بیشتر است. هرچند نتایج اورال با کاربرد با دو لایه مالج‌پاشی (دو مرتی مالج) به عنوان تیمار مناسب به نظر نیست شن‌های روان منطقه توصیه می‌گردد.

واژه‌های کلیدی: تربیت شن روان، شیری، مالج رسمی، مواد فرسایشی یافته بادی، مالج‌پاشی، مقاومت مالج رسمی

1. به ترتیب کارشناس ارشد، دانشیار و استاد خاک‌سازی، دانشگاه صنعتی اصفهان
2. استادیار مرکز و آبخیزداری، دانشگاه صنعتی اصفهان

137
مقدمه

فرسایش بادی از مهم‌ترین عوامل تخریب و هدر رفت خاک در مناطق خشک و تبة شنیک به شمار می‌رود (۳ و ۱۱). مهم‌ترین عوامل که در میزان انتقال موارد فرسایش بادی نقش UMهای دارند شامل سرعت باد، خصوصیات ذرات، رطوبت خاک سطحی، پوشش گیاهی، تأثیر ارتفاعات زمین و وجود املاح در خاک است (۳، ۵ و ۶). تاثیر مطالعات انجام شده با استفاده از تولید نبانن داده است که توانایی باد در جدا کردن و انتقال ذرات خاک به ترتیب با توان دوم و هم‌و هم سرعت باد بیشتر دارد (۳). رطوبت خاک از مهم‌ترین عوامل مؤثر در فرسایش بادی است. خاک وقیمی به فرسایش بادی حساس است که سطح خاک بسیار زیاد خاک را مبتنی می‌آورد. فرسایش نمی‌یابد زیرا ذرات خاک را در اثر بادهای جنوبی نشانی از پوسته نازک آب بین ذرات سطحی نمی‌باید (۸). فرسایش بادی به آثار ناهویاری‌های اتفاقی و جهت حساب است و درصد زیربخ سطح خاک بر مقدار فرسایش بادی نشان می‌گذارد. به طوری که مطالعات نشان می‌دهد بر امکانهایی به ارتفاع ۵۰ تا ۱۰ میلی‌متر فرسایش بادی را در یک خاک لومی در مقایسه با خاک همین خاک به سطح صاف، حدود ۹۸ درصد کاهش می‌دهد (۷). طبق نظر آموزش و توجه به افزایش ۵ تا ۱۰ سانتی‌متر مؤثرترین اقدام ناهویاری باید کنترل فرسایش بادی می‌باشد (۷).

وجود نمک‌های با بیشتر کلم در ذرات نی، سرعت آستانه سیال را در ذرت خشک به مقدار قابل توجهی بالا می‌برد. زیرا در نقاط بالای ذرات امام می‌باشد به صورت سیمانی عمل می‌کند. البته تأثیری بوده که در بر روی فرسایش بادی مطالعه شده است. مطالعات لاینر و همکاران نشان داد خاک‌های میر پلیمر، فرسایش بازیک می‌کنند که با خاک‌های غیر شور از خون نبانن می‌دهند. در این تحقیق تأثیر نمک کلرید سدیم در کاهش فرسایش پذیری بیشتر از نمک‌های دیگر مورد
جدول 1. ترکیب مالچ‌های (تیمار) انتخابی

<table>
<thead>
<tr>
<th>ترکیب مالچ</th>
<th>نوع مالچ</th>
<th>شن روان (گرم)</th>
<th>کاه (گرم)</th>
<th>آب (میلی لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td>125</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>125</td>
<td>125</td>
<td>500</td>
</tr>
</tbody>
</table>

تعیین گردید. سپس در خاک از سطح رست یک برنج به عنوان مالچ و یک برنج روان به عنوان بستر انتخاب شد. همگنی عامل‌های رسی از طریق آزمایش‌های اولیه (آزمون و خطا) مقیاسی گردید. مشخص از مالچ رست را در مقداری آب مخلوط نمونه و روی بستر شن روان به وسیله دستگاه مالچ‌پاش مشخص شد. نمونه‌ها به مدت چند روز در محیط دستگاه مالچ‌پاش مشخص شدند و سپس در مقایسه مالچ‌های کنترل، بعضی از مالچ‌های انتخاب شده است. تأثیر تیمار استفاده گردید.

مواد و روش‌ها

انتخاب تیمارهای آزمایشی بسته به نمونه‌های اولیه با خصوصیات مورد نظر نظر به اساس مطالعات قبلی پایه‌گذاری شد. به همین دلیل در جستجوی نمونه‌های اویلیه، از چند نطفه از سطوح رست (دی) در مجاورت شن‌های روان (20 نمونه) نمونه‌گیری شد. همچنین نمونه‌بندی روی پایه‌گذاری کاه و 10 نمونه شن روان از شن‌های شنی واقع در منطقه اردستان و کاشان (نمونه‌بندی انتخابی) شد. تیمارهای آزمایشی تیمار مالچ‌های الف. مالچ‌هایی شامل، توزیع اندازه درات به روش میزان هکتاری از طریق تیتراسیون (اسید و بازا) مواد آلی از طریق سوزاندن، هدایت الکتریکی از طریق قرار و آن از عصاره اشباع به کمک هدایت سنجی، درصد چگالی با مخلوط کردن یک گرم خاک در 200 میلی لیتر آب مختار و به مدت زمانی که گچ آن تا انحلال کامل به همکاری پوستی و نکاتی گچ
برای بهبود بستر، شن و روان را در داخل سنگ‌هایی فلزی به ابعاد 50 سانتی‌متر و عمق 35 سانتی‌متر ریخته و سطح آن کاملاً صاف و یکنواخت گردید. سپس بر روی هر سنگ مالچ‌بافی انجام و اجازه داده شد تا سطح نمونه‌ها در هوا خشک کردن. پس از انجام سایش و تخریب مالچ و بررسی مقدار خیک فرسایش‌پذیره (اختلاف وزن سنگ‌های قبل و بعد از آزمایش) از دستگاه پرتاب کندن سن استفاده شد (شکل 3). هر نمونه برای

شکل 1. ترکیب مالچ‌های انتخابی

شکل 2. بدنه تونل
جدول 2: خصوصیات نمونه‌های اولیه مورد استفاده جهت ترکیب مالج و بستر شن روان

<table>
<thead>
<tr>
<th>محل نمونه برداری</th>
<th>خصوصیات شیمیایی</th>
<th>توزیع اندازه ذرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>زواره*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>019</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>زواره*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>019</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>زواره*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>019</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>

**، نمونه شن روان برداشت شده از این مقطع زواره مورد استفاده جهت ترکیب شن و ترکیب مالج، الدوله خاک رسی برداشت شده از سطوح جله‌های رسی مقطعه زواره جهت ترکیب مالج

گرفته شد. آثار اصلی شامل نوع مالج، ضخامت، شوری و آمار فرعی شامل آثار متقابل آنها می‌باشد. برای مقایسه میانگین‌ها و بررسی آثار اصلی و فرعی، از آزمون مقایسه میانگین‌ها به روش دانک استفاده گردید. تجزیه و تحلیل‌های آماری این طرح به‌کمک نرم‌افزارهای SPSS و SAS انجام شد.

نتایج و بحث

تجزیه و ارزیابی مواد فرسایش پایه از سینه‌ها

در جدول 3 نتایج حاصل از اعمال جریان ساپیش بر روی نمونه‌ها بیشتر دستگاه برای تهیه شن نشان داده شده است. این اعداد نشانگر مقدار متوسط جریان فرسایشی پایه از سینه‌ها بیشتر می‌باشد. مقدار عددی خاص از عامل‌های شوری، نوع مالج و تعداد لایه (میزان مالج پاپیش) در هر مالج می‌باشد. تجزیه خصوصیات نمونه‌های مورد استفاده جهت بستر شن روان و تیتر مالج پاشی در جدول 2 آرات شده است. در نمونه خاک با فاکتور و متنی که به عوامل مالج رسی و یک نمونه از شن روان به‌منظور برای انجام مراحل بعدی آزمایش انتخاب گردید. همان طور که در جدول مشاهده می‌شود، نمودار شیبی به هم اختلاف دارند در صورتی که در بقیه مقدار سدیم با هم برابرند، نشان دهنده اهمیت زیادی دارند در این این موارد شیبی به هم می‌باشد. ولی شن روان علائم این خصوصیات بقیه خصوصیات آن نیز متفاوت است. با توجه به روش کالر، این مدل که از مدل‌های مناسب، طرح کاملاً تصادفی در قلب آزمایش‌های فاکتوریل تشخیص داده شد. در این طرح، شکل نوع مالج، در ضخامت مالج (پلاستیک) و نیز ضخامت تهیه شده ECE (متفاوت مالج) و سه تکرار در نظر ایجاد و بستر شن روان بازیافت باید انجام شود.

141
جدول ۳: میانگین مقدار مواد فرسایش یافته از سیبیا تا تحت عمل سایلی با ذرات در اندازه شن (کیلوگرم بر متر مربع)

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>ECe (ds/m)</th>
<th>شوری</th>
<th>لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>لایه ۱</td>
<td>۸/۸۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>لایه ۲</td>
<td>۱</td>
<td>۲</td>
<td></td>
</tr>
</tbody>
</table>

کردن با تریهباه کربن قابلیت اعمال شده از طرف ذرات شن موجود در جریان باید باشد. به عنوان تاثیر توزیع اندازه ذرات موجود در سطح برای پایداری مالج در سطح خشک بیشتر از مقادیر مقاوت و اکتشاف است. مقایسه میانگین‌های بین دانکن نیز منجر سختی است. با توجه به اینکه اکتشاف معنی‌داری بین میانگین‌های مواد فرسایش یافته در تیمار شوری و نشد و شوری و نشد و ناحیه رس اثر یکسانی را بر داشته است. البته می‌توان عدم اختلاف معنی‌دار در مقادیر مواد فرسایش یافته در تیمار شوری را به مقادیر بالای شوری در هر دو مالج اعمالی نیز ارتباط داد. شاید اگر مالج‌های انرژی از نظر شوری در دو سطح مقاوت بودند (سور و غیرشور) این تیمار نیز معنی‌دار می‌شد.

اثر تعداد ناحیه مالج بر مواد فرسایش یافته

نکته کلی این سیبیا مربوط به شوری در جدول ۳ مشخص می‌کند که مقدار متوسط مواد فرسایش یافته در تیمار مالج بین شوری بالا نسبت به تیمار مالج با شوری پایین افزایش یافته، ولی این افزایش خیلی زیاد نمی‌باشد و در بعضی موارد کاهش نیز دارد. میانگین مقادیر مواد فرسایش یافته مالج مستحکم تحت عمل سایلی به وسیله ذرات در اندازه شن در هر سطح شوری (شامل ۳۴ نمونه) در شکل ۳ ترسیم شده است. این شکل نشان می‌دهد که فیلرهای تهیه تأثیری بر مقدار مواد فرسایش یافته نداشته است. شاید بتوان چنین نتیجه گرفت که اثر مقدار رس در مالج‌های تهیه شده روی چسبندگی ذرات شن بیشتر بیشتر از مقدار اصلاح موجود در مالج مؤثر بوده است. بنابراین تأثیر نمک در تیمارها چندان قابل توجه نبوده و اثر حمایت مواد اثر مقدار رس موجود در تیمارهای اعمالی در اینجا که لایه مالج با پایداری زیاد، بیسیار بیشتر از تأثیر اصلاح در توانتای مالج پیش از مقاپلی.

۱۴۲
جدول ۴. نتایج تجزیه و اریانس مقدار خاک فرسایش پایه از سیتیها تحت عمل سایش با ذرات در اندازه‌های واریانس

<table>
<thead>
<tr>
<th>مقدار</th>
<th>میانگین مربعات</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>معنی تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۰۳</td>
<td>۰/۳۸</td>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
<td>۱</td>
</tr>
<tr>
<td>۲/۰۱</td>
<td>۰/۸۹</td>
<td>۲/۸۹</td>
<td>۲/۸۹</td>
<td>۱</td>
</tr>
<tr>
<td>۲/۸۸</td>
<td>۲/۸۸</td>
<td>۳/۸۸</td>
<td>۳/۸۸</td>
<td>۵</td>
</tr>
<tr>
<td>۲/۷۷</td>
<td>۲/۷۷</td>
<td>۳/۷۷</td>
<td>۳/۷۷</td>
<td>۱</td>
</tr>
<tr>
<td>۲/۷۶</td>
<td>۲/۷۶</td>
<td>۳/۷۶</td>
<td>۳/۷۶</td>
<td>۵</td>
</tr>
<tr>
<td>۲/۷۵</td>
<td>۲/۷۵</td>
<td>۳/۷۵</td>
<td>۳/۷۵</td>
<td>۱</td>
</tr>
<tr>
<td>۲/۷۴</td>
<td>۲/۷۴</td>
<td>۳/۷۴</td>
<td>۳/۷۴</td>
<td>۵</td>
</tr>
<tr>
<td>۲/۷۳</td>
<td>۲/۷۳</td>
<td>۳/۷۳</td>
<td>۳/۷۳</td>
<td>۱</td>
</tr>
</tbody>
</table>

** در سطح ۰/۱ معنی دار است. **

* ECE (78.5 ds/m) ECE (41 ds/m)

** شکل ۳. اثر مقدار مواد فرسایش پایه‌ای تحت عمل سایش با ذرات در اندازه‌های واریانس (P<0/05).

** شکل ۴. تأثیر تعداد لاشه مالچ بر مقدار مواد فرسایش پایه‌ای تحت عمل سایش با ذرات در اندازه‌های واریانس (P<0/01).
شود مقدار رسی که باعث چسبندگی ذرات شن به یکدیگر می‌شود، افزایش می‌یابد. بنابراین باعث اتصال بیشتر و بهتری در میان ذرات به یکدیگر شده، پای‌پای‌داری بیشتر مالج در برای جریان سایشی می‌افزاید. بعبارت دیگر در صورت افزایش تعداد لایه مالج، یک لایه ضخیم در روی سطح شن روان ایجاد شده و مقاومت مالج را در برای برخورد ذرات شن، زیاد و قدرت تخریب سرعت بررسی کند و عمل سایش مواد موجود در جریان باد کاهش می‌یابد. عملی با افزایش تعداد لایه مالج ضخامت مالج افزایش و سطح اکسپوسر بخش ضخامت به عوامل فرسایشی درد شده و کمتر تحت تأثیر قرار می‌گیرند.

اثر نوع مالج بر مقدار مواد فرسایشی باقی

ارتباطی نوید و ترکیب مالج مهمترین عاملی است که می‌تواند تعیین کننده مقاومت مالج در مقابل فرسایشی باشد و در نتیجه انحلال بهترین مالج باشد. شکل 5 میزان مواد فرسایشی باقی می‌باشد را برای اندازه‌گیری تاثیر مالج نشان می‌دهد. بیشترین مقدار فرسایش هنگام استفاده از تیمارهای 5 و 6 دیده شد. کمترین میزان فرسایش هنگامی که کارگیری مالج 1 یا 2 دیده شد. همان طور که اشاره شد، ترکیب مالج یا لاحق مقاومت رس سیل و کاه متقابل مواد یافته باید با روی شیب و سطح‌های کاهه دارای مقاومت رس و سیل بیشتری استند. در لیبل آن که این دراز باعث به هم جدا شدن دست و هنگام بیاک اندازه‌گیری باز می‌شود. یک ناحیه مکملی از یک لایه به دو لایه، بوده و موجب یک میزان مواد فرسایشی باقی باید باشد. است و هنگامی که کارگیری یک لایه به دو لایه مالج، کاهش شوری از ۷۸/۵ به ۴۱ دسی‌گیاه متر تأثیر معنی‌داری در میزان مواد فرسایشی بیانه نداشته است. با توجه به این که بی‌مالج شوری به تنهایی تأثیر معنی‌داری بر روی فرسایش، تعداد اثر مالج را در مقابل فرسایشی مالج و

اثر مقابل شوری و تعداد لایه مالج بر مقدار مواد فرسایشی باقی

شکل 6 اثر مقابل شوری و تعداد لایه مالج بر میزان مواد فرسایشی باقی می‌باشد. در شوری یکسان مخلوط مالج باشند، افزایش مقاومت لایه‌ای مالج از یک لایه به دو لایه موجب کاهش میزان مواد فرسایشی باقی باید باشد. است و هنگامی که کارگیری یک لایه به دو لایه مالج، کاهش شوری از ۷۸/۵ به ۴۱ دسی‌گیاه متر تأثیر معنی‌داری در میزان مواد فرسایشی بیانه نداشته است. با توجه به این که بی‌مالج شوری به تنهایی تأثیر معنی‌داری بر روی فرسایش، تعداد
تأثیر انواع مالی رسمی بر میزان مواد فرسایشی پاته بادی

شکل ۵. اثر نوع مالی بر مقدار مواد فرسایشی پاته بادی تحت عمل سایش با دلتا در اندازه‌گیری

اعداد مربوط به مختصات X عبارتند از تیمارهای اعمالی

شیروی مشخص نیست ولی شاید بنوان تأثیر شوری و ضخامت را ناشی از این دانست که افزایش ضخامت به معنی وجود رس بیشتر در سل است که در نتیجه شوری زیادتر، تأثیر خود را بهتر نشان می‌دهد.

اثر متقابل شوری و نوع مالی (ECo) و نوع مالی بر مقدار مواد فرسایشی

یافته

اثر متقابل شوری و نوع مالی در شکل ۷ ارائه شده است. در استفاده از مالی با شوری ۳۷۵ دسی‌زیمنس بر متر، کمترین مقدار فرسایش پاته‌های هنگام استفاده از مالی ۱ دیده شد که این در آن با مالی‌ها ۳ و ۴ غیر معنی‌دار با سایر مالی‌ها معنی‌دار می‌باشد (P<0.05). به طوری که در این شوری، تیمار ۵ و ۶ بیشترین میزان مواد فرسایشی پاته را در بر داشتند. همچنین با کاهش شوری مالی اعمالی به ۲۱ دسی‌زیمنس بر متر، کمترین میزان فرسایش پاته‌ها به کارگیری تیمار ۱ و بیشترین میزان فرسایش هنگام استفاده از تیمار ۶ می‌باشد. به جز در هنگام استفاده از تیمارهای ۴ و ۶ در سایر موارد افزایش شوری از ۲۰۳
شکل ۶ اثر متقابل هدایت الکتریکی عصاره اشباع مالج با تعداد لايه مالج پایه تحت عمل ساپوش با در اندیزه شن.

شکل ۷ اثر متقابل شوری و نوع مالج بر مقدار مواد فرساپایه بادی تحت عمل ساپوش با در اندیزه شن.

اعداد مربوط به مختصات X عبارات اند از تیمارهای اعمالی.
نگاه گیری
بررسی نتایج به دست آمده در این تحقیق نشان داد که مالیه‌ای رسی در برای جریان با مقدار هستند. اما مزایا که تحت تأثیر بیماران ذرات شن موجود در جریان با فقرات گیرند، فرسایش

منابع مورد استفاده
1. ابراهیمی، ج. 1380. مطالعه ميدانی- آزمایشگاهی نقش فازوردهی یوک اورند تاثیر و استحکام بخشی خشته مخ و انگید. کاهیل(مطالعه موردی، فیزیولوژی). پایان‌نامه کارشناسی ارشد ملی‌تاریخی، دانشکده هنر دانشگاه اصفهان.
2. احمدی، چ. 1377. زبان‌ریزی کاربردی. جلد دوم: بیماران- فرسایش بادی، انتشارات دانشگاه تهران.
3. رفاهی، ح. ق. 1378. فرسایش بادی و کتازیل آن. انتشارات دانشگاه تهران.
4. عابدی کوهی‌پی، ج. 1380. کاربرد مواد زاید در پوشش بینی کالالهای انتقال آب. کنفرانس بین‌المللی سازه‌های هیدرولوکی.

تأثیر انواع مالیه‌ای بر میزان فرسایش بافتی بادی
دانشکده عمران، دانشگاه شهید باهنر کرمان

5. کریم زاده، ح. م. 1381. چگونگی تکوین و تکامل خاک‌ها در لندفرم‌های مختلف و منشا پایه رسوبات فرسایش یافته بادی در منطقه شرق اصفهان. پایان نامه دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

6. میقاتی، اردکانی، س. م. 1381. تأثیر برخی خصوصیات خاک سطحی بر قابلیت تشکیل سلسله و مقاومت آن در برابر فرسایش بادی. پایان نامه کارشناسی ارشد مرعی و آبخیداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان.

