مطالعه سایش در طول تیغه برخ خاک ورژ برگردان دار بر حسب مسافت

مهدی کسرایی، علیرضا صبوری، سعید مینایی و مهدی همای

چکیده
سایش مهمترین مشکل تیغه‌های برخ خاک ورژ برگردان دار است. ابتدا تیغه برخ چون عمل برخ خاک را انجام می‌دهد. پیشرفت سایش می‌شود و مقدار سایش آن بر عملکرد خاک ورژ تأثیری زیاد دارد. هدف این پژوهش مطالعه سایش در طول تیغه برخ خاک ورژ برگردان دار بر حسب مسافت کاردک زده است. این این تصور مقدار سایش نمونه‌ها استراتژیکی است که در طول تیغه‌های برخ یک خاک ورژ چهار خیز تیغه سواری نصب شده بودند در پنج مسافت 50 کیلومتری، در خاک لوم رسی سری با رطوبت 13 ± 1 درصد، تعبیه شد. نتایج نشان داد که برغم تفاوت در مقدار سایش تیغه‌ها اخلاطی مغناطیسی سایش آنها وجود نداشت. با افتراق مسافت، مقدار کشته کاهش یافت که نشان دهنده کارسختی (Work Hardening) تدوین شده نشان داد که مقدار سایش در طول هر تیغه را می‌توان به وسیله تابع توانی با توان 0.75 مسافت پیموده شده تخمین زد و سایش طول تیغه‌ها بر حسب فاصله از نوک تا 15 درصد افزایش یافته و سایش طولی ابتدا تیغه مربوط به 0.18 فاصله از نوک تیغه بود.

واژه‌های کلیدی: سایش، تیغه برخ، خاک ورژ برگردان دار، مسافت

مقدمه
 عمر و سوال خاک ورژ بر حسب مقاومت آنها به سایش پیش‌بینی می‌شود (2). سایش، عامل مهم کننده عمر و کیفیت عملکرد وسیله خاک ورژ است (3). خاک ورژ برگردان دار، رایج ترین وسیله خاک ورژ است. به هنگام کار این خاک ورژ، تیغه برخ مانند بک گوجه در خاک نفوذ و حرکت می‌کند. مقاومت خاک در برای نفوذ و حرکت، سبب می‌شود که تیغه باعث تغییر به ویژه به و

1. مریم مطالبی‌یاری، دانشکده کشاورزی، دانشگاه شیراز
2. استادیار مهندسی مواد دانشکده مهندسی مواد، دانشگاه تربیت مدرس
3. استادیار مهندسی مواد دانشکده کشاورزی، دانشگاه تربیت مدرس
4. استادیار دانشکده کشاورزی، دانشگاه تربیت مدرس
می‌کند (2 و 3) و عمق شیم کاوشمی می‌باید. کاوش عمق
شیم، سبب کاهش درد ریشه و تولید محصول خواهد شد.
پژوهش‌های نشان داده است که برای نگهداری خاک ورز در
موقعیت قبل از کنک شدن تیغه، نیاز به افزایش 30 درصد
نیروی کشش می‌باشد (2). افزایش نیروی کشش موجب
افزایش مصرف سوخت می‌شود.

ساپیسی که خاک در تیغه‌های برخ ایجاد می‌کند، ساپیس
خرسانه (Abrasive Wear) است (11، 13). طبق تعريف،
ساپیس خرسانه هنگامی رخ می‌دهد که از دو جسم در
درآمدهای نسبت سختی برانش (8) پژوهش‌ها نشان داده است,
چنانچه نسبت سختی ماده تحت سختی سخت‌مانده
کمتر از 1/85 باید، حجم ساپیس زیاد است. هنگامی که این
نسبت بیش از 1/85 شود، حجم ساپیس کاوشمی می‌باشد و
زمانی ساپیس صفر خواهد شد که سختی ماده تحت سختی
2 تا 3 برابر سختی ساخته شد (5). به توجه به آنکه
خاکی در ذرات سخت از جمله شن‌کوارتر (سیلیس) با سختی
7 Mohs (حدود 40 و 250) می‌باشد، زمانی ساپیس ابراز
خاکور ذرات خواهد شد که سختی سختانه آن 2 تا 3 برابر
سختی سیلیس شود که به طور معمول امکان‌پذیر نخواهد
ورز تغییر می‌گیرد. زیرا سختی فولاتورها
1200 تا 2000 MPA (حدود 2000 - 4000) بود. زیرا سختی
فاکتورها 10 000
ورز تحت ضربه قرار می‌گیرند، از موارد به سختی خیلی بالا
به دلیل خاصیت شکننده آنها نمی‌توان استفاده کرد.

اکثر موارد استفاده در طول تیغه برخ
خاک ورز بی‌گردان دار بود تا تخمین مناسبی از ساپیس به
می‌شود، که وظیفه بیش خاک بارد. به‌وسیله

مواد و روش‌ها
این پژوهش در زمین‌های رضایی دانشکده کشاورزی دانشگاه
شیراز واقع در منطقه باغ‌های 17 کیلومتری شمال شهر
شیراز انجام شد. بافت خاک لوم رسی سیلیتی (11٪) تن، 54٪ سیلت

Z_c = \frac{a}{s}^{1/5}

که در آن، زاپاس طولی (mm) ضریبی که به نسبت به
ساپیس پیموده شده و S می‌باشد. این رابطه در طول 74 کیلومتر
در آزمایشی که زانگ و کوشکاها (14) در طول 74 کیلومتر
با سرعت 7.4 km/h در یک انباره خاک‌لایه لشکر
رطوبت 14-11 درصد انجام دادند، نتیجه گرفتند که: رابطه
ساپیس تیغه‌های دایر پوشش‌های متقابل بر حسب ساختار
راست‌الوان است.

هدف این پژوهش مطالعه ساپیس در طول تیغه برخ
خاک ورز بی‌گردان دار بود تا تخمین مناسبی از ساپیس به
می‌شود، که وظیفه بیش خاک بارد. به‌وسیله

شامل

1385
مداله سایش در طول تغییر برش خاک ورز برگدازنده برحسب مافت

شکل 1. ابعاد نمونه (mm)

شکل 2. ابعاد طوفان (mm)

میلی‌متر در مقابل یک چرخ نوسنگی به قطر ۱۸۷ میلی‌متر و ضخامت ۱۲ میلی‌متر و تیوی ۲۲۲ نیون قرار می‌گیرد. چرخ نوسنگی شامل یک دیسک‌ فولاذی است که به طریقه آن قرار دارد. هر نمونه در سه مرحله با چرخ نوسنگی به طرف تبیین با سختی امسی ۳۰، ۷۰ و ۱۰۰ دور و سرعت ۲۲۵ دور در دقیقه می‌چرخد. نمونه پیش و پس از هر مرحله، تعیب و کاهش جرم آن با دقت ۱۰/۰ میلی‌گرم خواهد شد (۱۰۰). هر نمونه پس از جریان گرم و تعیب کردن، با تراویزی با دقت ۱/۰۱ گرم (شرکت سارتوریوس) آلمان مدل آلت Sartorius نوزن شد. به منظور نصب نمونه‌ها بر روی تیغه‌های نمونه در نتیجه به پایه‌های چهار حفرات داده شد. استقرار نمونه به طرف یک نقطه به طرف محور به جای گذاشته شد. این سطح مقطع بزرگتر بر روی تیغه و از سطح مقطع کوچکتر، ۱/۷۵ میلی‌متر از سطح مقطع بیرون قرار می‌گرفت. بر روی هر تیغه ۴ نمونه به ابعاد هندسی شکل ۳ سختی گردید. عملیات شکم به طور معمول در عمق ۱۵-۲۵ سانتی‌متر و سرعت ۴ برابر ۵ کیلومتر بر ساعت انجام شد. در شکل ۴ میلی‌متری عمق و تغییر نمونه‌ها بر روی یک تیغه در دو مرحله استقرار نمونه‌ها به سطح نشان داده شده است. بر اساس کیلومتری‌‌شمار تراکتور، میزان به طرف نوشته‌های ۱۵۰، ۱۰۰، ۲۰۰ و ۲۵۰ کیلومتر، محل جریان مغز و نیش داده و نمونه‌های سختی تغییر جدایگانه خارج و پس از

و ۳۵ رت. رطوبت خاک ۱۲ تا ۱۵ درصد و حرارت ویژه ظاهری خاک ۲/۳۳ گرم سانتی‌متر مکعب بود. از یک خاک ورز برگدازنده در چهار خیمه سوار جانگید و تراکتور جانگید ۲۴۰۰ کیلومتر و در مسافت تقریبی ۵۰ هکتار در بهار ۱۳۸۲ انجام شد. برای انجام آزمایش، از نمونه‌های استوانه‌ای چهار تیغه و دو تیغه به دو رنگ انجام نامی به نسبت ۱/۷۵ و ۵/۶۷، انتظار به دست آمد. نمونه‌ها از یک فلز ۱۲۵ ساین و چگالی ۵/۹۷ بنا گردید. نمونه به سایز مکعب نهی شد. نرم کاری شیمیایی این فولاد به دستگاه کامپیوتر تعیین شد و بررسی درصد وزنی (۲۴/۴ کربن، ۲/۱ مسیم، ۲/۱ کوگرد، ۲/۱ فسفر و ۱/۴ گیاهی) بود. نمونه‌ها طبق ابعادی که در شکل ۱ ملاحظه می‌شود تراشکاری و سپس عملیات حرارتی شدند. عملیات حرارتی به منظور افزایش مقاومت سایشی و ضریب نمونه‌ها در محاسبه ورز برگدازنده داده شدند. دو دمای اول و دوم می‌باشد. در مسیر دامنه این نامی به دو مرحله، برای این سرویس برگدازنده، در مسیر اول و دوم، دو دمای این سرویس برگدازنده داده شدند. نظر نگه‌داری و سپس در دو مسیر محیط سرد برگدازنده. سختی نمونه‌ها توسط دستگاه سختی سنج (شرکت ول پرت آلمان مدل دیانسور ۲۰۰ اندازه‌گیری و برای به ۲۲۹ ویکرز نوین گردید (۱۲). مقدار آبین این فلز طبق استاندارد (ASTM – G105) توسط نیک دستگاه آزمایش (ASTM – G105) نیک شد. سایش هر سانتی‌متر طبق (اشترک و بای شن سیلس (کوارتی) با دانه‌بندی ۲۱۲-۳۰۰ میکرو نمایش که با آب م فقط مخلوط می‌گردد. نمونه به ابعاد ۱۰×۲۶×۵ اعمال
جدول 1 مجموع کاهش جرم (سایش) نمونه‌های هر تیغه نسبت به وزن اولیه

<table>
<thead>
<tr>
<th>سایش نمونه‌های تیغه (گرم)</th>
<th>صفر</th>
<th>دوم</th>
<th>اول</th>
<th>میلی‌گرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>چهارم</td>
<td>0/01</td>
<td>9/56</td>
<td>11/22</td>
<td>50</td>
</tr>
<tr>
<td>15/12</td>
<td>17/81</td>
<td>20/32</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>19/55</td>
<td>26/27</td>
<td>27/74</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>22/11</td>
<td>27/32</td>
<td>31/85</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>25/16</td>
<td>32/59</td>
<td>33/17</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

تمیزش دندان، با یکدیگر توزین گردیدند. میزان سایش، مجموع جرم کامیاب شده از 6 نمونه هر تیغه بود که از تفاصل وزن در هر مرحله، از وزن ابتدا محسوب شد. پس از توزین، نمونه‌ها دوباره درون طوفان قرار گرفتند و در جای خود به قونه‌ای مستقر شدند که در همان جهت قابل خلاک بر روی آنها حرکت می‌نمود.

در توزین آخر به مظهر بررسی چگونگی سایش طولی ابتدای تیغه برای هر نمونه به طور جداگانه وزن شد و با توجه
سایل نمونه‌ها به وزن اولیه مقدار کاهش جرم آن نمونه‌ها پس از ۲۵۰ کیلوگرم کارکرد نشانگر گردیده. در طول آزمایش محل قرار گرفتن هر نمونه ثابت بود، البته اختلاف مقدار کاهش جرم نمونه‌ها نشان دهنده تفاوت مقادیر سایل بر حسب موقعیت فرآیندی آنها بود. به روش تجزیه واریانس حاضر از طرح کامل تصادفی و آزمون دانکس و ب در نظر گرفتن هر تغیه به عنوان یک تیمار تکرار در موضوع مطالعه شد. تأثیر ترتیب تغیه روز و روز بر سایل طولی تغیه برش (جدول ۲) و اثر فاصله از نوک تغیه بر سایل طولی تغیه برش (جدول ۳) تاثیر نداشت.

عنوان و بحث
مقدار سایل یا جرم کاشته شده از نمونه‌های هر تغیه پس از مسافت‌های ۵۰ تا ۲۵۰ کیلومتر در جدول ۱ نشان داده شده
شکل 7 رابطه کلی سایش نمونه‌های مستقر بر روی تیغه‌ها بر حسب مسافت

جدول 3 نتایج نظری و رابطه بررسی اثر فاصله از نوک تیغه بر سایش اندی تیغه بر شش

<table>
<thead>
<tr>
<th>مسافت</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاصله</td>
<td>14/19</td>
<td>683/29</td>
<td>486/10</td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td>18</td>
<td>79/79</td>
<td>133/22</td>
</tr>
<tr>
<td>کل</td>
<td>23</td>
<td>474/92</td>
<td>169/71</td>
</tr>
</tbody>
</table>

* مقدار مربوط به طول احتمال 5 درصد (شکل 6) به نحوی رسیده که تغییر در بیش‌ترین تعداد جهانی که رابطه سایش در طول تیغه کار کرده و از گردان دار نیز با توان 67/5 می‌باشد. البته نتیجه گرفته که رابطه سایش را در طول تیغه برای خاک آهنگ سایش نیز یافت که دو عامل دستی پردازش داشته در این آزمایش حداکثر سختی سپس از 150 کیلوگرم حاصل شد.

برای تعیین تابع سایش در طول تیغه بررسی می‌باشد طول تیغه بر هر سایش مناسب با استفاده از روابط رگرسیونی تابع توانی زیر بررسی می‌باشد (شکل 7):

\[W = L^{1/50} \]

که در آن \[W \] مقدار سایش (g) و \[L \] مسافت پیموده شده (km) می‌باشد.
جدول 2: مقدار سایش نمونه‌های هر نیمه (گرم) در اثر 250 کیلومتر کاری‌کردن، بر حسب فاصله از نوک تیغه

<table>
<thead>
<tr>
<th>فاصله از نوک تیغه (mm)</th>
<th>تغییر نامیل</th>
<th>تغییر سوم</th>
<th>تغییر دوم</th>
<th>تغییر اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>اول</td>
<td>25</td>
<td>12/41</td>
<td>6/64</td>
<td>16/71</td>
</tr>
<tr>
<td>دوم</td>
<td>100</td>
<td>8/49</td>
<td>15/99</td>
<td>1/86</td>
</tr>
<tr>
<td>سوم</td>
<td>300</td>
<td>2/17</td>
<td>2/17</td>
<td>5/38</td>
</tr>
<tr>
<td>اول</td>
<td>12/41</td>
<td>6/64</td>
<td>16/71</td>
<td>1/86</td>
</tr>
<tr>
<td>دوم</td>
<td>8/49</td>
<td>15/99</td>
<td>1/86</td>
<td>5/38</td>
</tr>
<tr>
<td>سوم</td>
<td>12/41</td>
<td>6/64</td>
<td>1/86</td>
<td>5/38</td>
</tr>
<tr>
<td>اول</td>
<td>6/64</td>
<td>15/99</td>
<td>8/49</td>
<td>5/38</td>
</tr>
<tr>
<td>دوم</td>
<td>15/99</td>
<td>1/86</td>
<td>8/49</td>
<td>2/17</td>
</tr>
<tr>
<td>سوم</td>
<td>15/99</td>
<td>1/86</td>
<td>8/49</td>
<td>2/17</td>
</tr>
<tr>
<td>اول</td>
<td>8/49</td>
<td>15/99</td>
<td>1/86</td>
<td>5/38</td>
</tr>
<tr>
<td>دوم</td>
<td>15/99</td>
<td>1/86</td>
<td>5/38</td>
<td>2/17</td>
</tr>
<tr>
<td>سوم</td>
<td>15/99</td>
<td>1/86</td>
<td>5/38</td>
<td>2/17</td>
</tr>
<tr>
<td>اول</td>
<td>1/86</td>
<td>5/38</td>
<td>2/17</td>
<td>5/38</td>
</tr>
<tr>
<td>دوم</td>
<td>5/38</td>
<td>2/17</td>
<td>5/38</td>
<td>2/17</td>
</tr>
<tr>
<td>سوم</td>
<td>5/38</td>
<td>2/17</td>
<td>5/38</td>
<td>2/17</td>
</tr>
<tr>
<td>اول</td>
<td>2/17</td>
<td>5/38</td>
<td>2/17</td>
<td>5/38</td>
</tr>
<tr>
<td>دوم</td>
<td>5/38</td>
<td>2/17</td>
<td>5/38</td>
<td>2/17</td>
</tr>
<tr>
<td>سوم</td>
<td>5/38</td>
<td>2/17</td>
<td>5/38</td>
<td>2/17</td>
</tr>
</tbody>
</table>

توجه: حروف غیر پیکسی نشان دهنده اختلاف معنی‌دار در آزمون دانکن در سطح احتمال 5 درصد است.
سهیل ۸ رابطه سایش در ابتدا تیغه برخ و فاصله از نوک تیغه به مقداری زیاد کاسته می‌شود. قبل ذکر است که باین روش، غیر یک‌نواختی سایش در طول تیغه کاهش می‌یابد و تیغه می‌تواند در مدت زمان بیشتری در تمام طول خاک را بر شده. همچنین چون طور معمول فولادهای مقاوم به سایش سختی زیادی دارند و در برخی ضعیف می‌باشند، اگر تیغه از فولاد مقاوم به سایش تهی شود، آمکان شکست آن بر اثر ضرره‌ی ناشی از برخورد با سنگ، ریشه درختان و غیره وجود دارد، ولی باین روش، می‌توان از فولاد مقاوم به ضرره‌ی (فولادهای معمولی که طور نسبی قیمت مناسب هم دارند) استفاده کرد و تیگه سطح قسمتی را که تحت سایش شدید قرار می‌گیرد، به ضخامت ۲ تا ۳ میلی‌متر سخت کاری موضعی نمود تا مقاوم به سایش شود. سخت کاری موضعی را با روش‌های مختلفی از جمله: جوشکاری با سیم جوش مناسب (مقاوم به سایش)، گرم کردن و سریع سرد کردن (Quenching)، یکتئ‌سختی تیغه (Case hardening) و آهنگرانی (Forging) می‌توان انجام داد.

نتیجه‌گیری

1. علت احتمالی سایش تیغه‌ها در آزمون دانکن در سطح احتمال ۰/۵ است.