اصلاح رطوبت تعادلی شلوک برنج (سپیدرود) برای شبه سازی خشک کردن
توده بستر نازک

شاهین رفیعی

چکیده
خشک کردن سریع می‌تواند تکه‌های داخلی در دانه ایجاد کند که این تکه‌ها زیمی را برای شکسته شدن دانه در طول عملیات تبدیل مساعد می‌کند. فرآیند خشک کردن باید کنترل شده باشد. این مسئله نیاز به شرح دقیق مکانیزم خشک کردن دارد. رطوبت تعادلی توده یکی از خصوصیاتی است که به‌طور مستقیم بر پیدایه خشک شدن محصول در داخل توده اصلی مشارکت دارد. اصلاح مقدار رطوبت تعادلی با افزایش دقت مدل‌سازی، منجر به بهبود سازی عملیات خشک کردن محصولات می‌گردد. حالا فوق به ویژه برای سپیدرود که به عنوان کامپوترا به طور خودکار کنترل می‌شود، حاصل اهمیت می‌باشد. در این مقاله مدل‌سازی انتقال حرارت و جرم به صورت هم‌زمان با فرض متقابل بودن دانه، به روش اجزای محدود برای رطوبت تعادلی مختلف (از 1/5 تا 1/3) درصد برای خشک کردن، رطوبت اولیه توده 23/10 درصد (بر پایه خشک) و دمای هوا 20 درجه سانتی‌گراد انتخاب شده است. برای تایید صحت مدل‌سازی، انتقال حرارت و جرم به صورت هم‌زمان با فرض متقابل بودن دانه مورد بررسی قرار گرفته است. درصد برای خشک کردن برای توده بستر نازک شلوک برنج سپیدرود به وسیله خشک کن آزمایشگاهی خشک شد. در طول مدت خشک کردن، وزن توده شلوکس در زمان مختلف اندازه‌گیری شد و با استفاده از نظریه حascal شده، رطوبت شلوکس محاسبه گردید. مقدار میزانگی در صورت موارد خطای برای رطوبت تعادلی 1/5 و 1/3 درصد (بر پایه خشک) به ترتیب 1/250 و 1/1000 تقریبی در صورت خطای مدل‌سازی تعادلی توده 21/12 درصد (بر پایه خشک) بهترین نتیجه را به دست داد.

واژه‌های کلیدی: دانه شلوک، خشک کردن، روش اجزای محدود، شبه سازی، انتقال حرارت و رطوبت تعادلی

مقدمه
به‌طور عمومی، روش‌های شبه‌سازی برای دستیابی به دقت بهتر در تخمین پیش‌دهی‌های طبیعی یکی از مباحث جدی در مهندسی می‌باشد. بدون شک یکی از ابزارهای متداول که اکنون جای خود را در اثر عرصه‌های مهندسی به خوبی باز نموده، روش اجزای محدود می‌باشد. از عوامل مهم تأثیرگذار در فرآیند مدل‌سازی ضرایب و پارامترهای تعادلات حاکم بر مساله منسوخ نظر می‌باشد. رطوبت تعادلی بین دانه و هوای خشک کننده یکی از

1. استنادی مکانیک مالیسی‌های کشاورزی، دانشکده کشاورزی، دانشگاه تهران

175
بناهی و همکاران در سال 1998 گزارش دادند که برای
افزایش دقت شیب سازی خشک شدن یک فرمی تبیین به
اندازه‌گیری دقیق فرایند خشک شدن بستر نازک و تعیین
آن به تدریس عمیق می‌باشد و اندادگیری دقیق ضرایب
انقراض جرم و خصوصیاتی تعادلی تجربه برای مدل
سازی نورد است.
(18) ه والتون و همکاران نشان دادند که ضریب انتشار رطوبت
در دانه‌ای با یک شکل هندسی را نمی‌توان برای شکل
هدسی دیگر از همان داده استفاده کرد.

توی در سال 1983 برای بررسی مختلف خشک شدن
رطوبت دما و توزیع فشار در یک ماده مخلوط مولتیه گیر
نمونه تحقیقاتی را انجام داد و نتیجه گرفت که برای مواد
سازی نورد بافت محصولات کشاورزی مکانیزم خشک
کردن از چندین گزینه برخوردار است. علت این امر
ساختارهای ناهماهنگ مواد است. محصولات کشاورزی در اثر
افزایش رطوبت متفاوت می‌شوند. پس‌ناهید که کردن در منطقه
تغییرات فیزیکی و شیمیایی محصولات کشاورزی در حین
فرایند کاهش رطوبت در اثر خشک کردن تحقیقات گسترش
انجام گردید (17).

باموگوشی و موجوددر آزمایش‌هایی با خشک کردن پستر
نام دنبال به‌طوری که دارد در جهت حرارت‌های اولیه
متفاوت انجام دادند و با استفاده از روش جزئی محدود، معاوضه
انتشار رطوبت در برنج قهوه‌ای را به شیب سازی دانه برنج به
شکل یک کره همگن حل کردند. آنالیز منحنی‌های کاهش
رطوبت در طی خشک کردن به دست آمده از مدل‌های ترمودر
رای با داده‌های آزمایش‌گاهی مقایسه کرسیدن (19).

سازارک و همکارانش به منظور مقایسه انتشار رطوبت در
اندورسپرم، بسوس و پوسته برنج، خشک شدن شلوک را با
روش جزئی محدود شیب سازی خشک کردند و نتیجه گرفتند که
نتیجه رطوبت به ترتیب در اندورسپرم، بسوس و پوسته برنج
کاهش می‌یابد به طوری که با توجه به فشار قرار
نداده بودند (16).
مواد و روش‌ها

توضیح مقدمه

معادله 1 معادله حاکم انتقال جرم بر اساس مدل پیوسته را بیان می‌کند.

\[
\frac{\partial W}{\partial \tau} = \text{div} (D(r,z,t) \nabla W(r,z,t))
\]

\[1\]

\(D(r,z,t) \) ضریب انتشار رطوبت در مختصات \((r,z)\) و زمان \(t\) (متر مکعب در ثانیه).

\(W(r,z,t) \) رطوبت در مختصات \((r,z)\) و زمان \(t\) (متر مکعب در ثانیه).

\(W(r,t) = W_e, W_{o} = W_e \) شرط اولیه و مرزی انتقال جرم.

\(T(r,t) = T_{eq}, T_{o} = T_{eq} \) شرط اولیه و مرزی انتقال حرارت.

که به شرط رтелیت مکانیک و رطوبت اولیه دانه \(W_e \) و \(W_o \) می‌باشد.

برای استخراج معادله سیستم از معادله حاکم انتقال جرم از روش گالرینک (Galerkin method) استفاده شد. بدین معنی نتیجه نهایی و شرایط بایست و بود.

\((K_w + \frac{C_w}{\rho} W_{n}^{\alpha} + \frac{C_w}{\rho} W^{\alpha} + F_w) \) آزادسازی معادله به دست می‌آید.

\[2\]

\(K_w \) ضریب انتقال حرارت پایه، \(C_w \) و \(\rho \) مقدار رطوبت و الکتریسیته، \(F_w \) مقدار رطوبت و پر ثانیه.

برای رسیدن به شرایط زمانی، مدل سیستم انتقال حرارت و رطوبت در دیواره، شرایط اولیه و مرزی را می‌تواند به دست آورد.

\[3\]

\(F_w = \frac{\gamma \eta n u h_{r} r}{\bar{r}} \) معادله گرانش رطوبت و پر ثانیه.

\(\gamma \) ضریب انتقال حرارت، \(\eta \) و \(n \) تریبون مناسب، \(u \) سرعت \(h_{r} \) و \(r \) میزان نسبت داده‌ها.

در این تحقیق برای شیب سازی دقت تر شکل شدن شلوک رطوبیت تعادلی که یکی از پارامترهای مهم در مدل سازی انتقال جرم می‌باشد اصلاح شد. برای مثال رطوبت دانه شلوک واریه سپیدرود در طی شکل شدن به روش تجريبی و تعیینی به دست آمد. سپس مدل عدیدی برای مقایسه مختلف رطوبیت تعادلی حل شده و مقدار مجذور میانگین مربعات خطی و رطوبیت مبدله در احراز نسبی داده‌هاي آزمایشگاهی و سیستمی محاسبه گردید و بررسی آن بهترین رطوبیت تعادلی پیشنهاد شد.
دانشمندی به دست آمده از دو شاخص ریشه متوسط مربعات خطای داده‌ها (Root Mean Square Error) (RMSE) و میان‌ورد میان‌گرایان انحراف نسبی (P) (The Mean relative deviation modulus) از تابع توزیع مدل شبیه‌سازی شده و مدل حاصل از داده‌های آزمایشگاهی استفاده می‌گردند:

\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (W_{\text{exp},i} - W_{\text{pre},i})^2} \quad [\text{(1)}]
\]

\[
P = \frac{\sum_{j=1}^{n} W_{\text{exp},j} - W_{\text{pre},j}}{W_{\text{exp},j}} \quad [\text{(2)}]
\]

روش انجم آزمایش
مواد و مواد مورد استفاده در این تحقیق خشک کن آزمایشگاهی با سانتریپوز (حل فاکتوریل در دقیقه). شاراکل و ترازوی و دمای دستگاه هوا در حدود 420 درجه سانتی‌گراد و دقت ± 5 درجه سانتی‌گراد دیجیتالی با حساسیت 1/100 کرم و ماه آزماشاش 925 (رقم سبد‌سازی) بوده است. دمای خشک کن به وسیله ترمومترات نسبت نگه داشته می‌شود.

به مدت صحیح بررسی مدل شبیه‌سازی شده محتمل خشک کن شدن دانه‌های ترکیبات زبان فرتنر دریا به شکل شبکه‌ای پایه 250 گرم نوشته شده و در تناوب معادله 4 حالت در سیستم با توجه به معادله (Tair = 21°C) برای گرم زمانی متوسط رطوبت دانه شلوک در زمان‌های مختلف خشک کن دانه به دست می‌آید:

\[
V(t) = \int_{0}^{t} W(r, z, t) \, dz \quad [\text{(3)}]
\]

که در آن W(t) متوسط رطوبت دانه در زمان t دقیقه پس از شروع خشک کردن می‌باشد.

نرخ خشک کن (Drying Rate)
در خشک کن (Drying Rate)

\[
\text{DR} = \frac{W_{t+\delta t} - W_{t}}{\delta t} \quad [\text{(5)}]
\]

مقدار متوسط دانه در و با تغییر رطوبت تعادلی در سطح خشک
برای هر مقدار رطوبت تعادلی دانه‌های شبیه‌سازی خشک

178
جدول 1. مقادیر ورودی‌های لازم برای حل سالن

<table>
<thead>
<tr>
<th>مقادیر ورودی برنامه</th>
<th>عنوان ورودی برنامه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب انتشار رطوبت دانه</td>
<td>87 درصد</td>
</tr>
<tr>
<td>ضریب انتقال جایی جرم</td>
<td>29 درصد</td>
</tr>
<tr>
<td>قطر بزرگ بیضی</td>
<td>دماه واحی</td>
</tr>
<tr>
<td>قطر کوچک بیضی</td>
<td>رطوبت اولیه دانه شلوک</td>
</tr>
<tr>
<td>سرعت عامل خشک کننده</td>
<td>دماه عامل خشک کننده</td>
</tr>
</tbody>
</table>

جداوی می‌شود. گردابان رطوبتی و حرارتی هواپیمایی که از دیگرین است. جردی رطوبت دانه و باعث افزایش دمای از دیگرین است. جردی رطوبت دانه و باعث افزایش دمای

های منحنی شدن داده‌های آزمایشگاهی به دست آمده که نتایج آن در جدول 2 اورده شده است. مقادیر RMSE برای رطوبت RMSE 1/5 و 01/5 درصد (بر اساس خشک) به ترتیب بیشتر و کمترین مقادیر خطا را داشته که برابر با 01/5 و 0091 و مقدار t به ترتیب برای 12/9 و 13/24 بود.

هنگامی داده‌های مدیا داده‌های آزمایشگاهی بیش از 93/ است. اگرین و همکاران نیز از شاخص RMSE سنجد میزان نتیجه داده‌های شیپسازی شده با داده‌های تجربی استفاده کردند و نتایج خود را به داده‌های تجربی را به دست آورده (2).

منحنی خشک شدن داده‌های آزمایشگاهی و داده‌های حاصل از مدل‌های شیپسازی با رطوبت تعادلی متناف و شلوک در شکل 2 نشان داده است. بیان گونه که از شکل مشخص است روند تغییرات مدل‌های با رطوبت تعادلی شلوک 11 15 1/5 و 12 درصد (بر اساس خشک) زردیک به و برای رطوبت تعادلی 8/5 و 0/8 درصد نسبت دور از داده‌های آزمایشگاهی می‌باشد. مطلق با شکل هرچه رطوبت تعادلی افزایش یابد شیپ منحنی خشک شدن کاهش می‌یابد. علت این امر را می‌توان به وسیله میزان 4 و 5 توضیح داد که هر چه رطوبت تعادلی (W) افزایش یابد ظرفیت بار عدد ذکر چرخ افزایش می‌یابد که در نهایت کاهش رطوبت شیپ سازی شده در کامه‌های بعدی (W") (خشک شدن کند می‌شود.

با توجه به جدول 2 و شکل 1 رطوبت تعادلی 11/5 درصد
جدول 2: مقدار دقت و همبستگی داده‌های آزمایشگاهی با مدل‌های اصلاح‌یافته

<table>
<thead>
<tr>
<th>ضریب همبستگی</th>
<th>P</th>
<th>RMSE</th>
<th>رطوبت تعادلی توده بستر نازک (درصد، بر پایه خشک) (d.b.)</th>
<th>شاخص (سبیدروم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93256</td>
<td>5/129</td>
<td>0/125</td>
<td>7/5</td>
<td>1</td>
</tr>
<tr>
<td>0.93256</td>
<td>2/818</td>
<td>0/209</td>
<td>8/0</td>
<td>2</td>
</tr>
<tr>
<td>0.93256</td>
<td>4/167</td>
<td>0/288</td>
<td>8/5</td>
<td>3</td>
</tr>
<tr>
<td>0.93256</td>
<td>3/502</td>
<td>0/230</td>
<td>9/0</td>
<td>4</td>
</tr>
<tr>
<td>0.93256</td>
<td>2/844</td>
<td>0/194</td>
<td>9/5</td>
<td>5</td>
</tr>
<tr>
<td>0.93256</td>
<td>2/187</td>
<td>0/159</td>
<td>10/0</td>
<td>6</td>
</tr>
<tr>
<td>0.93256</td>
<td>1/877</td>
<td>0/128</td>
<td>10/5</td>
<td>7</td>
</tr>
<tr>
<td>0.93256</td>
<td>1/538</td>
<td>0/104</td>
<td>11/0</td>
<td>8</td>
</tr>
<tr>
<td>0.93256</td>
<td>1/394</td>
<td>0/91</td>
<td>11/5</td>
<td>9</td>
</tr>
<tr>
<td>0.93256</td>
<td>1/379</td>
<td>0/96</td>
<td>12/0</td>
<td>10</td>
</tr>
</tbody>
</table>

شکل 2: مقایسه داده‌های آزمایشگاهی با مدل‌های خشک توده بستر نازک برای رطوبت تعادلی مختلف

\[\text{دامه‌های آزمایشگاهی} \quad \text{Me}=0.07764 \]
\[\text{Me}=0.085 \quad \text{Me}=0.095 \]
\[\text{Me}=0.105 \quad \text{me}=0.11 \]
\[\text{Me}=0.115 \quad \text{Me}=0.12 \]
بای شیب‌سازی روتیت انتخاب شد. مدل‌های خشک شدن بر اساس روتیت تعدالی ۱۱/۵ درصد تا شدت دیقیه اول خشک کردن داده‌های شیب‌سازی را بیشتر از داده‌های آزمایشگاهی تخمین زده و سپس کمتر پیش بینی کرده است. با توجه دقت بسیار خوب مدل شیب‌سازی شده با روطیت تعدالی اصلاحی، منحنی خشک شدن شلوک رکم سپید رود را می‌توان با دقت خوبی پیش بینی نمود و گردیدان و نش روتیت وارد بر دانه شلوک را در طی خشک شدن شیب‌سازی نمود.

با قرار دادن داده‌های به دست آمده از مدل اصلاح شده با روطیت تعدالی ۱۱/۵ درصد و داده‌های تجربی در معادله ۱۱، نرخ خشک شدن به دست آمد و در شکل ۳ منحنی نرخ خشک شدن داده‌های تجربی و داده‌های مدل نشان داده شد است. همان‌طور که در این شکل دیده می‌شود، در شدت دیقیه نخست، نرخ خشک شدن سریع کاهش یافته و سپس کاهش نرخ خشک شدن با شیب کم کاهش یافته است. ضریب

منابع مورد استفاده

۱. توکلی هشتجمی، ث. رفیعی و م. ه. خوش‌نقاش. ۱۳۸۲. بررسی دماهانه شلوک برچ سپید رود در طی فرازند خشک شدن.

۲. دانش چکاوژی. ۱۲-۱۳، ۱۸۱.

Anon. 2000. ASAE Standards. 47th ed. MI, St. Joseph, MI, USA.

