طراحی و ساخت مکانیزم بردارنده و انتقال دهنده میوه‌های کروی شکل

چکیده

هدف از این تحقیق طراحی و ساخت یک دستگاه مکانیزم بردار-گذار میوه است. به‌طوری که بتوان میوه را از مکان مشخصی به مکان دیگر، با حداقل آسیب به بافت میوه انتقال داد. روش کار باید این صورت است که ابتدا گیرنده مکانیکی گریپر (Gripper) با طرحی مناسب به بتواند میوه به قطعی ۵ تا ۶ سانتی‌متر را به‌صورت کم‌هنگام در گرفن و ساخته شد. یعنی این گریپر بايد به‌گونه‌ای باشد که میوه را بدون آنکه صدمه‌ای به آن وارد کند گرفته و زمان‌بندی مشخصی را در گرفتن و رها کردن میوه به اجرا گذاشته. بنابراین این گریپر از مکانیزم لگ-لرزه استفاده شد. برای اجراز زمان‌بندی مناسب در گرفتن و رهاکردن میوه، عضویان لگزنده حركت خود را از پادامک شبیه سازی Working Model دریافت می‌کنند. تحلیل مکانیکی و دینامیکی لازم برای گریپر انجام و عملکرد آن توسط نرم‌افزار نرم‌افزار باز درخت داده‌های طراحی و ساخته شده دارای میزانی می‌باشد که بتواند گریپر را از نقطه دیگر انتقال دهد طراحی و ساخته شده. پس از انجام تحلیل مکانیکی، معادله حاکم بر حركة بازو غیر مناسب و تحلیل دینامیکی انجام گردید. پس از نصب گریپر بر روی مکانیزم (بازو)، آزمایش‌های منظور مشاهده عملکرد گریپر و بازو در کار پذیری انجام گرفت. در این آزمایش‌ها از میوه‌های کروی شکلی چون سیب و پرتقال استفاده شد. در این بررسی مشخص شد که گریپر قادر است بتواند میوه‌های کروی شکلی بتواند به‌طور مؤت‌مرز عمل گرفتن و رها کردن را به اجرا گذارد. همچنین کارایی مناسب بازو در اجرا حركت پوسته و بدون ضربه مشاهده شد. برای میوه‌هایی با ابعاد بزرگ‌تر، با انجام اصلاحات جزئی در انگشت‌های گریپر می‌توان عمله‌ای و رها کردن را به‌نحو مطلوبی به انجام رساند.

واژه‌های کلیدی: انتقال مکانیکی، بازو، میوه کروی شکل، گریپر

مقدمه

امروزه در بسیاری از فعالیت‌های صنعتی استفاده از نیروی انسانی جای خود را به نیروی مکانیکی و در بسیاری از موارد به نیروی مکانیکی ماهیتا یا رباتها و گریپر نموده است. سیستم‌های مکانیکی غذادر کادرد ساخته‌های زیادی بدون

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد مکانیک ماشین‌های کشاورزی، دانشکده کشاورزی دانشگاه صنعتی اصفهان
2. دانشیار مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

185
فرنگی که یکی از کارهای پرچم‌سازی و خستگی گنده است، امروزه توسعه ریزه‌ای انجام می‌شود. کودک و همسران (۲) یک بار باید رایتخی با هدایت درجه آزادی برنامه‌ریزی گرچه‌هاي کوچک توانسته که در آن از عمل می‌کند برای جدایی کردن
گوشه از بوته استفاده شده است.

یکی از قسمت‌های مهم بازوهایی که عمل برداشت و گذاشت را انجام می‌دهند قسمت گریپ آنها می‌باشد. در اغلب موارد لازم است در برداشت‌های میوه به دلیل بافت حساس آن، چانگا، کمترین آسیب را به آن وارد کند. برای این منظور تحقیقات زیادی در طراحی گریپ و چانگاهایی آن صورت گرفته است که فصل مشترک آنها استفاده از سنسورهای نوری با منظور تعیین مقدار نوری اعمالی به جسم می‌باشد (۸).

به‌طور کلی اگر لازم باشد توسط یک بار همکاری می‌کنیم که استفاده از عضوهای صلب و پویای ابزاری که قادر به برداشت آماده در اشکال و اندازه‌های مناسب بوده‌اند و همکاران (۹) مطالعه یکی از طرح‌های تحت بررسی می‌باشد. هیچ‌چیز استفاده از مانی این امکان را می‌دهد که در جهان بی‌پره سه است. انواع گوگل‌های رنگی در گل‌های قلمزن و نشا در یاس مرسوم شده است. در چنین سیستم تام خودکار، دسته‌های نهال گل از یک طرف وارد می‌شود و سپس یک باره نهال را نک تک برداشت و روند نوار تغییر قرار می‌دهد. ربات‌های نهالهایی را برای آنها در دسته‌بندی مخصوصی چاکاری می‌کند. در اینجا عمل برداشت آمدید (PP) توسط برداشت‌های چند درجه (Pick and Place) آزادی وضعیت انجام می‌شود (۷).

استفاده از بازوهای مکانیکی ماهر در برداشت محصولات کشاورزی نیز کاربرد زیادی دارد. به عنوان مثال، برداشت توت
شامل طراحی مسير حرکت مکانیزم جابجا چاکندنه در فضای مفصل، تعیین مدت زمان و سرعت انتقال و توقف، طراحی ابعاد عضوی مکانیزم و همچنین طراحی گیرب مناسب می‌باشد. در تحلیل دینامیکی ماهیش مقادیر نیروهای اعمال شده در مفصل اغلب تعیین گردد و با انتخاب جنس مناسبی

برای اعضای طراحی آن انجام شد.

مواد و روش‌ها

طراحی مکانیزم (ماهیش) پرادنده و انتقال دهنده

ماهیش پرادنده و انتقال دهنده از دو قسمت اصلی تشکیل شده است. قسمت اول وظیفه گرفتن و نگهداری جسم را بر عهده دارد که اصطلاحاً گیرب نامیده می‌شود. قسمت دوم وظیفه جابجا گیرب را به عهده دارد که این قسمت بازی می‌کند. با توجه به نیازهای طرح هر قسمت به طور جداگانه طراحی و ساخته می‌شود و در نهایت با نصب گیرب بر روی پایه، ماهیش پرادنده و انتقال دهنده شکل می‌گیرد. ابتدا طراحی گیرب بر اساس نیازهای طرح انجام شده و سپس بر اساس ابعاد و اندازه گیرب و همچنین محیط کاری (Task space) مکانیزم بازو طراحی می‌شود.

طراحی واحد پرادنده، محصول (گیرب)

اولین قدم در طراحی ماشین PP طراحی یک گیرب مناسب برای گرفتن اجسام به منظور جابجا شدن آنها می‌باشد. مکانیزم گیرب در عین سادگی، با بطور کارآمد و دقیق عمل کند زیرا، خطای کاری گیرب مهم است باعث اندکی و یا برنداشتن جسم شود. برای گیرب مشخصات زیر در نظر گرفته شده است:

- گرفتن و نگهداری به ماهیس کروی با قطر 9 سانتی‌متر
- چاکندنه 30 درجه در نظر گرفته شد. مرحکه بعد طراحی

187
طرحی با دادمک

مکانیزم لنگ - لنزهنه است. کورس حرکت لنزهنه بر روی ابعاد مکانیزم و اندازه بادامک تأثیر دارد. به همین دلیل، بالا مقدار مناسبی برای آن در نظر گرفته شود.

در اینجا مکانیزم لنگ - لنزهنه‌ای مورد نظر است که در اثر حرکت ۳ سانتی‌متر لنزهنه، لنگ به اندازه ۳۰ درجه دوران کند. طراحی این مکانیزم بر اساس سه نقطه دفت و به روش ترسیمی انجام شده (شکل ۲). بر این اساس، وقوع لنزهنه به ابتدای ۱ ثانیه‌ای پرداخته می‌شود، به موجبی به نامی به موجبی به نامی در دو سانتی‌متر حرکت شد.

لنت ۱۵ درجه دوران کرده است و به همین ترتیب وقتی لنزهنه دوران بادامک به شدت اکتشافی‌های غیرباز، باز شدن اکتشافی‌های غیرباز، بسته مانند اکتشافی‌های غیرباز و از مانند اکتشافی‌های غیرباز پایین زاویه‌ها در شکل ۳ نشان داده شده است.

برای تعیین مکانیزم دوران بادامک و طراحی پرفیدول از روش فلوک (Flocke) (۱) و از تحلیل مقایسه‌ای استفاده گردیده. شکل ۳ طرح

\[
\begin{align*}
S_{B} &= \text{cm} \\
\phi_{P} &= \phi_{N} = 18^\circ \\
\phi_{R} &= \phi_{R} = 12^\circ \\
\phi_{P}, \phi_{R}, \phi_{N}, \phi_{P} &=
\end{align*}
\]

روایتی به ترتیب عبارت از زاویه‌ها دوران بادامک برای بسته شدن اکتشافی‌های غیرباز باز شدن اکتشافی‌های غیرباز، بسته مانند اکتشافی‌های غیرباز و از مانند اکتشافی‌های غیرباز پایین زاویه‌ها در شکل ۳ نشان داده شده است.

نتایج طراحی مکانیزم به قرار زیر است:

\[
\begin{align*}
A, A_{1} &= 4.3 \text{ cm} \\
A_{1} &= 4.3 \text{ cm} \\
B_{1} &= 14 \text{ cm} \\
B_{2} &= 7 \text{ cm} \\
\alpha &= 11^\circ \\
\beta &= 45^\circ
\end{align*}
\]
شکل ۲: نمودار تغییرات سرعت و نشان لغزندگی بر حسب زاویه

شکل ۳: طراحی پادامک برای گیرب

شکل ۵: نمایش برداری عضوهای مکانیزم

$A \cdot B_a = 4/5 \text{cm} \quad \text{شعاع دایره پرتاب پادامک}$

tحلیل سینماتیکی

در مکانیزم گیرب که به صورت لانگ-لغزندگی است موقع، سرعت و نشان عضو لغزندگی در هر لحظه معلوم می‌باشد. کورس حرکت لغزندگی $S_{\text{BC}}=2 \text{cm}$ است. نتیجه دسته بندی اگر بخواهیم لغزندگی در مدت ثانیه کورس حرکتی خود را طی کند، لازم است سرعت زاویهای θ باشد. بر این اساس سینماتیک لغزندگی در حکمی رفت و برگشت معلوم می‌شود. برای تایید مشخصات سینماتیکی بقیه اعضای مکانیزم، از روش اعداد مختلط استفاده گردید (شکل ۵). چون مکانیزم

معادله حرکت لغزندگی به صورت

\[S = S_{\text{BC}} F(z) \]

با دویار مشتق کری این رابطه بر حسب زمان به ترتیب معادلات سرعت و نشان حرکت لغزندگی به صورت

\[a_B = \frac{S_{\text{BC}}}{\phi} F(z) \quad \text{و} \quad V_B = \frac{S_{\text{BC}}}{\phi} F(z) \]

می‌آید. شکل ۴ نمودار تغییرات سرعت و نشان خطي لغزندگی را بر حسب زاویه چرخش پادامک (از صفر تا 360 درجه) نشان می‌دهد.

نتایج طراحی پادامک به قرار زیر است:

\[B_i \cdot B_a = \text{rcm} \quad \text{کورس حرکت پادامک} \]

\[A \cdot B_i = 4/5 \text{cm} \quad \text{شعاع دایره کچک پادامک} \]
تحلیل دینامیکی مکانیزم گیربیر

برای مکانیزم گیربیر تحلیل دینامیکی در حمله‌های رفت و برگشت با انجام گیرد. برای این منظور هر یک از حمله‌های رفت و برگشت در 11 وضعیت مورد تحلیل قرار گرفتند. شکل ۷ دی‌گرام آزاد عضوهای مکانیزم را در حمله رفت نشان می‌دهد.

فرم ماتریسی معادلات حمله را می‌توان به صورت زیر نوشت (۶):

\[[A] \cdot \Phi_i = \Phi \]

در این معادله، \(\Phi_i \) آرایه مؤلفه‌های تورهای در مفاصل مکانیزم و \(\Phi \) آرایه مؤلفه‌های تور این اتصال عضوهای می‌باشد. در این معادله

\[\Phi_i = [A]^{-1} \cdot \Phi \]

آرایه تورهای مفصعی \(\Phi_i \) توسط راهنما نوشتته شده در آن برآورد محاسبه گردیده و نمودار تغییرات این تورها در MATLAB پخش نتایج آنان شده‌اند.

در تحلیل دینامیکی مکانیزم گیربیر لازم است جرم اعضا در نظر گرفته شود. برای این منظور جنس اعضا مکانیزم از فیبر نخ دار با اپوکسی انتخاب گردید. فیبر نخ دار که از موادی

گیربیر به صورت متقارن است، تحلیل سینماتیکی فقط برای یک نیمه آن انجام شد.

با استفاده از قانون حلقه‌بسته (Loop closure) می‌توان نوشت:

\[r_e i_n + r_e i_h = r_e r^2 + r_s \]

با دوبار مشتق گیری از این معادله و حل دستگاه معادلات حاصل از جداسازی مؤلفه‌های حقیقی و موهومی می‌توان مقادیر منظم \(\dot{\theta_1}, \dot{\theta_2}, \theta_3 \) را تعیین کرد. هم‌بینگی تعیین سرعت و شتاب خطی تلف عضو رابط یا کوره و عضو لگی نیست از روش اعاده مخلوط استفاده گردید (۵). به این ترتیب وضعیت سینماتیکی مکانیزم را می‌توان در هر لحظه به‌دست آورد.

teen zavieh farasht badamak

شکل ۶ روابط فشار badamak ra ke be sorotar trsrmeei به‌دست آمده است، نشان می‌دهد. ۱۱ نقطه در حمله رفت \((\theta_N) \) و ۱۱ نقطه در حمله به‌دست آمده (\(\Phi_N \)) در نظر گرفته شده است. بر این اساس، با توجه به اندازه badamak و غنچه بیشترین مقدار zavieh farasht در حمله رفت ۴۹ درجه در موقعیت پنجه، در حمله به‌دست آمده ۴۹ درجه در موقعیت پنجه، در موقعیت پنجه، در موقعیت پنجه، در موقعیت پنجه.
طرحی و ساخت مکانیزم برداردنه و انتقال دهنده میوه‌های کروی شکل

شکل 9. مشخصات پارامتری عضو‌های بازو

مسیر حرکت از ارتفاع نقاط ابتدا و پایانی دربند کمر باشد. نتایج دیدگان این که جهتهای گیرنده و در تغییر جهتهای جسم مورد نظر (میوه) در تمام نقاط سر به پایان نزدیک شود مکانیزم 4 میلهای یک درجه آزادی لگر موقدا قادرا است این تابه‌ها را برابر می‌نماید. در این مکانیزم فرض شده که 2 به فاصله h از مرکز کویر قابلیت دارد (End-effector).

بردار موقعیت پنجه‌ای بازو نسبت به دستگاه پایه عبارت است از:

\[\mathbf{v} = (L_y \cos \theta_y + \frac{L_z}{r_y}) \hat{i} + (L_y \sin \theta_y - h) \hat{j} \]

در 2 زاویه عضو L، نسبت به محور افقی است. برای تعیین معادله حرکت مکانیزم بازو از روش لگر زاویه استفاده شد. چون سیستم یک درجه آزادی دارد، بنا براین یک مختصه تنظیم یافته تعریف و بقیه منجر به بررسی این مختصه بیان شد (شکل 9).

معادله لگر زاویه به سبز زیر است:

\[\frac{d}{dt} \cos \theta_y + \frac{dU}{d\theta_y} = Q_1 \]

با استفاده از معادله لگر زاویه حرکت بازو به صورت زیر بدست می‌آید:

\[\ddot{\theta}_y + \frac{m_1 \ddot{r}_m \cos \theta_y + m_1 L_1 \ddot{r}_m (L - \ddot{r}_y)}{m_1 L_1} \ddot{\theta}_y + g \cos \theta_y (\ddot{r}_m + \ddot{L}_1 - \ddot{r}_m \dot{L}_1) = \tau \]

در این معادله m را جرم عضو‌ها و m_1، m_2، m_3، m_4 و ممان جرم عضو‌ها حول مرکز ثقل آنها و در اعتماد محور \(\theta \) و فواصل مراکز نقطه عضو‌ها از مرکز آنها \(L \) طول عضو \(\tau \) محرک، g شتاب ثقل، \(\dot{\theta} \) گشتاور عضوی مونته به عضو

ایست که علاوه بر مقاومت بالای مکانیکی، بسیار سبک است. برای جایگاه مذکور که 3 کیلو در سانتی‌متر مکعب است و ابعاد اعضای مکانیزم، مشخصات جرمی آنها به‌دست می‌آید: m_1 جرم عضو اول، m_2 جرم عضو دوم، m_3 جرم عضو سوم و m_4 جرم عضو چهارم.

می‌باشد که مقدار آنها در زیر مشاهده می‌شود.

\[m_1 = 0.1 \text{ کیلوگرم} \quad I_1 = 10^{-4} \text{ کیلوگرم متر مربع} \]

\[m_2 = 0.1 \text{ کیلوگرم} \quad I_2 = 10^{-4} \text{ کیلوگرم متر مربع} \]

\[m_3 = 0.1 \text{ کیلوگرم} \quad I_3 = 10^{-4} \text{ کیلوگرم متر مربع} \]

\[m_4 = 0.1 \text{ کیلوگرم} \quad I_4 = 10^{-4} \text{ کیلوگرم متر مربع} \]

\[K = 5 \text{ نیوتن/سانتی‌متر} \]

با صرف نظر کردن از نیروی انرژی عضو‌ها، در هر لحظه در نیرو، یک گشتاور به بادامک وارد می‌شود. این نیروها شامل نیروی F_1 بین بادامک و لغزند، و نیروی F_3 بین بادامک و لغزند که به‌صورت همزمان با یک اینک عضوی اعمال می‌شوند (شکل 7).

با محاسبه اینکان گشتاور عضوی به شناخت می‌توان کلید شده است، توان لازم برای حرکت مانندیک محسوب شده.

طرحی مکانیزم بازو

در این قسمت بازی‌های طراحی می‌شود که به‌وسیله آن گیر و بینوهای بادامک و جسم موقدا به‌طور را به‌طور نسبی به نقطه به‌وسیله دیگر انتقال دهد. بنا براین، نقاط پرداختن و گذارش از پیش معلوم می‌شود. همچنین ارتفاع نقاط
10. بهرآهن حراكی عضو محرک

دوران نماید. نقطه A موقعیت برداشته جسم و نقطه B موقعیت گذشته آن است. بهرآهن حراكی بازو در شکل 10 نشان داده شده است. این بهرآهن حراكی به گونه‌ای است که با برناهه حراكی گریپر سازگاری دارد. همان‌طور که قبل از آن، به‌کلیه بهرآهن‌ها گریپر در مدت دو نانوی سیستم زیرین باید مکانیزم بازو و نقطه A یکنواخت باشد. در مدت چهار تنایی که اگزکشی ها حالی بسته به نوع کاری مکانیزم باید نقطه B به نقطه A از ناحیه، سپس در مدت دو تنایی اگزکشی یاز می‌شوند که در این مدت بازو در نقطه B موقتی است. در نهایت در مدت پانزده تنایی به نقطه A برمی‌گردد.

مکانیزم بازو از نقطه A به نقطه B در مرحله بعد باید نقطه Z از زاویه 30° در این به‌معنی انجام حرکتی طراحی برای q_1 باشد. در این خطی طراحی مسری در نقاط مختلف به‌پاس از مصرف سیستم مورد نظر نامی برجسته و در تغییرات q_1 در طول مسیر، نقطه A نقطه E مشخصی که لازم به شرایط این تابع مشخص شود و با نامی برجسته و در این تابع مشخص q_1, در این مورد، منظور از دو تنایی مهم‌ترین بخش پس از استفاده شد و با نامی برجسته و در این تابع مشخص q_1. در این بحث از تابع مشخص q_1 در این مورد، مصرف سیستم به نقطه Z می‌رسد.

[10] $q_1^{A \rightarrow B}(t) = \frac{3\theta_1}{2\theta_1} \left[\frac{1}{2} t^2 + \frac{2\theta_1 r_1}{2\theta_1} (t^2 - \frac{1}{2} t^2) \right] + \frac{3}{2} \theta_1^5$

این مکانیزم بهره‌برداری به‌همراه این تابع مشخص q_1 در این مورد q_1 به نقطه Z می‌رسد. در این تابع مشخص q_1, در این بحث از تابع مشخص q_1 در این مورد، مصرف سیستم به نقطه Z می‌رسد.

[9] $X_q = 2\cos q_1 + 2\cos q_1$

[8] $Y_q = q_1^2(\sin q_1^2 - 18)$

اگر بازوی عضو محرک B به نقطه A تغییر q_1 بیان می‌شود، شکل 8. اگر بازوی عضو محرک B به نقطه A تغییر q_1 بیان می‌شود، شکل 8.
شکل 11. چگونگی فرآیندی میوه درون انگشتی

برای این بررسی وضعیت هندسی فرآیندی میوه درون انگشتی، چهار میوه به قطرهای 6، 8، 9 و 12 سانتی‌متر به جرم 125 گرم درون گریپر در نظر گرفته شده‌اند. نتایج این بررسی با توجه به شکل 11 در جدول 1 نشان داده شده است. همچنین حدادانی نیرویی که اکنون به مرکز نقطه میوه وارد شده آن را از درون انگشتی خارج می‌کند. برای قطرهای 8 سانتی‌متر تا 9 سانتی‌متر محاسبه و در جدول 1 دیده می‌شود. حدادانی نیرویی لازم برای خروج میوه از درون انگشتی ها/1/27 نیوتن می‌باشد.

برای این بررسی در نظر گرفته شده است که میوه در گریپر قرار دارد به صورت زیر خواهد بود:

\[\tau_f = \frac{1}{1 + 4950 \times \cos \theta} \]

در اینجا لازم است گشتاب مورد نیاز موتور DC به تنها تغییرات درون انگشتی بازی پیدا کنیم.
جدول 1. نتایج بررسی هندسی نحوه قرار گیری میوه درون گریپر

<table>
<thead>
<tr>
<th>F_{min} (N)</th>
<th>h' (cm)</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>قطر میوه (D) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/89</td>
<td>1/35</td>
<td>1/65</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1/77</td>
<td>1/05</td>
<td>2/25</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1/24</td>
<td>2/07</td>
<td>1/63</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td>1/68</td>
<td>2/82</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

نتایج و بحث

نمونه‌های نیروی اینترپسی در راستای x و y ترتیب برای دو نمونه در طول حرکت بر حسب تابع F_{1x}، F_{2x} و F_{3x} و F_{4x} مربوط به پرکار و ایجاد شکل نموداری است که این مقدار این نمونه را بیشتر می‌کند.

با دو بار مشتق گیری از معادله 4، مولفه‌های شتاب خطی محکم A_x و A_y، تابع دوم در ورودی از رابطه زیر به دست می‌آید:

$$ A_x = -l(q_1 \sin q_1 + q_1' \cos q_1) $$

$$ A_y = l(q_1 \cos q_1 - q_1' \sin q_1) $$

پرکار بر حسب تابع F_{1x}، F_{2x} و F_{3x} و F_{4x} مربوط به پرکار و ایجاد شکل نموداری است که این مقدار این نمونه را بیشتر می‌کند.
شکل ۱۳: سرعت و شتاب زاویه‌ای عضو محرک مکانیزم بازو

شکل ۱۴: نمودار تغییرات گشتاور مورد نیاز موتور بازو در یک سیکل حرکتی

با توجه به شکل ۱۲، بیشترین نیروی اعمالی به شافت بادامک، F_C، برابر ۱۷ نیوتن است که باعث ایجاد تنش برای گیربکس می‌شود. ملاحظه‌ای در شفت بادامک می‌شود. به‌طور اجمالی، بیشترین گشتاور با شکل گشتاور موتور بادامک، توان مورد نیاز موتور به‌طور قابل‌توجهی می‌باشد. با بررسی شکل ۱۰، نمودار سرعت و شتاب زاویه‌ای عضو بیشترین در شکل ۱۳ مشاهده می‌شود.
شکل ۱۵. نمودار تغییرات برایند نیروها در منافذی مکانیزم پژوه

شکل ۱۶. مدل‌های نیروی انرژی وارد بر جسم

مقدار نیرو در منافذ A و به مقدار ۲۲/۱ نیوتن است. شکل ۱۶ نمودار تغییرات مدل‌های نیروی انرژی وارد بر جسم را در طول حرکت در پاژه زمانی ۱۲ ثانیه نشان می‌دهد. مؤلفه F_x در راستای نیروی وزن حجم و مؤلفه F_y راستای عمود بر نیروی وزن هستند. با ملاحظه مقدار مؤلفه F_x و مقایسه آن با حداقل نیروی لارم برای خروج حجم از درون و
طرحی و ساخت مکانیزم بردانده و انتقال دهنده میوه‌های کروی شکل

شکل 16. مکانیزم بازو

مکانیزم گیربر متصل بودندا. از قسمت میانی نیز به شافت منفصل پایه قِشقانه. بندین ترتب کمکش آنها در حد قابل قبولی کننده. موتور مورد استفاده برای گیربر یک موتور Maxon 42 ولت، 1 آمپر ساخت شرکت است. بندین ترتب مجموعه گیربر با نوعی پایه‌سازی شد.

شکل 17. نمایی از گیربر

انگشته‌ها در می‌باشم که مقدار این نیرو در حدی نیست که بتواند جسم را از انگشتی‌ها خارج کند. بنابراین می‌توان از باقی ماندن جسم درون انگشتی‌ها در طول حرکت مطمئن شد.

نکات ساخت گیربر و بازو

در ساخت مکانیزم گیربر که در شکل 17 نشان داده شده، جنس قطعات از اهمیت بسیاری برخوردار است. جنس مناسب، قطعات از اهمیت بسیاری برخوردار است. جنس مناسب که علاآه این استحکام لازم از جرم مخصوص کمی برخوردار باشد زیرا جرم مخصوص زیاد در نهایت باعث افزایش وزن مجموعه گیربر می‌شود. جنسی که برای ساخت اکثر قطعات گیربر از آن استفاده شد ایزوتکسچر (A) فیبر نخاد می‌باشد.

یکی از قطعات اصلی گیربر، انگشتی‌ها و عضویه‌های عمومی می‌باشد که در مجموع چندین گیربر را تشکیل می‌دهند (شکل 17). جنس عضویه‌های عمومی از ایزوتکس و جنس انگشتی‌ها به دلیل سهولت در حمل و نقل می‌باشد. جنس مناسب از انگشتی‌ها و عضویه‌های عمومی و انگشتی‌ها باید در حد قابل قبولی نیز بُردی. برای قرار گرفتن این تقسیم در سر محسور هر یک از مفصل شکل قبیل ملاک‌ها و فاکتورهای کاهش یافته. همچنین عضویه‌های عمومی که از بالا به عضو لگ
شکل 19. نمایی کلی از مکانیزم بارز و گیرنده آلومینیومی که از یک طرف به بدنگیری و در طرف دیگر به عضو کولر پیچ شده و بودند استفاده گردید. شکل 19 نمایی کلی از طرح ساخته شده و نشان می‌دهد.

نتیجه‌گیری
در این مقاله ماهیت طراحی گرده‌داری که بتواند میوه‌های کروی به قطر 5 تا 9 سانتی‌متر را از نقاط مشخص به نقطه‌ای دیگر انتقال دهد. این ماهیت از دو قسمت تشکیل شده است. قسمت اول، گیرنده است که توسط آن عامل گرفتن و رها کردن جسم انگام می‌شود. طرح گیرنده گونه‌ای است که حس ایامکان به باتفینه آسیبی نرساند. قسمت دوم، مکانیزم بارز است که عمل انتقال گیرنده به موی را با سختی درجه‌ای ممکن بر عهده دارد. پس از اینکه سختی به مکانیزم در گرده‌داری، آزمایش‌های بر روی چند نوع میوه کروی همچون سبیل، پرتقال و لیموشیرین انجام شد. با انجام این آزمایش‌ها مشخص شد که اگر به گیرنده قادربود این میوه‌ها را به‌خوبی در برگیرد و آسیبی به باتفینه وارد نکند ولی با عملیات تغییراتی
