طراحی و ساخت مکانیزم پردارنده و انتقال دهنده میوه‌های کروی شکل

رضای اعرافی، حسن نوری و عباس همت

چکیده

هدف از این تحقیق طراحی و ساخت یک دستگاه مکانیزم پردار-گذار میوه است، به‌طوری‌که بتوانم میوه را از مکان مشخصی به مکان دیگر بپیوند. البته این آسیب به وقت میوه انتقال داد. روش کار به این صورت است که ابتدا گیرنده مکانیزم گیرنده (Gripper) با طراحی مناسب که بتواند میوه‌هایی به قطع ٢ تا ٥ سانتی‌متر را به‌صورت مطمئن در برگیرد طراحی و ساخته شد. ویژگی این گیرنده یا گونه‌ای باشد که میوه یا بدن آن به صدمه‌ای به آن وارد کند گرفته و زمان‌بندی مشخصی را در گرفتن و رها کردن میوه به اجرای گذارده مرحله این گیرنده از مکانیزم لگ-لغزده استفاده شد. برای اجراي زمان‌بندی مشابه در گرفتن و رها کردن میوه، عضوی این نوع کشت خود را از پادام‌های کاری، Working Model دریافت می‌کند. تحلیل‌های سینماتیکی و دینامیکی در بر گیری آن جبران و عملکرد آن توسط نرم‌افزار شبیه‌سازی واریز به وسیله Working Model انجام شدند.

مدلهای سینماتیکی عامل حاکم بر حرکت بذور استخراج و تحلیل دینامیکی انجام گردید. پس از نصب گیری بر روی مکانیزم (بازوی)، آزمایش‌های به منظور مشاهده عملکرد گیرنده و بازو در کار یکدیگر انجام گرفت. در این آزمایش‌ها از میوه‌های کروی سکلی چون سیب و پرتقال استفاده شد. در این برسی مشخص که گیرنده قادر است به میوه‌های کروی چندماده مناسب بتواند به طور مؤثری عمل گردد و این آزمایش‌ها به گذارده مرحله این گیرنده را به اجرا گذارده. هم‌چنین کارایی مناسب بازو در اجبار حرکت یپسوند و پدیده مشاهده شد. برای میوه‌هایی با ابعاد بزرگ‌تر، با اجرا اصلاحات جدی در انگشت‌های گیرنده می‌توان عمل گردد و رها کردن را به نحو مطلوبی به انجام رساند.

واژه‌های کلیدی: انتقال مکانیکی، بازو، میوه کروی شکل، گیرنده

مقدمه

امروزه در بسیاری از فعالیت‌های صنعتی استفاده از نیروی انسانی جای خود را به نیروی مکانیکی و در بسیاری از موارد به نیروی مکانیکی می‌دهد. سپس این نیرویی با ربات‌ها و اگزوت اعمال می‌شود. استفاده از سیستم‌های مکانیکی خودکار و کمپیوتری سوخته‌های زیستی بدون تکمیل، دانشکده‌های مکانیک‌دانشگاه صنعتی اصفهان

1. به ترتیب دانشجوی سابقه کارشناسی ارشد و استاد مکانیک ماهیانه کشاورزی، دانشکده‌های کارشناسی دانشگاه صنعتی اصفهان
2. دانشیار مهندسی مکانیک، دانشکده‌های مهندسی مکانیک، دانشگاه‌های صنعتی اصفهان

185
فرنگی که یکی از کارهای پرچم‌های و خسته کننده است، امروزه توسط ربات‌های انرژی‌منش مورد استفاده قرار می‌گیرد. کنترل و همکاران (2) این ربات‌ها با دستگاه هایی مانند دستگاه‌های کوچک‌تری سازنده‌ی ابزاری برای برداشتن گره‌های طراحی کردن که در اثر عمل مکش برای جدای کردن گره‌ها از بوته استفاده می‌شود.

یکی از فیتی‌های مهم بازوهایی که عمل برداشتن و گذاشتن را انجام می‌دهند قسمتی گرفته‌اند می‌باشد. در اغلب مرحله‌های ازای ظرفیت است در برداشتن مویه‌باره به دلیل بافت حساس آن، چنانکه کمترین آسیب را به آن وارد نمی‌کند. برای این منظور حقیقی‌تری در طراحی گریپر و کنگال‌هایی آن صورت گرفته است که صفحه کوچک آن‌ها استفاده از سنسورهای نوری با منظور تعیین مقادیر نوری اعصابی به جسم می‌باشد (8).

به‌طور کلی اگر لازم باشد پاسخ یکپارچه مکانیکی جسمی را با هنجاری مناسبی از انتخابی به نقطه‌ای در گیره‌ی بادی بازوهایی مکانیکی در صفحه نشان‌دهنده‌ی درجه آزادی باشد. شکل‌های گرفته‌ی این منظور برای طراحی و ساخت بازوهایی است که نتواند به انواع بازوهایی انتقال را انجام دهد. این طرح از دو بخش اصلی تشکیل شده است. بخش اول شامل مکانیکی ساخت و عملکرد یک گیرنده مناسب به منظور گرفتن و رها کردن مویه می‌باشد. بخش دوم طرح شامل کنترل کرده و بررسی عملکرد مکانیزم جای‌جا کننده است. گرینگر یکی از مقادیری جایی‌جا کننده سوار می‌باشد و در نقاط مناسبی از هر حرکت مکانیزم جای‌جا کننده عمل گرفته و رها کردن اسپرتی را انجام می‌دهد. در طراحی و ساخت جنین مانشین ابتدا تحلیل سیستم‌اتیکی انجام می‌شود که

شده است. یکی از جنبه‌های اتمسفری می‌باشد. اکثریت از ربات‌های هوشمند می‌باشد. به عنوان مثال، می‌توان از ربات‌های در مراحل تهیه، کاشت، ناهیدن، برداشتن و پس از برداشتن استفاده کرد. یکی از عملیات مرحله‌ی پس از برداشتن، به‌ینی می‌باشد. استفاده از یک سیستم خودکار در بسته بردن مویه‌ها، به عنوان دادن آنها در بسته‌های مخصوص، از همیشه زیادی برخوردار است.

برای بسته بردن مواد زیستی (Bio-materials) در تهیه از به‌ینی برخوردار است. یکی اینکه این مواد به‌صورت بهداشتی و در بسته‌های مناسبی جاسوی می‌باشد و در یک لیست به‌ینی به او آسیبی وارد نمی‌شود. موضوعی چون سرعت عمل در بسته بردن نیز به او خود از همیشه قابل پیش‌بینی برخوردار است.

با استفاده از ماشین‌هایی می‌توان عمل بسته بردن را با نتیجه‌ی کارگری کمتر و احتمالاً هزینه‌ی کمتری به اجرای دانستاد و در عین حال از کیفیت و بهداشتی بسته به‌ینی اطمینان حاصل نمود.

هم‌تیم استفاده از ماشین‌هایی از ماشین‌های مکانیکی که جریان‌هایی است. از ربات‌های مختلف کشاورزی به دو دهه قبل بر می‌گردد که در آن زمان مطالعه‌بر روی ربات برداشتن گره‌ها فرگنی در زاین آغاز گردید (7) از آن زمان به بعد، تکنولوژی رباتیک برای بسیاری از مواد زیستی در جهان بکار و به رشده شده است. انواع گوناگونی از ربات‌های مختلف (تک تک ربات‌های نهال کلیدی) در روز دنیا به استفاده در برخورداری می‌باشد. در این می‌باشد تمام برداشت‌ها دسته‌های نهال کل از یک طرف وارد می‌شود و سپس یک ربات نهال می‌پوشاند که به دنبال برداشت و روز یک نوار تک تک ربات نهال را تک تک برداشتن و درون سینه مخصوصی چاپ کننده می‌باشد. در اینجا عمل برداشت و گذاردن بسته به تکنیک Pick and place (PP) توسط بازوهایی چند درجه از ربات‌های کشاورزی (کشاورزی)
طراحی و ساخت مکانیزم برداردن و انتقال دهنده میوه‌های کروی شکل

طراحی مکانیزم (ماشین) برداردن و انتقال دهنده میوه‌های کروی شکل

مواد و روش‌ها

طراحی مکانیزم (ماشین) برداردن و انتقال دهنده میوه‌های کروی شکل

امکانات و روش‌ها طراحی مکانیزم (ماشین) برداردن و انتقال دهنده میوه‌های کروی شکل

طراحی واحد بردارنده محصول (گریپر) اولین قدم در طراحی ماشین PP طراحی یک گریپر مناسب برای گرفتن اجسام به‌منظور جایگذاری مطابق آنها می‌باشد. مکانیزم گریپر در غنی سادگی، باید به‌طور کارآمد و دقیق عمل کند زیرا، خطای کاری گریپر ممکن است باعث اندک‌ریزی و یا بردنشاندن جسم بود. برای گریپر مشخصات زیر در نظر گرفته شده است:

- گرفتن و نگهداری میوه‌های کروی با قطر ۵ تا ۹ سانتی‌متر.
- آسیب ترساندن به بافت میوه در هنگام گرفتن نگهداریت و رها کردن.
- انجام عمل گرفتن نگهداریت و رها کردن بر اساس
طراحی بادامک

به منظور اعمال حركة نوعی زمان‌بندی شده به عضو لجن‌نده مکانیزم یک لجن - لجن‌نده باید به پروفیل مناسبی برای بادامک طراحی نمود. بر اساس بررسی حرکتی مورد نیاز و کورس حرکت لجن‌نده فرضیات زیر در نظر گرفته می‌شود:

\[
\begin{align*}
S_{\text{BH}} &= \text{cm} \\
\phi_p &= \phi_N = 45^\circ \\
\phi_{R_1} &= \phi_{R_0} = 120^\circ
\end{align*}
\]

روایتی به ترتیب عبرت‌اند از زاویه‌های دوران بادامک برای به استفاده شدن انگشت‌های گریپر. باز شدن انگشت‌های گریپر، سپس مانند انگشت‌های گریپر و باز مانند انگشت‌های گریپر یا زاویه‌ها در شکل 3 نشان داده شده‌اند.

برای تعیین مکان دوران بادامک و طراحی پروفیل آن از روش فلکسی (1) و از نسبت معیار F(z) (Flocke) استفاده گردید. شکل 3 طرح \(z = 10 \times 2^{-z} + z^2 \) استفاده گردید. شکل 1 ترکمی زیر نشان می‌دهد. در این شکل طراحی بادامک را نشان می‌دهد. در این شکل سرعت میکروسکوپ شده لجن‌نده و \(V_B \) زاویه کمکی هستند. به منظور رسم دقیق پروفیل بادامک از نظر افزار استفاده MATLAB پایین است.

\[
\begin{align*}
A_{B_1} &= A_{B_1} = \frac{\pi}{4} \times \text{cm} \\
A_{B_2} &= A_{B_2} = \frac{1}{10} \times \text{cm} \\
B_{B_1} &= B_{B_1} = \frac{1}{10} \times \text{cm} \\
\alpha &= \angle \beta = 90^\circ
\end{align*}
\]

شکل 1 استفاده از مکانیزم لجن - لجن‌نده به عنوان مکانیزم غیربر قرار گرفته است. کورس حرکت لجن‌نده بر روی ابعاد مکانیزم و اندازه بادامک تأثیر دارد. به همین دلیل باید مقدار مناسبی برای آن در نظر گرفته شود.

در اینجا مکانیزم لجن - لجن‌نده مورد نظر است که در اثر حرکت 2 سانتی متر لجن‌نده، لجن به اندازه 30 درجه دوران کنند. طراحی این مکانیزم بر اساس سه نقطه دقیق به روش ترکمی انجام شد (شکل 2). بر این اساس وقتی لجن‌نده به اندازه 1 سانتی متراز موقتی بی می‌رسد، لجن 15 درجه دوران کرده است و به همین ترتیب وقتی لجن‌نده از موقتی بی می‌رسد، لجن 15 درجه دیگر نیز دوران می‌کند. در این مکانیزم ورودی عضو لجن‌نده و خروجی عضوهای لجن‌نده بادامک مسقیماً با لجن‌نده در انتساب است و برای انتخاب کورس حرکت لجن‌نده هم‌طور که ذکر شد عامل تعیین کننده اندازه بادامک می‌باشد.
شکل ۳: طراحی بادامک برای گیربکس

شکل ۵: نمايش برداري عضویت مکانیزم

معادله حرکت لغزنده به صورت

با دویار مشتق گیری از این رابطه بر حسب زمان به ترتیب معادلات سرعت و شتاب حرکت لغزنده به صورت

می‌آید. شکل ۴ نمودار تغییرات سرعت و شتاب خطي لغزنده را بر حسب زاویه چرخش بادامک (از صفر تا ۹۰ درجه) نشان می‌دهد.

نتایج طراحی بادامک به قرار زیر است:

پایه حرکت بادامک

کورس حرکت بادامک

شاعع دایره چرخش بادامک

اماده سیستم لغزنده در حالت رفت و برگشت معلوم می‌شود. برای تعیین مشخصات سیستمیکی بقیه اعضای مکانیزم از روش اعداد مختلف استفاده گردید (شکل ۵). چون مکانیزم

می‌باشد که

می‌ба
گریپر به صورت متقارن است، تحلیل سینماتیکی فقط برای یک نیمه از انجام شده.

با استفاده از قانون حلقه باسته (Loop closure) می‌توان نوشت:

\[r_i e^{i_{\theta_i}} + r_i e^{i_{\theta_j}} = r_e e^{i_{\theta_e}} + r_5 \]

با دوبار مشتق گیری از این معادله و جمله معادلات حاصل از جذاسازی مولفه‌های حقیقی و موهومی می‌توان مقادیر مجهول \(\phi_1, \phi_2, \phi_3 \) و \(\phi_4 \) را تعیین کرد. به‌منظور تعیین سرعت و شتاب خلوط نقطه عضو رابط یا کپی و عضو لیگ نیز از روش اعداد مختلط استفاده گردد (5). به این ترتیب و ضعیت سینماتیکی مکانیزم را می‌توان در هر لحظه به‌دست آورد.

تغییرات تنهایی فشار با داده‌کننده

شکل 6 رابطه‌های فشار با داده‌کننده \(k \) به صورت ترسیمی به‌دست آمده است. نشان می‌دهد. 11 نقطه در حلقه فشرت \(\phi_1, \phi_2, \phi_3 \) و 11 نقطه در حلقه به‌کار گرفته (6) در نظر گرفته شده است. در این اساس و با توجه به اندام‌های با داده‌کننده و گلنک بین‌العملیاتی مقدار زاویه فشار در حلقه فشرت 44 درجه در موقعیت یکنجم و در حلقه به‌کار گرفته 49 درجه در موقعیت ششم می‌باشد.
مسیر حرکت از انقلاب نسبی با اندازه نهایی کاملاً مشابه کاربرد نتیجه دیگری از جهت گیری گریپر و در نتیجه جهت گیری جسم مورد نظر. (میوه) در تمام نقاط مسیر به حفظ شود. مکانیزم 4 میلیای یک درجه آزادی لک جهت نیازهای است است این تابی زاها را برآورده سازد. در این مکانیزم فرصت شده که نسبت از مرکز گولی فاصله دارد (End-effector) به فاصله h از مرکز کولر فاصله دارد (شکل 8).

بردار موقعیت پنجه بازو نسبت به دستگاه پایه عبارت است از:
\[
\mathbf{c} = \left(L, \cos q_1 + \frac{L_1}{2}, \left(1 - \sin q_1 \right) \right)
\]
[۴]

که در آن q1 زاویه عضو L1 نسبت به محور افقي است. برای تغییر معامله حرکت مکانیزم بازو از روش دستگاه استفاده شده. چون سیستم یک درجه آزادی دارد، بنابراین فقط مختصه تعیین یافته تعریف و بقیه مندرج از محاسبه برحسب این محاسبه

یافته شده (شکل ۹).

معادله لگرانژ به صورت زیر است:
\[
\frac{d}{dt} \left(\frac{\partial \mathbf{U}}{\partial \dot{q}_i} \right) - \frac{\partial \mathbf{U}}{\partial q_i} = \mathbf{Q}_i
\]
[۵]
با استفاده از معادله لگرانژ معادله حرکت بازو به صورت زیر بدست می‌آید:
\[
(T_1 + T_2 + m_1 r^2 + m_2 L^2 + m_3 (L - r_3)^2) \dot{\theta}_1 + g \cos q_1 (m_1 + L m_2) (L - r_3) \dot{\theta}_1 = \tau
\]
[۶]
در این معادله m1، m2، m3 میان مسیر عضوها جرم میان m1، m2، m3 از انتهای عضو ها و عضو را در انتهای مسیر، ثابت می‌گردد. فاصله مرکز عضوها از مرکز انتهایها، طول عضو r1 و جرم مکانیزم بازو، حالت تقریبی مکانیزم می‌باشد. (شکل ۹)

طراحی کمک‌زن باز

در این قسمت بازی طراحی می‌شود که به‌وسیله آن گیرنده بتواند میان دو نقطه شامل حرکت کند و جسم مورد نظر را در یک نقطه به نقطه بازگرداند. می‌توانند نقاط جمعی را در همه نقاط میانه منفی‌ها، مثبت‌های انتقال دهد. بنابراین، نقاط بردسته و گذارشان از بیش معلوم هستند. همچنین انتقال نقاط
مشخصه مکانیزم بازو و رابطه بزرگسازی مکانیزم بازو از طریق افزایش زمان به صورت نظری مورد نظر تابع بررسی می‌شود که تغییرات q1 با طول زمان از تکنولوژی A ناحیه متغیر می‌کند. یک مثال مشخصه مشخصه به صورت زیر به دست می‌آید:

\[
q_1^A(t) = \frac{18t^3}{1212} + \frac{34t^2}{1212} + \frac{34t}{1212} + 3 \times 10^5 / \circ
\]

اگر این متغیر را به صورت B نمایش دهیم، به تغییرات می‌تواند به صورت زیر با دست آمد:

\[
q_1^B(t) = \frac{18t^3}{1212} + \frac{34t^2}{1212} + \frac{34t}{1212} + 30^5 / \circ
\]

برابر و نزول به تغییرات A نمایش داده شده است. این باید به صورت زیر بررسی شود:

\[
X_q = r \cos q_1 + 0.5
\]

\[
Y_q = r \sin q_1 - 0.5
\]

اگر رابطه مختصات پنجه را بررسی کنیم، بیان می‌کند (شکل 8).

آکسیلاژ پنجه را به ارتفاع A نمایش دهیم. این باید به صورت زیر بررسی شود:

\[
X_q = r \cos q_1 + 0.5
\]

\[
Y_q = r \sin q_1 - 0.5
\]

اگر رابطه مختصات پنجه را به ارتفاع A نمایش دهیم. این باید به صورت زیر بررسی شود:

\[
X_q = r \cos q_1 + 0.5
\]

\[
Y_q = r \sin q_1 - 0.5
\]
نمای روبو ایستگاه‌ها

پرسپکتیو اینگشتی‌ها

شکل 11: چگونگی قرارگیری میوه درون اینگشتی

برای قرارگیری میوه درون اینگشتی‌ها، چهار میوه به قطرهای 6، 8، 9 و 9 سانتی‌متر و به ابعاد 165 گرم درون گریبر در نظر گرفته شده است. نتایج این بررسی به شکل 11 در جدول 1 نشان داده شده است.

همچنین حداکثر نیرویی که اگر به مرکز قلب میوه وارد شود آن را از درون انگشتی‌ها جدا می‌کند. برای قطرهای 8 سانتی‌متر با نیرویی از 9 سانتی‌متر محاسبه و در جدول 1 دیده می‌شود. حداقل نیرویی لازم برای خروج میوه از درون انگشتی‌ها 1/27 نیوتن می‌باشد.

در اینجا لازم است گشتاور مورد نیاز موتور بازو تعیین شود. برای این منظور می‌توان با قرار دادن q_0 از رابطه 10 و

$\tau = \frac{318}{12288} \cdot \frac{1}{2} m \cdot T = 1099.7 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^2 \cdot \text{m} / \text{s}^2$
جدول ۱. نتایج بررسی هندسی نحوه قرار گیری میوه درون گیرنده

<table>
<thead>
<tr>
<th>F_{min} (N)</th>
<th>h'(cm)</th>
<th>h(cm)</th>
<th>d(cm)</th>
<th>قطر میوه</th>
<th>D(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/89</td>
<td>1/35</td>
<td>1/65</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1/27</td>
<td>1/05</td>
<td>2/45</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1/33</td>
<td>2/07</td>
<td>1/93</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1/26</td>
<td>1/68</td>
<td>2/82</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱۲. نیروهای مفصلی مکانیزم گیرنده در حرکت رفت

انگشتی های گیرنده اطمینان حاصل شد. نمودار تغییرات نیروی اینرسی وارد بر جسم در فضای فضای اندازه‌گیری آنها چنین است.

نتایج و بحث

شکل ۱۲ نمودار تغییرات نیروهای مفصلی مکانیزم گیرنده را در حرکت رفت نشان می‌دهد. با توجه به این که مقدار این نیروها بسیار کم است می‌توان از مقاومت اعضای مکانیزم اطمینان حاصل نمود.

با دو بار مشتق گیری از معادله ۴ مولفه‌های پارامتر شتاب حرکت، تقریباً میوه درون انگشتی ها از روی ایستادگی می‌آید:

$$A_x = -l_{1}(q_{\text{sin}q_1} + q_{\text{sin}q_2})$$

$$A_y = l_{1}(q_{\text{sin}q_2} - q_{\text{sin}q_1})$$

مولفه‌های نیروی اینرسی در راستای X و Y به ترتیب برآورده شده‌اند. بر اساس نیروهای اینرسی وارد بر جسم در طول حرکت، از بقای ماندگی جسم درون
شکل 13. سرعت و شتاب زاویه‌ای عضو مکانیزم پازو

شکل 14. نمودار تغییرات گشتاور مورد نیاز موتور پازو در یک سیکل حرکتی

با توجه به شکل 12، بیشترین نیروی اعمالی به شافت پادامک، F_C، برای 17 نیوتن است که باعث ایجاد تنش برخی غیر قابل ملاحظه‌ای در شافت پادامک می‌شود. همچنین با محاسبه بیشترین گشتاور اعمالی به موتور پادامک، توان مورد نیاز موتور به مقدار 24/0 وات محاسبه شد.

با در نظر گرفتن برایه حرکتی مکانیزم پازو (شکل 10)، نمودار سرعت و شتاب زاویه‌ای عضو محرک به دست آمد و در شکل 13 مشاهده می‌شود.
شکل 15. نمودار تغییرات پراید پوشا در مفاصل مکانیزم پاژو

شکل 16. مؤلفه‌های نیروی اینری وارد بر جسم

مقدار نیرو در مفصل A به مقدار 22.142 نیوتن است. شکل 16 نمودار تغییرات مؤلفه‌های نیروی اینری وارد بر جسم را در طول حرکت در پنجه زمانی 0 تا 12 ثانیه نشان می‌دهد. مؤلفه در راستای نیروی وزن جسم و مؤلفه در Fx در راستای عمود بر نیروی وزن هستند. با ملاحظه مقدار مؤلفه، و مقایسه آن با حداقل نیروی لازم برای خروج جسم از درون
طرحی و ساخت مکانیزم پردارنده و انتقال دهنده میوه‌های کروی شکل

انگشتی‌ها در میان بیم که قدرت این نیرو در حذف نیست که برداشت جسم را از انگشت‌ها خارج کند. بنابراین می‌توان از باقی ماندن جسم درون انگشت‌ها در طول حرکت مطمئن شد.

نکات ساخت گیربکس و بازو

در ساخت مکانیزم گیربکس که در شکل 17 نشان داده شده، جنس قطعات از همبست بی‌خوردگی است. جنس مناسب، جنس است که علاوه بر درشت و استحکام لازم از جرم مخصوص کمی برخورد را به دنبال زیرا جرم مخصوص زیاد در بهبود افزایش و زن مجموعه گیربکس می‌شود. جنسی که برای ساخت اکثر قطعات گیربکس از آن استفاده شد ایزوتوسی با فیبر نیکرا می‌باشد.

پیک از ساخت گیربکس، انگشت‌ها و عضو‌های عمودی

پایانگرد که در مجموع چنگال گیربکس را تشکیل می‌دهند (شکل 17). جنس عضو‌های عمودی از ایزوتوسی و جنس انگشت‌ها به دلیل سهولت در خم‌کاری از آلومینیوم به ضخامت 1/8mm به عنوان مدور یک الگویی با ضخامت انگشت شد. پس از ساخت عضو‌های عمودی و انگشت‌ها و نصب آنها در مجموعه گیربکس، کمک و لرزش عضو‌های عمودی و انگشت‌ها در حداقل قبولی نیست. برای رفع این تقصیه دو سر مدور هر یک از مفصل پایه در دو بیلینگگچفت شد و بنابراین لقب شفت به طور قابل ملاحظه‌ای کاهش یافت. همچنین عضو‌های عمودی که از پلاک به عضو لگن

شکل 18. مکانیزم بازو

مکانیزم گیربکس متعادل بودن، از قسمت میانی نیز به شکل مفصل باین بیشتر. بنابراین نیز در حد قابل قبولی کنترل شد. موتور مورد استفاده برای کریپت یک موتور Maxon 24 ولت، 1 آمپر ساخت شرکت است. بنابراین ترتیب مجموعه گیربکس با موفقیت پیاده‌سازی شد.

مکانیزم بازو از مس عصب شکل شده است (شکل 18). جنس این عضوها از آلومینیوم به ضخامت 3mm انتخاب شد. پس از انجام عملیات برخوشکاری، خمکاری و سوراخکاری بر روی هر یک از عضوها به منظور مفصل بندی آنها در محل‌های مناسب از هر عضو، قطعه‌ی مکعبی شکل از ایزوتوسی به عضوها برچید و در این قطعات بریزیده‌ای با قطر داخلی 17 mm و قطر خارجی 25 mm سپس برای هر مفصل شافت مناسبی تراشیده و درون بیلینگ چفت شد.

پس از انجام آزمایش‌های مقدانی مشخص شد که گستاور مدور انتخاب شده برای مکانیزم بازو 400 ولت، 5 آمپر و 158 ولت ساخت شرکت “Gefeg” با یک کریپتیس حلولی با نسبت 1/8 با کمک یک کریپتیس حلولی با نسبت 140 درجه حرارت داون مکانیزم از نقطه انتهایی نیست. بنابراین یک کریپتیس حلولی دیگر با نسبت 1/8 بر روی مدور نصب شد. بنابراین مدور به راحتی مکانیزم را به حرکت در آورد.

پس از ساخت مکانیزم بازو، گیربکس بر روی عضو کویلر نصب شد. به منظور نصب گیربکس بر روی کویلر از دو نسمه L
شکل ۱۹: نمایی کلی از مکانیزم بازو و گریپر

جزئی در انگشتی‌های گریپر می‌توان عملکرد آن را بهبود بخشید. از طرفی مشخص شد که انگشتی‌های گریپر برای میوه‌های کروی کشیده (Oblong) بسیار رضایت بخش عمل می‌کنند. همچنین با اعمال حال فنری به انگشتی‌ها می‌توان عملکرد گریپر را بهبود بخشید. برای این منظور انگشتی‌ها در طول به دو قسمت تقسیم می‌شوند و این دو قسمت توسط یک مفصل دورانی با یک فنر پچشی به‌کار می‌رود. این بدن‌ترکب‌نگر اگر در هنگام جمع شدن انگشتی‌ها قسمتی از آنها به‌افتد میوه با خاصیت فنری انگشتی‌ها مانع از آسیب رسیدن به‌افتد میوه می‌شود.

موقع توقف و یا شروع حرکت به‌عمل لقی موجود در چرخدنه‌های جعبه دندان و مافال پایه مکانیزم لرزش کمی در اعضای مکانیزم انجام می‌شود. برای رفع لقی بین چرخدنه‌های جعبه دندان می‌توان از چرخدنه‌هایی با مواد کمتر استفاده نمود. به منظور رفع لقی مفصل پایه می‌توان عضو را در نقطه مناسب در دو موقعیت مهار کرد. استفاده از این روش علاوه بر حذف لقی باعث بهبود مهار نوسانات پیچشی گریپر روي عضو کوپلر

نتیجه‌گیری

در این مقاله مشابهی طراحی گریپر که بتواند میوه‌های کروی به قطر ۱۰ سانتی‌متر را از نقطه‌ای مشخص به نقطه‌ای دیگر انتقال دهد ایجاد می‌شود. این مشابهی از دو قسمت تشکیل شده است. قسمت اول، گریپر است که توسط آن عمل گردن و رها کردن جسم انجام می‌شود. حرکت گریپر به‌گونه‌ای است که حتی امکان به‌افتد میوه آسیبی نرساند. قسمت دوم، مکانیزم بازو است که عمل انتقال گریپر و میوه را با حداکثر درجات آزادی ممکن بر عهده دارد. پس از ساخت دسته‌گاه به منظور بررسی عملکرد آن، آزمایش‌هایی بر روی چند نوع میوه کروی همچون سیب، پرتقال و لیموشیرین انجام شد. با انجام این آزمایش‌ها مشخص شد که اگر چه گریپر قادر است این میوه‌ها را به‌خوبی در باکری و آسیب به‌افتد آنها نارد نکند ولی با اعمال نگیرانی
منابع مورد استفاده

1. زرکوب، ج. 1378. اصول طراحی ماکینزم‌ها و پیروی دوم. مرکز انتشارات جهاد دانشگاهی واحد صنعتی اصفهان.
2. عارفی، ر. 1383. طراحی، ساخت و عملکرد ماکینزم بردآورد و انتقال دهنده میوه‌های کروی شکل. پایان نامه کارشناسی ارشد مهندسی ماکینزم‌های کشاورزی، دانشگاه صنعتی اصفهان.