طرحی و ساخت مکانیزم بردارنده و انتقال دهنده میوه‌های کروی شکل

رضای علی‌رضا، حسن‌نیکوی و عباس‌همت

چکیده

هدف از این تحقیق طراحی و ساخت یک دستگاه مکانیزم بردار-گذار میوه است. به‌طوری‌که بتوان میوه را از مکان مشخصی به مکان دیگر، با حداقل آسیب به بافت میوه انتقال داد. روش کار به این صورت است که ابتدا گیرنده مکانیکی گیر (Gripper) به طرح مناسب به جای میوه بر می‌گردد. سپس به وسیله مکانیزم بردار، میوه را به جای میوه گرفته و به یکدیگر نزدیک می‌شود. در طراحی این گیرنده از مکانیزم لگ-لغزده استفاده شد. برای اجرای زمان‌بندی مناسب در گرفتن و رها کردن میوه، عضوی برای عرضه حرکت خود را از پادامک شیپ سازی (Working Model) دریافت می‌کند. تحلیل سیمپلیکسیک و دینامیکی لازم برای گیر انجام و عملکرد آن توسط نرم‌افزار پردازش اطلاعاتی و دینامیکی انجام گردد. پس از انجام تحلیل سیمپلیکسیک، معادله حاکم بر حرکت یا دگر حرکت بازو استخراج و تحلیل نما دینامیکی انجام گردد. از آزمایش‌هایی با مشاهده عملکرد گیر و بازو در کار باکتری‌ها انجام گرفت. در این آزمایش‌ها از میوه‌های کروی شکلی چون سیب و پرتقال استفاده شد. در این بررسی مشخص شد که گیر برای است بای میوه‌های کروی شکلی مانند سیب به‌طور مؤثری عمل گرفتن و رها کردن را به‌طور گسترده‌ای می‌کند. همچنین می‌توان گفت در این انجام حرکت پوسته و بدن ضریب مشاهده شد. برای میوه‌هایی با ابعاد بزرگ‌تر با اعمال اصلاحاتی جنگلی در انجام‌هایی که گیر بر می‌توان عمل گرفتن و رها کردن را به‌طور مطلوبی به انجام رساند.

واژه‌های کلیدی: انتقال مکانیکی، بازو، میوه کروی شکل، گیر

مقامه

امروزه در بسیاری از فعالیت‌های صنعتی استفاده از نیروی انسانی جای خود را به نیروی مکانیکی و در بسیاری از مواد به نیروی مکانیکی مانند بای ربات‌ها و اگزود نموده است. این مسئله مکانیکی خودکار قابل‌توجه ساخت‌های زیبایی بی‌پدید

1. به ترتیب دانشجوی سالی کارشناسی ارشد و استاد مهندسی مکانیک دانشگاه فردوسی مشهد، دانشکده کشاورزی دانشگاه صنعتی اصفهان
2. دانشیار مهندسی مکانیک، دانشکده مهندسی مکانیک دانشگاه صنعتی اصفهان

185
فرنگی که یکی از کارهای پرجمعیت و خسته کننده است، امروزه توسط ربات‌ها انجام می‌شود. کنترل و همکاران (2) یک بازی رباتیک به فن درجه آزادی برای برداشت کوچک‌های طراحی کردن که در آن از عمل مکش برای جدای کردن گویچه از بوته استفاده شده است.

یکی از قسمت‌های مهم پازوسی‌که عمل برداشت و گذاشتن‌ها انجام می‌دهد استمالات گریپر آنها می‌باشد. در اغلب موارد لازم است در برداشت میوه به دلیل بانف حساس آن، چنگال کمترین آسیب را به آن وارد کند. برای این منظور تحقیقات زیادی در طراحی گریپر و چنگال‌های آن صورت گرفته است که لازم است این منظور در مورد سنسورهای توری به منظور تعیین مقدار توری امکانی به جسم می‌باشد (8).

بهوروز و پیام تانا (3) یک مکانیزم گریپر را با استفاده از عضوهای انسانی و یا ایجاد کردن که قادر به برداشت اجسام در امکان‌ها و اندازه‌های متنوعی بودی. تیپ‌های همکاران (9) طرحی را جهت نشان داد که توانایی این ارشاد داشته در آن گریپر به صورت در سوزن لگن بوده که نسبت به همه به صورت مورد حکم کرده و یا کاملاً آسیب نشان دارد بر می‌گردد.

بر اساس رنگ و یا اندازه نیز با دقت انجام شود. استفاده از رباتیک به خصوصیات مختلف کشاورزی به دهه قبل بر می‌گردد که در آن زمان مطالعه بر روی ربات برداشت کننده کوه فرنگی در زاون آغاز گردید (7). از آن زمان به بعد رباتولوژی رباتیک برای سیستم از موارد زیستی در جهان به کار برده شده است. انواع ربات‌هایی از ربات‌های فلزی و نشا کار در زاون مرقس شده است. در یک سیستم تمام خودکار، دسته‌های نهال کل از یک طرف وارد می‌شود و سپس یک ردپتهای نهال را تک تک برداشت و روز یک نوار تقالید می‌دهد. ربات دوگانه‌هایی نهال را برداشت و درون سینی مخصوصی چک‌دوزی می‌کند. در انجام عمل برداشت و گذاشتن (Pick and place) (PP) توسط بارزه‌های چند درجه (7).

استفاده از پازوسی‌که مکانیکی ماهر در برداشت محصولات کشاورزی نیز کاربرد زیادی دارد. به عنوان مثال، برداشت توت
طراحی ساخت مکانیزم بردارنده و انتقال دهنده میوه‌های کروی شکل

شامل طراحی مسیر حرکت مکانیزم جابجا کننده در فضای مفصول، تعبیه مدت زمان و سرعت انتقال و توقف، طراحی ابعاد عضوهای مکانیزم و همچنین طراحی مکانیزم باشند. در تحلیل دینامیکی مانند مقادیر نیروهای اعمال شده در مفصل ابعاد تغییر درد و با انتخاب جنس مناسبی برای اعضا طراحی آن انجام شد.

مواد و روش‌ها

طراحی مکانیزم (مانیشین) بردارنده و انتقال دهنده

مانیشین بردارنده و انتقال دهنده از دو قسمت اصلی تشکیل شده است. قسمت اول وظیفه گرفتن و نگهداری جسم بر بر عهده دارد که اصطلاحاً گیرب زیاد هم شود. قسمت دوم وظیفه جابجا گیرب را به عهده دارد. با این که این قسمت باز و می‌گردد، با توجه به نیازهای طرح هر قسمت به طور جداگانه طراحی و ساخته می‌شود و در نهایت با نصب گیرب بر روی پایژ، مانیشین بردارنده و انتقال دهنده شکل می‌گیرد. این طراحی گیرب بر اساس نیازهای طرح انجام شده و سپس بر اساس ابعاد و اندازه گیرب و همچنین محدوده کاری (Task space) مکانیزم بازو طراحی می‌شود.

طراحی واحد بردارنده محصول (گیرب)

اولین قدم در طراحی مانیشین پپ طراحی یک گیرب مناسب برای گرفتن اجسام به منظور جابجا کردن معیار آنها می‌باشد. مکانیزم گیرب در عین سادگی، باید بهطور کارآمد و دقت عمل کند زیرا، خطای کاری گیرب ممکن است باعث اندکین و یا بردن شدن جسم شود. برای گیرب مشخصات زیر در نظر گرفته شده است:

- اندازه‌ای گیرب: گرفتن و نگهداری میوه‌های کروی با قطری بین 3 تا 9 سانتی‌متر (4).
- آسیب ترساندن به بافت میوه در هنگام گرفتن، نگهداری و رها کردن
- انجام عمل گرفتن، نگهداری و رها کردن بر اساس

زمان بندی مناسب برای کار حکمتی. برای این منظور لازم است انجامشی های گیرب که به‌طور جسم در نظر گرفته شده باشد می‌باشد. برای این منظور لازم است انجامشی های گیرب که به‌طور جسم در نظر گرفته شده باشد
طرحی برآمدگی

به منظور اعلام حکمت نوسانی زمان بنده شده به عضو لغزنه مکانیزم لگ - لغزنه باید پروفیل مناسبی برای پرادامک طراحی شود. بر اساس برآمدگی حکمتی مورد نیاز و کورس حکمت لغزنه فرضیات زیر در نظر گرفته می‌شوند:

\[
\begin{align*}
S_{BH} &= 10 \text{ cm} \\
\phi_p &= \phi_N = 45^\circ \\
\phi_{R1} &= \phi_{R2} = 22^\circ
\end{align*}
\]

روابط

به ترتیب عبارت‌اند از زاویهای دوران پرادامک برای لغزنه انت‌گشتی، و مانند انت‌گشتی های گمی‌ساز و یا انت‌گشتی های گمی‌ساز و/یا مانند انت‌گشتی های گمی‌ساز ویا شده‌اند.

برای تعیین مکانیزم دوران پرادامک و طراحی پروفیل آن از روش فلوکه (1) و از تعداد متقارن استفاده گردیده. شکل 3 طرح <V_B> مکانیزم را نشان می‌دهد. در این شکل سرعت میانگین شده لغزنه و زاویه انتقال هستند. به منظور تعیین پرست پرادامک از نظر افزایش:\n
\[A, A_1, A_2, A_3 = 37\text{ cm} \]
\[A, B_1, A_1 = 10\text{ cm} \]
\[B, B_1 = 11\text{ cm} \]
\[\alpha = 15^\circ \]
\[\beta = 15^\circ \]
شکل ۲: نمودار تغییرات سرعت و شتاب لغزندگی بر حسب زاویه

چرخش بادامک

شکل ۳: طراحی بادامک برای گریپر

شکل ۴: نمایش پردازی عضوهای مکانیزم

$A_B a = \frac{\pi}{6} \text{cm}$

شعاع دایره بزرگ بادامک

تکه‌تکه سینماتیکی

در مکانیزم گریپر به صورت لنگ - لغزندگی است محوریت، شتابت و شتاب عضو لغزندگی در هر لحظه معلوم می‌باشد. کوس هر حکم لغزندگی $S_{HF} = 3.2 \text{cm}$ و زاویه باز و فشار $\phi_H = 90^\circ$ است. با بررسی آن اگر بخواهیم لغزندگی در مدت 2 ثانیه کوس حکمی خود را طی کند لازم است سرعت زاویهای بادامک معادل $\omega_0 = 30 \, \text{deg/s} = 0.52 \, \text{rad/s}$ باشد. بر این اساس سینماتیکی لغزندگی در حکم‌های رفت و برگشت معلوم می‌شود. برای تعیین مشخصات سینماتیکی بیچه اعضای مکانیزم، از روش اعداد مختلط استفاده گردید (شکل ۵). چون مکانیزم

معادله حکم لغزندگی به صورت $S = S_H h - F(z)$ (ز) و $V_B = \frac{S_h \omega_F}{\phi_p}$ می‌باشد که
با دوبار مشتق کردن این رابطه بر حسب زمان به ترتیب معادلات سرعت و شتاب حکم لغزندگی به صورت

$\phi_H = \frac{S_h \omega_F}{\phi_p}$

می‌آید. شکل ۴ نمودار تغییرات سرعت و شتاب خطي لغزندگی را بر حسب زاویه چرخش بادامک (از صفر تا 30 درجه) نشان می‌دهد.

نتایج طراحی بادامک به قرار زیر است:

$B_i A_B = 3 \text{cm}$

کوس حکم بادامک

$A_B I = \frac{\pi}{6} \text{cm}$

شعاع دایره کوچک بادامک

شکل ۵: نمایش پردازی عضوهای مکانیزم

189
تغییرین‌های دینامیکی مکانیزم گیربیر
برای مکانیزم گیربیر تغییرین دینامیکی در حركت‌های رفت و برگشت با انجام گیرد. برای این منظور هر یک از حركت‌های رفت و برگشت در 11 وضعیت مورد تحلیل قرار گرفتند. شکل 7 دیاگرام آزاد عضوی‌های مکانیزم را در حركت رفت نشان می‌دهد.

فرم ماتریسی معادلات حركت را می‌توان به صورت زیر نوشت (6):

\[\begin{bmatrix} A \end{bmatrix} \mathbf{F} = \mathbf{B} \]

در این معادله \(\mathbf{A} \) آراپه مولفه‌های نیروی در مفاصل مکانیزم و \(\mathbf{B} \) آراپه مولفه‌های نیروی ارتعاشی عضو‌ها می‌باشد. در هم‌های ماتریس (6) با استفاده از معادلات دینامیکی اعضاء مشخص می‌شود. بدین ترتیب در هر سو فعیتی از مکانیزم با استفاده از رابطه زیر می‌توان آراپه \(\mathbf{F} \) را تعیین نمود:

\[\mathbf{F} = [\mathbf{A}]^{-1} \mathbf{B} \]

آراپه نیروهای مفصلی \(\mathbf{F} \) توسط برنامه نوشته شده در نرم‌افزار MATLAB محاسبه گردیده و نمودار تغییرات این نیروها در تکرار دریافتی جریمه و نمودار تغییرات این نیروها در MATLAB پخش نتایج آزاد شدند.

در تحلیل دینامیکی مکانیزم گیربیر لازم است جرم اعضای منظور گرفته شود. برای این منظور جنس اعضای مکانیزم از فیبر نخ دار با ایزوینگ انتخاب گردید. فیبر نخ دار بکی از موادی مورد مطالعه در پروپتی‌های فشار خاک‌پوشان دیده شده است (Loop closure).

نتیجه

گیربیر به صورت متقارن است. تحلیل سینماتیکی فقط برای یک نمایان شد.

با استفاده از قانون حلقه بسته (Loop closure) می‌توان نوشت:

\[r_i e_{i''} + r_j e_{j''} = r_k e_{k''} + r_s \]

با دو بار مشتف کرید این معادله و حمل دستگاه معادلات حاصل از جداسازی مولفه‌های حقیقی و موهومی می‌توان مقادیر مجهول \(r_k, r_i, r_j, r_s \) را تعیین کرد. به منظور تعیین سرعت و شتاب خلکی تلقی عضو رابط یا کورب و عضو نیز نیاز است به اعداد مختصات مستفاده گردید (5). به این ترتیب وضوح سینماتیکی مکانیزم را می‌توان در هر لحظه به دست آورد.

تعیین زاویه فشار بادامک

شکل 8 روابط فشار بادامک را که به صورت ترسمی به‌دست آمده است، نشان می‌دهد. 11 نیرو در حمر رفت \(\phi_p \) و 11 نیرو در حمر بزگشت \(\phi_N \) به نظر گرفته شده است. بر این اساس با انتخاب بادامک و نیروی بین‌مراتبی معادلات فشار در حمر رفت 29 درجه در موقعیت بهم و در حمر بزگشت 49 درجه در موقعیت ششم می‌باشد.

190
شکل ۹: مشخصات پارامتری عضو‌های بازو

مسیر حرکتی از ارتفاع نقاط ابتدا و پایانی کمتر باشد.

نکته دیگر اینکه جهت‌گیری گیربست در نتیجه جهت‌گیری جسم مورد نظر (موبایل) در تمام نقاط مسیر باید حفظ شود. می‌توانیم نمودار۴ مبنا یک درجه آزادی لگه می‌باشد. این نتایج را برآورده سازد. در این مکانیزم فرض شد که پرتاب جسم با فاصله از مرکز کوپر فاصله دارد (End-effector).

بردار موقعیت پنجه بازو نسبت به دستگاه با یک ابعاد است از:

\[\mathbf{e} = (L_1 \cos \theta_1 + \frac{L_2}{2}) \mathbf{i} + (L_1 \sin \theta_1 - h) \mathbf{j} \]

می‌باشد که مقادیر آنها در زیر مشاهده می‌شوند.

\[m_r = 0.15 \text{ kg} \] \[L_r = \frac{98}{16} \times 10^{-3} \text{ kg.m} \]

\[m_p = 0.15 \text{ kg} \] \[L_p = \frac{98}{16} \times 10^{-3} \text{ kg.m} \]

\[m_o = 0.2 \text{ kg} \] \[L_o = \frac{98}{16} \times 10^{-3} \text{ kg.m} \]

\[m_s = 0.04 \text{ kg} \]

\[K = 5 \text{ N/cm} \]

با صرف نظر کردن از گریز اینکه عضو‌ها در هر لحظه در نیرو و بک گشتاور به باهامک وارد می‌شود. این نیروها شامل نیروی بین باهامک و لغزندی و نیروی عضوی به شاfts باهامک است که مناسب Fc و که یکی از مهم‌ترین گستاور اعمالی به شاfts موتور که مستقیماً به باهامک کوپر شده است، توام لازم برای موتور محاسبه گردد.

ضرایح مکانیزم بازو

در این قسمت بازوی طراحی می‌شود که به‌وسیله آن گریز بتواند میان دو نقطه مشخص حرکت کند و جسم مورد نظر را از یک نقطه به نقطه دیگر انتقال دهد. بنابراین، نقاط برداشت و کششات از بین معلوم می‌شوند. همچنین ارتفاع نقاط

\[f = \frac{m_1 L_1 + m_2 L_2}{m_1 + m_2} \]

\[g = \frac{m_1 L_1 - m_2 L_2}{m_1 + m_2} \]

\[h = \frac{m_1 L_1}{m_1 + m_2} \]

\[\theta = \frac{m_1 L_1}{m_1 + m_2} \]

\[\theta_1 = \frac{m_1 L_1}{m_1 + m_2} \]

شکل ۸: بردار مکان پنجه

است که گلاهو بر مقاومت بالای مکانیکی، بسیار سبک است.
شکل ۱۰. برنامه حرکتی عضو محرک

درون تمامی نهایت A موقتی برداشتن جسم و نهایت B موقتی کل نهایت A موقتی برداشتن جسم و نهایت B موقتی

کل نهایت A موقتی برداشتن جسم و نهایت B موقتی

با استفاده از روش نیوتن-اویلر می‌توان نیروهای مغذی را محاسبه نمود (۶). با رسم دیگر آزاد عضوها و در نظر گرفتن معادلات دینامیکی اعضای، قلم ماتریسی معادلات به صورت زیر یازند:

 پی اف می‌شود:

[۷] \[\vec{F}_t = \vec{D} \]

در این معادله [۷] ماتریس ضرایب \(\vec{D} \) آزادی نیروهای ارتباطی \(\vec{F}_t \) و آزادی نیروهای مفصل مکانیزم بازو است که از رابطه زیر تغییر می‌گردد:

[۸] \[\vec{F}_t = [\vec{Z}]^{-1} \vec{D} \]

تا این مرحله روابط لاژ برای انجام تحلیل های دینامیکی مکانیزم بازو به صورت پارامتری به دست آمده است. این اندازه‌گیری ابعاد عضوها مکانیزم بازو انجام شده است. تصمیم این بستگی به محدوده کاری مکانیزم بازو و ابعاد گیره‌های شناخته شده \(h = 0.8 \) cm و \(L_0 = 0.6 \) cm و \(L_1 = L_2 = L = 3 \) cm

بیشتر شده، در اینصورت روابط حاکم بر موجودیت پنجه به صورت زیر به دست می‌آید:

[۹] \[
X_0 = 3 \cos \alpha_1 + 2 \cos \alpha_2 + 2 \cos \alpha_3 + 2 \cos \alpha_4 + 3 \cos \alpha_5 \\
Y_0 = 3 \sin \alpha_1 - 2 \sin \alpha_2 + 2 \sin \alpha_3 + 2 \sin \alpha_4 + 3 \sin \alpha_5
\]

این رابطه مختصات پنجه را در حاکم بر معادله زیر به صورت زیر به دست می‌آید:

[۱۰] \[\vec{q}_1^{A \rightarrow B} (t) = \left(\begin{array}{c}
\frac{3 \alpha_1}{2} \\
\frac{3 \alpha_2}{2} \\
\frac{3 \alpha_3}{2} \\
\frac{3 \alpha_4}{2} \\
\frac{3 \alpha_5}{2}
\end{array} \right) \]

اگر نیروهای پنجه موتوری تا \(A \) را که در مدت \(T \) نهایت \(A \) را بزرگ نیروهای پنجه موتوری تا \(A \) را که در مدت \(T \) نهایت \(A \) را بزرگ
شکل 11. چگونگی فرآیندی میوه درون اینگشتی

برای این بررسی وضعیت هندسی فرآیندی میوه درون اینگشتی، مقدار حسکت بزاو (معادله 12)، مقدار کشش‌ها در هر لحظه به‌دست آورد. سپس براساس برنامه حسکت که برای بازو طرح گردید، نیروهای مفصلی محاسبه می‌شوند. برای این منظور از معادلات حسکت نیوتن - اویلر (معادله 8) استفاده می‌شود. نمودارهای تغییرات حسکت و موتور در بازو استفاده می‌شوند. بدین منظور لازم است ابعاد سینماتیک و خصوصیات جریمی عضوهای بازو مشخص نشاند. پس از مدل‌سازی عضوهای بازو توسط نرم‌افزار Solid works بدین خصوصیات جریمی آنها از قبیل جرم، ممان ایبرسی جرمی حول مرکز تلف و موقعیت مرکز تلف مشخص شدن، این تابع در زیر مشاهده می‌گردد:

\[q_5 ^2 \approx \Lambda (1) = - \lambda ^2 (1) \approx \frac {32 \times 32} {31} \left(\frac {32} {31}
ight) ^2 \approx 203904 \]

[12] برای این بررسی وضعیت هندسی فرآیندی میوه درون اینگشتی بازو تعین شود. برای این منظور می‌توان با نوار داده (1) چگونگی فرآیندی میوه درون اینگشتی ها 27/1 نیوتن می‌باشد.
جدول 1 نتایج بررسی هندسی نحوه قرار گیری میوه درون گردبر

<table>
<thead>
<tr>
<th>F_{min} (N)</th>
<th>h' (cm)</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>قطر میوه</th>
<th>D (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{86}$</td>
<td>$\frac{3}{25}$</td>
<td>$\frac{5}{15}$</td>
<td>$\frac{6}{5}$</td>
<td>$\frac{7}{8}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{27}$</td>
<td>$\frac{3}{25}$</td>
<td>$\frac{5}{15}$</td>
<td>$\frac{6}{5}$</td>
<td>$\frac{7}{8}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{23}$</td>
<td>$\frac{3}{25}$</td>
<td>$\frac{5}{15}$</td>
<td>$\frac{6}{5}$</td>
<td>$\frac{7}{8}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{22}$</td>
<td>$\frac{3}{25}$</td>
<td>$\frac{5}{15}$</td>
<td>$\frac{6}{5}$</td>
<td>$\frac{7}{8}$</td>
<td></td>
</tr>
</tbody>
</table>

شکل 12 نیروهای منفی مکانیزم گردبر در حرکت رفت

اگر شاخص‌های گردبر اطمینان حاصل شد، نمودار تغییرات نیروی انرژی وارد بر جسم در قسمت نتایج ارائه شده است.

نتایج و بحث

شکل 12 نمودار تغییرات نیروهای منفی مکانیزم گردبر را در حرکت رفت نشان می‌دهد. با توجه به اینکه مقادیر این نیروها بهبود کم است می‌توان از مقاومت اعتیادی مکانیزم اطمینان حاصل نمود.

با دو بار مشتق گیری از معادله 4، مولفه‌های شتاب خطي مرکز تقل میوه درون انگشتی ها از روابط زیر به‌دست می‌آیند:

$A_x = -l, (\ddot{q}_x \sin \theta_x + \dot{q}_x \cos \theta_x)$

$A_y = l, (\ddot{q}_x \cos \theta_x - \dot{q}_x \sin \theta_x)$

مولفه‌های نیروی انرژی در راستای x و y ترتیب برای محاسبه بود. بر اساس نیروهای اینرسی وارد $m_x A_x$ و $m_y A_y$ بر جسم در طول حرکت، از باقی ماندن جسم درون...
شکل 13. سرعت و شتاب زاویه‌ای عضو مکانیزم بازو

شکل 14. نمودار تغییرات گشتاور مورد نیاز موتور بازو در یک سیکل حرکتی

با توجه به شکل 12، بیشترین نیروی اعمالی به شافت پادامک، 17 نیوتن است که باعث ایجاد نش یبردی غیر قابل ملاحظه‌ای در شافت پادامک می‌شود. همچنین با محاسبه بیشترین گشتاور اعمالی به موتور پادامک، توان مورد نیاز موتور به مقدار 24/0 وات محاسبه شد.

با در نظر گرفتن برخی مکانیسم‌های بازو (شکل 10)، نمودار سرعت و شتاب زاویه‌ای عضو محرک به دست آمده و در شکل 13 مشاهده می‌شود.
شکل 15. نمودار تغییرات پراپلر در منافذ مکانیزم پاژو

شکل 16. مولفهای بارور ایرانی وارد بر جسم

مقدر نیرو در مفصل A و به مقدار ۲۰/۲ نیوتن است. شکل 16 نمودار تغییرات مولفهای بارور ایرانی وارد بر جسم را در طول حرکت در پناه زمینی تا ۱۲ ثانیه نشان می‌دهد. مولفه F_r در راستای بارور و وزن جسم و مولفه F_w در F_r راستای عمود بر بارور و وزن هستند. با ملاحظه مقدار مولفه F_r و مقایسه آن با حداقل نیروی لازم برای خروج جسم از درون و
مکانیزم گیربکس مفصل بودن، از قسمت میانی نیز به شافت مفصل پایه قدن. بیدن ترتب کاملاً آنها در حد قابل قبولی کنترل شد. موتور مورد استفاده برای گیربکس یک مونتور Maxon 24 ولت، 1 آمپر ساخت شرکت است. بیدن ترتب مجموعه گیربکس به موشن پایه قدن در مکانیزم پایه قدن به عضو محرک از مکانیزم مفصلی در طول حرکت مفعولین شد.

تکه‌سازی گیربکس و بارور در ساخت مکانیزم گیربکس به صورت 17 نشان داده شد. جنس قطرات از اهمیت برخوردار است. جنس مناسب، جنسی است که علاوه بر داشتن استحکام لازم از جرم مخصوص کمی برخوردار باشد. زیرا جرم مشخص زیاد در نهایت باعث افزایش وزن مجموعه گیربکس می‌شود. جنسی که برای ساخت اکثر قطعات گیربکس از آن استفاده شد ایزوتوکس با فیبر نیکر می‌باشد.

شکل 17. نمایی از گیربکس

اینگشتی‌ها در میان پاییزه که مقدار این نیرو در حفظ نیست که بتواند جسم را از اینگشتی‌ها خارج کند. بنابراین می‌توان از براق مانند جسم درون اینگشتی‌ها در طول حرکت مفعولین شد.

شکل 18. مکانیزم بازو

مکانیزم گیربکس مفصل بودن، از قسمت میانی نیز به شافت مفصل پایه قدن. بیدن ترتب کاملاً آنها در حد قابل قبولی کنترل شد. موتور مورد استفاده برای گیربکس یک مونتور Maxon 24 ولت، 1 آمپر ساخت شرکت است. بیدن ترتب مجموعه گیربکس به موشن پایه قدن در مکانیزم پایه قدن به عضو محرک از مکانیزم مفصلی در طول حرکت مفعولین شد.

شکل 17. نمایی از گیربکس

انگشتی‌ها در میان پاییزه که مقدار این نیرو در حفظ نیست که بتواند جسم را از اینگشتی‌ها خارج کند. بنابراین می‌توان از براق مانند جسم درون اینگشتی‌ها در طول حرکت مفعولین شد.

شکل 18. مکانیزم بازو

مکانیزم گیربکس مفصل بودن، از قسمت میانی نیز به شافت مفصل پایه قدن. بیدن ترتب کاملاً آنها در حد قابل قبولی کنترل شد. موتور مورد استفاده برای گیربکس یک مونتور Maxon 24 ولت، 1 آمپر ساخت شرکت است. بیدن ترتب مجموعه گیربکس به موشن پایه قدن در مکانیزم پایه قدن به عضو محرک از مکانیزم مفصلی در طول حرکت مفعولین شد.
شکل 19 نمايي كلي از مكانيزم پازو و گريپر

شکل آلومنيومی که از بک طرف به بدنه گريپر و در طرف ديگر به عضو کولر پچ شده بودن استفاده گردید. شکل 19 نمايي كلي از طرح ساخته شده را نشان مي دهد.

نتيجه گري

در اين مقاله مانياني طراحي گريپر که تواناً ميوههای کروي به قطر 5 تا 9 سانتيمتر را از نقاطي مشخص به نقطه دیگر انقلاد دهد. این مانيل را در قسمت تشکيل شده است. قسمت اول، گريپر است که توسط آن عمل گرفتن و رها كردن جسم انجام مي شود. طرح گريپر به گونه ای است که حتی العکس به بافت ميوه آسبي نرساند. قسمت دوم، مكانيزم پازو است که عمل انتقال گريپر و ميوه را با حداکثر درجاي آزادى ممکن يبر عهد دارد. پس از ساخت دستگاه به مياني رسند. تعداد هریمیه که در آزمایش هاي بر روی جنده نوع ميوه کروي همچون سبب پرتغال و لیموکرين انجام شد. يا انجام اين آزمایش ها مشخص شد که اگر چه گريپر قادر اين ميوهها را به خوبی در برگرد و آسپري به بافت آنها وارد نشود ولی با اعمال تغييراتى
هیچ چنین اعمال پک سیستم کنتور

Closed loop

در این طرح، برای ساخت عضووای مکانیزم بازو می‌توان

خواهد شد.

ضخامت ورق آلومینیوم را کاهش داد و با تغییراتی جزئی از

وزن عضوها کاست. بدين ترپیب دستگاه بيته شده و قابلیت

منابع مورد استفاده