مطالعه تفکیک اجزای چربی شیر به روش کریستالیزاسیون جزء به جزء

مجرد جمشیدیان، محمدعلی سحی و محسن برزگر

چکیده

به منظور اصلاح چربی شیر، کریستالیزاسیون جزء به جزء از سرم گیری با دکانتر در سه دامنه دسای 35-30، 25-20 و 15-10 درجه سانتی گراد و سه زمان کریستالیزاسیون 15، 20 و 25 ساعت انجام گرفت. در هر مرحله پس از پایان زمان مورد تجزیه جزء به جزء استارا توسط سانتریفیوژ (14000 rpm) به مدت زمان 15 دقیقه جدا شدند. جزء مایع یا اولین بانک مانده وارد مرحله بعد کریستالیزاسیون (Low melting fraction) LMF به جزء گردیده و این عمل به مدت 15 دقیقه ادامه می‌آمد. جزء اکثریتی جزء با نطفه ذوب پایین با (High melting fraction) HMF و جزء با نطفه ذوب بالا با (Middle melting fraction) MMF متوسط یا (Solid fat content) SFC می‌باشد. در همان‌طور که نشان داده شد در نتیجه گردیده کریستالیزاسیون بهترین از MMF و روکشی بستنی از HMF انتخاب استفاده شد.

واژه‌های کلیدی: چربی شیر، کریستالیزاسیون جزء به جزء

مقدمه

چربی شیر پیچیده ترین چربی طبیعی و تركیبی از آسیل گلبرسول هاست که دارای منوالوکی 180-270 دالتون بوده و شامل اسیدهای چرب متنوع از تعداد کریز می‌باشد. چربی شیر همچنین دارای مقداری کلسترول بوده و تركیب اسیدهای چرب آن منحصر به فرد است. تركیب پیچیده اسیدهای چرب دانه طول زنجیر اسید چرب، میزان غیر

1. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشیار و استاد Gespräch و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

201
فروملوسین‌های چربی موارد غذایی به کار برد (7). هریا و همکاران سنتیکی تیولر چربی کلیه‌ای را بررسی نمودند (11). اوش و همکاران آن کربن‌لاتراسیون جز، به جز، را بر روی افرازیان مقدار اسید لنولینیسیس کتوگه همکاران را جز، آرامش یافتند. این پژوهش از تشکیل، برش، و نگهداری خطر ای با بیماری‌های قلبی و عروقی آن نسبت داد (3). از آنجا که چربی شیر دارای ترکیب، شکلات، تانه‌ای، گلیسرول‌ها، کربن‌لاتراسیون‌های لیپی، پوشش‌های شورت‌برگی، موارد آبیشی و دراوی استفاده کرده (12).

برای نخستین مرتبه به محاصب کربن‌لاتراسیون جز به جز در آب‌ها توسط وارک‌دانکن رونگ کاپان از سریالیست پی برده شد (16). رونگ گرم مانع که در داخل پشته‌های چوبی بلند به ریخته می‌شد. زمانی که به سمت آب و چیزی خشک کنترل اربوی حمل می‌شد سرده گسترش احتمالاً حکمت کشتن سپس هم آرام آنها گردد و در نتیجه روحی بلوئین و جز، به جز، می‌شد. بعدها قسمتی از آن به بلوئین شده بود توسط گردن که در این کار مورد ارزیابی قرار گرفت. آنها در این مطالعه به جز، استندریفم در صعبت امکان‌ها و محافله، سپس هم در (16) سال 1980 تجویز از این دما برای کربن‌لاتراسیون

به جز، به جز چربی استفاده نمود و دو به ترتیب و سخت را جداسازی کرده که اختلاف بین نقاط نمودشان این دو جز در 16/170C و اختلاف بین عده ای با آنها 5/7 بود (10). انتشار و همکاران پایان استفاده کردن (1). کالبیکی و همکاران قابلیت استفاده از اجزای چربی شیر را در کرده گسترشی سرده بررسی کردن (12). دیفس موری کاملاً بیر کربن‌لاتراسیون جز به جز چربی شیر و عوامل مؤثر بر آن ارائه نمود و یک پیشنهاد کرده که اجزای چربی شیر را می‌توان به تهیه‌ای به صورت مخلوط با نسبت‌های مختلف در

202
مطالعه تفکیک اجزای چربی شیر به روش کریستالیزاسیون جزء به جزء

زمان ۱۳/۵۰ و ۱۸ ساعت برای سه دامنه در ۳۵-۲۵، ۲۵-۲۰ و ۲۰-۱۵ درجه سانتیگراد در دمای ۵ درجه سانتیگراد در دامنه دمای نکه‌داری استفاده شد. در آزمایش‌ها مربوط به نکه‌داری حاصل از درجه‌سنجی گردن که نسبت به محصولات اصلی تندباد حجم زیادی از مصرف کردن کردن‌ها را کم کنند، از میزان واردات این ماده اولیه کاسته می‌شود.

در این تحقیق چربی شیر تحت عمل کریستالیزاسیون جزء به جزء قرارگرفته و سپس بر روی اجزای به دست آمده آزمایش‌های درصد چربی جامد (SFC) و عدد یدهٔ انجم و مقایسهٔ گردید و بر اساس نتایج به دست آمده، کاربرد این جزء در صنایع غذایی معرفی شد.

مواد و روش‌ها

ماده عضده مورد نیاز کره بود که از کارخانه‌های (تولید ساری، جدا شده از تیر گاز خریداری شده از منطقه) و سایر مواد شیمیایی از کمیابی مربوط به اجزای پیشرفته تهیه شد.

تیم خصوصیات شیمیایی کره مورد استفاده

روش کریستالیزاسیون جزء به جزء

در مرحله بعد کره در دمای ۶۵ درجه سانتیگراد دوباره و در این دما توسط دکان‌کش آب گریز (سمر کریز) کردن. بعد از آن روغن کردن در دمای نکه‌داری بشنو. سعی می‌کنیم در دمای ۶۵ درجه سانتیگراد نگهداری شد. در انتخاب دمای ۶۵ درجه سانتیگراد این بود که در این دما کلیه‌های اولیه در دورون چربی و پایدار ترین کریستالهای موجود در آن ذوب شود. (5) روغن کردن سپس در طرف دستگاه بیلور (انکوپاتر دچار حمل) به همراه دستگاه هم‌زون با دور منگیر (VELP, FOAC 22SI) به ریخته بشنو. در دمای مشخص و زمان‌های تعیین شده تیمی گردیده یا تریلیزاسیون جزء به جزء صورت گیرد. سه مدت

203
اندازه‌گیری درصد چربی جامد (SFC) اجزای به دست آمده درصد چربی جامد در یک مخلوط روان یا چربی بسیار مهم بوده و بر نقطه ذوب، پلاستیستیته و خواص فیزیوکیمیایی محصول مؤثر است و دامنه کاربرد آن را مشخص می‌نماید (14). در این روش نمونه چربی ابتدا در هر دمای SFC که اندازه‌گیری گردید به مدت 3 دقیقه نگه‌داری شد و سپس نمونه در محیط فرانت دستگاه (Bruker, Minispec pc 100, Germany) NMR درصد چربی جامد در دامنه دما 40-60 درجه سانتی‌گراد تغییر گردید (81-163).

اندازه‌گیری عدد بند اجزای به دست آمده
از آنجا که عدد بند تیز ملایکی بردی تعیین اختلاف درجه اشباع چربی‌هاست، عدد بند اجزای مطاوم با روش AOCS Cd1-25 اندازه‌گیری شد.

طرح آماری
به منظور بررسی آماری نتایج از طرح تجزیه واریانس (ANOVA) و مقایسه مانگین‌ها از آزمون t چشده و بردی تجزیه و تحلیل آنها از نرم‌افزار آماری SPSS استفاده شده است.

نتایج و بحث
خصوصیات کره اولیه در جدول 1 و عدد بند اجزای به دست آمده

جدول 1. خصوصیات شیمیایی کره مورد استفاده

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>چربی (%)</td>
<td>85</td>
</tr>
<tr>
<td>رطوبت (%)</td>
<td>14/65</td>
</tr>
<tr>
<td>عدد بند</td>
<td>3/5</td>
</tr>
<tr>
<td>عدد صابونی</td>
<td>232/8</td>
</tr>
<tr>
<td>عدد پراکسید</td>
<td>0/4</td>
</tr>
<tr>
<td>عدد آسیبی</td>
<td>2/42</td>
</tr>
</tbody>
</table>
جدول ۲. عدد‌ی‌دنده‌ی اجزای حجمی دست‌آمده از کریستالیزاسیون جزء به جزء تخم‌های چربی

<table>
<thead>
<tr>
<th>عدد‌ی‌دنده‌ی جزء (درصد)</th>
<th>حالت‌ی‌دار (درصد)</th>
<th>حالت‌ی‌دار (درصد)</th>
<th>حالت‌ی‌دار (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ساعت</td>
<td>12.5 ساعت</td>
<td>18 ساعت</td>
<td></td>
</tr>
<tr>
<td>HMF</td>
<td>MMF</td>
<td>LMF</td>
<td></td>
</tr>
<tr>
<td>28/18</td>
<td>28/0.6</td>
<td>28/0.5</td>
<td>35°C</td>
</tr>
<tr>
<td>29/0.6</td>
<td>29/0.5</td>
<td>29/0.4</td>
<td>32/5°C</td>
</tr>
<tr>
<td>49/0.5</td>
<td>49/0.4</td>
<td>49/0.3</td>
<td>10/5°C</td>
</tr>
<tr>
<td>50/0.3</td>
<td>50/0.2</td>
<td>42/0.1</td>
<td>9/5°C</td>
</tr>
<tr>
<td>37/0.1</td>
<td>37/0.0</td>
<td>37/0.0</td>
<td>5°C</td>
</tr>
<tr>
<td>37/0.0</td>
<td>37/0.0</td>
<td>37/0.0</td>
<td></td>
</tr>
<tr>
<td>حروف a و b: نشان دهنده اختلاف معنی‌دار بین اعداد دیده اجزای در سطح 5/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| و حروف c نشان دهنده عدم اختلاف معنی‌دار در این سطح می‌باشد.

جدول ۳. درصد اجزای حجمی دست‌آمده (راندمن) از کریستالیزاسیون جزء به جزء تخم‌های چربی

<table>
<thead>
<tr>
<th>مدت زمان کریستالیزاسیون (ساعت)</th>
<th>جزء</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>13.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>درصد</th>
<th>حالت‌ی‌دار (درصد)</th>
<th>حالت‌ی‌دار (درصد)</th>
<th>حالت‌ی‌دار (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF</td>
<td>MMF</td>
<td>LMF</td>
<td></td>
</tr>
<tr>
<td>18/0</td>
<td>27/8</td>
<td>20</td>
<td>35°C</td>
</tr>
<tr>
<td>35/8</td>
<td>32</td>
<td>29.3</td>
<td>32/5°C</td>
</tr>
<tr>
<td>51/4</td>
<td>41</td>
<td>26/6</td>
<td>9/5°C</td>
</tr>
<tr>
<td>40/5</td>
<td>44/6</td>
<td>45</td>
<td>9/5°C</td>
</tr>
<tr>
<td>28/2</td>
<td>28/1</td>
<td>28/4</td>
<td>7/5°C</td>
</tr>
<tr>
<td>28/4</td>
<td>33/1</td>
<td>15/6</td>
<td>6/5°C</td>
</tr>
<tr>
<td>37/9</td>
<td>37/6</td>
<td>37</td>
<td>5°C</td>
</tr>
<tr>
<td>37/9</td>
<td>37/9</td>
<td>37/9</td>
<td></td>
</tr>
</tbody>
</table>

206
درصد چربی به پنجه‌ها و کبد از نظر HMF4-MMF4، HMF2-MMF2 درصد چربی جامد، اختلاف معنی‌داری دارد. در مقطع 1/2 دیده می شود و نیز می‌توان تحقیق گرفت این روش جداسازی در حد نسبتا زیادی نواحی است اگر احساس از نظر درصد چربی جامد و باطع منفی از نظر نطق ذوب، پلاستیسیته و خواص فیزیکی‌شیمیایی را تطبیق نماید (12).

در مورد این که کدام مدت زمان نگهداری برای کریستالیزاسیون جزء به جزء مناسب پیشنهاد می‌شود نشان می‌دهد (جدول 3-2) مدت زمان 5 ساعت اجرا شکل کامل شیری تری‌گلیسریدهای جامد از روند کره نیاز دارد. در این مدت زمان نگهداری 18 ساعت قیس‌های تیپاتژیدی برای مدت زمان 1/5 ساعت ندارند. به نظر می‌رسد چون مدت زمان مشترک هنوز و وقت و مدت‌بندی است، کریستال‌های زمان 135 flush توصیه می‌شود. همچنین در مورد دامنه‌های مناسب باید گفت که در هر دما درصدی از روند کره به صورت جامد و درصدی به صورت مایع در می‌ای، برای نمونه این درصد در دماهای 12 و 13 درجه سانتی‌گراد، منفی است. بنابراین به توصیه کلی‌گیرانی لازم است این چیز مورد نظر چربی در مسیر غذاپری بررسی شود، آن گاه عمل
جدول 4. مقایسه اجزای به دست آمده به روش کریستالازیون جزء به جزء

<table>
<thead>
<tr>
<th>درصد SFC در دماهای مختلف (°C)</th>
<th>دما جزء</th>
<th>زمان جزء</th>
<th>جدا شده</th>
<th>جدا شده (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
</tr>
</tbody>
</table>

جدول 5. مقایسه اجزای به دست آمده به روش آزمون ۱ جفت شده

207
<table>
<thead>
<tr>
<th>مقایسه جفت به جفت</th>
<th>اختلاف میانگین</th>
<th>جفت شده</th>
<th>معیار</th>
<th>میزان دارد</th>
<th>محاسبه دارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>اجزای به دست آمده</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/۶/۴</td>
<td>MMF5 - LMF5</td>
<td>۸/۴۳</td>
<td>۹/۹۱</td>
<td>۶/۴۵</td>
<td>HMF1 - MMF1</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF6 - MMF6</td>
<td>۵/۶۶</td>
<td>۹/۹۱</td>
<td>۶/۱۰</td>
<td>HMF1 - LMF1</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF6 - LMF6</td>
<td>۱۴/۲۹</td>
<td>۹/۹۵</td>
<td>۴/۰۲</td>
<td>MMF1 - LMF1</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>MMF6 - LMF6</td>
<td>۹/۰۴</td>
<td>۷/۸۵</td>
<td>۱/۹۴</td>
<td>HMF2 - MMF2</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF7 - MMF7</td>
<td>۷/۴۱</td>
<td>۶/۸۵</td>
<td>۷/۳۵</td>
<td>HMF2 - LMF2</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF7 - LMF7</td>
<td>۱۱/۵۰</td>
<td>۶/۸۸</td>
<td>۷/۶۶</td>
<td>MMF3 - LMF3</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>MMF7 - LMF7</td>
<td>۳/۱۹</td>
<td>۴/۳۰</td>
<td>۲/۸۶</td>
<td>HMF3 - MMF3</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF8 - MMF8</td>
<td>۱۱/۹۰</td>
<td>۶/۸۵</td>
<td>۱۱/۸۹</td>
<td>HMF3 - LMF3</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF8 - LMF8</td>
<td>۸/۷۰</td>
<td>۵/۹۱</td>
<td>۸/۲۵</td>
<td>MMF3 - LMF3</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>MMF8 - LMF8</td>
<td>۸/۷۳</td>
<td>۴/۱۵</td>
<td>۵/۶۵</td>
<td>HMF4 - MMF4</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF9 - MMF9</td>
<td>۲/۱۹</td>
<td>۸/۴۰</td>
<td>۷/۸۵</td>
<td>HMF4 - LMF4</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF9 - LMF9</td>
<td>۱۴/۱۳</td>
<td>۷/۸۹</td>
<td>۴/۸۵</td>
<td>MMF4 - LMF4</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>MMF9 - LMF9</td>
<td>۷/۸۹</td>
<td>۶/۷۷</td>
<td>۳/۶۰</td>
<td>HMF5 - MMF5</td>
</tr>
<tr>
<td>/۶/۴</td>
<td>HMF5 - MMF5</td>
<td>۳/۰۷</td>
<td>۶/۷۶</td>
<td>۷/۸۱</td>
<td>HMF5 - LMF5</td>
</tr>
</tbody>
</table>

**: اختلاف معیار در سطح 1/۴

تا حد زیادی رضایت بخش بود. گرچه پیشنهاد می‌شود در بهینه‌سازی روش مورد استفاده که بهبهان کاربردی بهتری در صنعت دارد، مطالعات و تحقیقات دنبال گردد.

نتیجه‌گیری

همان‌طور که جدول ۲ نشان می‌دهد بن تفکر دو عدد یا دو عدد چربی جامد در نتیجه خواص فیزیوکیمیایی بیشتر در دمای هماهنگی در روش‌هایی و در شکلات‌ها به عنوان جایگزین کرده کاکائو مناسب است.