مطالعه تفکیک اجزای چربی شیر به روش کریستالیزاسیون جزء به جزء

محمد جمشیدیان، محمدعلی سحري و محسن برزگر

چکیده

به منظور اصلاح چربی شیر، کریستالیزاسیون جزء به جزء چربی شیر از سرم گیری با دکانتر در سه دامنه دما 20-22، 22-24 و 24-26 درجه سانتی‌گراد و سه زمان کریستالیزاسیون 15 و 18 ساعت انجام گرفت. در هر مرحله سپس از یک چربی شیر جامد با استاندارد توسط ساتن بیروپس (16000 rpm) به مدت زمان 15 دقیقه جدا شد. جزء معایب باعث مانده وارد مرحله بعد کریستالیزاسیون (Low melting fraction) LMF، جزء به جزء گردیده و این عمل تا سه مرحله و تا جداسازی جزء با نطفه ذوب پایین یا (High melting fraction) HMF و جزء با نطفه ذوب بالا یا (Middle melting fraction) MMF متوسط با پایین یا (Wejs) در پایان در 27 NMR به دست آمد. عدد بندی به روش ووجز (Solid fat content) SFC و درصد چربی جامد (Nuclear magnetic resonance) HMF، MMF، LMF متفاوت از هم بوده و دو روش اختلاف معنی داریان داشته. تاثیر نشان داد که عدد پایین و بالا (SFC و اختلاف یا 3/201-1/18 و SFC و اختلاف 3/201-1/18) و می‌تواند در فرولاسیون بستگی از LMF، MMF، SFC و روش رثبت از HMF استفاده نمود.

واژه‌های کلیدی: چربی شیر، کریستالیزاسیون جزء به جزء، فضای فضایی کربنی استیل

مقدمه

چربی شیر پیچیده‌ترین چربی طبیعی و ترکیبی از آسیب گلیسرول‌هایی که دارای وزن مولکولی 182-200 دارای بوده و شامل اسیدهای چرب منتوی از نظر تعداد کربن‌های سبک است. ذوب چربی شیر در دمای 20-24 درجه سانتی‌گراد شده است. دامنه ذوب تأثیر گذار می‌باشد. در دمای اندازه‌گیری 40 درجه سانتی‌گراد فازهای جامد و جامد در کنار یکدیگر بوده و فاصله جامد به تدریج در این دامنه گسترش دوی شده و در می‌شوند (2). نیاز کاهش مصرف کربن در اروپا و آمریکای

1. به ترتیب دانشنامه سایت کارشناسی ارشد، دانشیار و استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

201
شمالی که این فن از مصرف کننده‌ی عضو اثره مرده یا دوازده می‌توان به گرانی می‌کرده‌های خونی و دیگر. یکی از گسترده‌ترین بخش‌های اثره مصرف (Spreadability) تری آلیک مایکروسپورمی‌ای. این ایجاد نیازمند به اندازه آن‌ها که چربی شیردار شدید و قلی و عروقی. این نسبت داد (3). از آن‌ها که چربی شیردار تری آلیک مایکروسپورمی‌ای مختلف با نقیح ذوب متفاوت می‌باشد. می‌توان آنها این جداسازی نمود و از فرآورده‌های متغیر مانند شکلات، تمر، کرکم‌های گردو، الهام‌لیگ، یوشش‌های ترکیبی، چکلدهای کاراملی، از سرخ کردندی. شهرت‌برنگی، مایل آمیختگی و دارویی استفاده کرد (13).

برای تحقیق مربی به محاسبه کریستالیزاسیون جهه به جزء ازدواج عادی وارد کننده‌ی چوبی به روانه‌ی کانال رودخانه‌ی پی‌ی پرده به همین سبب هم در این فن در داخل پی‌سی‌سی چوبی به روانه‌ی کانال رودخانه‌ی پی‌ی پرده به روانه‌ی کانال Rengen

در سال 1990 تجربیات از این دما برای کریستالیزاسیون جهه به جزء چربی استفاده نمود و در نهایت این سیرصناخت تری آلیک مایکروسپورمی‌ای (16) شد. روفین گرم‌سی‌سی به داخل پی‌سی‌سی چوبی به روانه‌ی کانال رودخانه‌ی پی‌ی پرده به روانه‌ی کانال Rengen

هم‌کاران برای جهه به جزء سازی از آن که بیلورین شده و در ترتیب تری آلیک مایکروسپورمی‌ای فوار (14) این دیافتاً که جهه استفاده در صحت پوست‌های و محتواها حساسیت دردرد (7).

از طرف دیگر چربی استفاده شده در صحت غذایی کشور در خیلی مناسب بسیاری هدف مشخص نبود و اغلب از چربی‌های چربی‌های گزینه‌ای استفاده می‌شود. برای مثال در صحت نسخه‌ی چربی چربی‌های نسبت مشخص استفاده گردید. در حالی که اغلب چربی استفاده شده در روکش‌های، چربی بدنی و سیستم انرژی‌بند به یک اختلال یا انجام که در حین مصرف می‌گردد، یا در صحت تکالیف‌های از کروک‌های کانال به همراه خاصیت‌های آن استفاده می‌شود که همگی برای این، قیمت بالایی دارند و سپر انرژی‌پذیری قیمت محصول تمام شده.
مطالعه تفصیلی اجزای چربی شیر به روش کریستالیزاسیون جوت به جزه

زمان ۶، ۱۳/۵ و ۱۸ ساعت برای سه دامنه دمایی ۲۵-۳۵ درجه میکوردند. به نظر می‌رسد با استفاده از جزه سخت، چربی شیر که با طبیعی قیمت پایین تر دانشگاه و می‌تواند جسم زیادی از مصرف کردن کاهش را کم کنند، از میزان واردات این ماده اولیه کاسته می‌شود.

در این تحقیق چربی شیر تحت عمل کریستالیزاسیون جوز به جزه قرارگرفته و سپس بر روی اجزای به دست آمده آزمایش‌های درصد چربی جامد (SFC) و عدد یید انجام و مقایسه گردید و بر اساس نتایج به دست آمده، کاربرد هر جزه در سنای غذایی معرفی شد.

مواد و روش‌ها
ماده عضد مورد نیاز کره بود که از کارخانه پات (تولید سالی، جاده شده از شیر گاو خریداری شده از منطقه) و سایر مواد شیمیایی از کمیابی مراکز در جریان آنالیزهای تهیه شد.

تعریق خصوصیات شیمیایی کره مورد استفاده
در مرحله اول خصوصیات شیمیایی کره شامل مقدار چربی و روتوسیون (SFC) و عدد یید، عدد صابونی و عدد پراکسید طبق روش AOCS انجام گرفت. (۲)

کریستالیزاسیون جوت به جزه
در مرحله بعد کره در دمای ۶۵ درجه سانتی‌گراد درد شده و در این دمای توسط دکتتروت آپ گیری (سمر گیری) گردید. بعد از آن روغن کرده به دست آمده به دمت نیم ساعت در دمای ۶۵ درجه سانتی‌گراد درد شده و برای انتخاب دمای ۵ درجه سانتی‌گراد نگهداری شد. لیفتن آماده دمای ۶۵ درجه سانتی‌گراد بود که در این دمای هسته‌های اولیه به لایه بر روی آن اضافه شد. (۵)

روغن کرده سپس در طرف دستگاه تیلور (اکوپاور یخچالدار) به همراه دستگاه هم‌سوز (با دور معگیر) (VELP, FOCC 22s) ریخته شد و در دمای مشخص و زمان‌های تعیین شده قرار گرفت تا کریستالیزاسیون جوت به جزه صورت گیرد. سه مدت

۲۰۳
<table>
<thead>
<tr>
<th>مقدار</th>
<th>خصوصیات</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>قربانی (1)</td>
</tr>
<tr>
<td>14/65</td>
<td>رطوبت (2)</td>
</tr>
<tr>
<td>0/6</td>
<td>عضد بیشتر (1)</td>
</tr>
<tr>
<td>0/4</td>
<td>عضد صابونی</td>
</tr>
<tr>
<td>0/6</td>
<td>عضد پراکسید</td>
</tr>
<tr>
<td>0/4</td>
<td>عضد أسیدی</td>
</tr>
</tbody>
</table>

اندازه‌گیری درصد چربی جامد (SFC) اجازی به دست آمده درصد چربی جامد در یک مخلوط روغن یا چربی بسیار مهم بوده و بر نقطه ذوب، پلاستیستیسیون و خواص فیزیکی‌شیمیایی محصول مؤثر است و دامنه کاربرد آن مشخص می‌باشد (14). در این روش نمونه چربی ابتدا در هر دمای SFC که اندازه‌گیری گردید به دست داده شده، نکته دارد و سپس نمونه در محضه قرانت دستگاه (Bruker, Minispec pc 100, Germany) NMR درصد چربی جامد در دامنه دمایی 2-40 درجه سانتی‌گراد تعیین گردید. (AOCS Cd16-81)

اندازه‌گیری عدد بید اجزای به دست آمده از آن‌جا که عدد بید تیتر ملکی برای تغییر اختلاف درجه اشباع چربی هاست، عدد بید اجزای مطلق بنا روش AOCS Cd1-25 اندازه‌گیری شد.

طرح آماری

به منظور بررسی آماری تاثیر از طریق تجزیه واریانس (ANOVA) و مقایسه میانگین‌ها از آزمون t یا آزمون F جفت شده و برای تجزیه و تحلیل آنها از نرم‌افزار آماری SPSS استفاده شده است.

نتایج و بحث

خصصی‌های گردش در جدول 1 و عدد بید اجزای به دست
جدول 2. عدد یک اجزای به دست آمده از کریستالیزاسیون جزء به جزء نمونه چربی

<table>
<thead>
<tr>
<th>عدد یک ۱۸ ساعت</th>
<th>۶ ساعت</th>
<th>۱۳/۵ ساعت</th>
<th>جزء یا فراکسیون</th>
<th>حرف a</th>
<th>حرف b</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF</td>
<td>۲۸/۱۷</td>
<td>۲۸/۸۰</td>
<td>۲۸/۱۰</td>
<td>۲۵/۳</td>
<td>۲۲/۵</td>
</tr>
<tr>
<td>MMF</td>
<td>۲۸/۸۰</td>
<td>۲۸/۱۰</td>
<td>۲۸/۱۰</td>
<td>۲۵/۳</td>
<td>۲۲/۵</td>
</tr>
<tr>
<td>LMF</td>
<td>۲۸/۱۰</td>
<td>۲۸/۱۰</td>
<td>۲۸/۱۰</td>
<td>۲۵/۳</td>
<td>۲۲/۵</td>
</tr>
<tr>
<td>حروف a و b: نشان دهنده اختلاف معنی‌دار بین اعداد یک اجزای در سطح ۵% و حروف c نشان دهنده عدم اختلاف معنی‌دار در این سطح می‌باشد.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. درصد اجزای به دست آمده (راندمان) از کریستالیزاسیون جزء به جزء نمونه چربی

<table>
<thead>
<tr>
<th>مدت زمان کریستالیزاسیون (ساعت)</th>
<th>جزء</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸ ساعت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>MMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>LMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۳/۵ ساعت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>MMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>LMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>۶ ساعت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>MMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
<tr>
<td>LMF</td>
<td>۷۷/۸</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

ج: درصد مطلق HMF
ب: درصد مطلق MMF
پ: درصد مطلق LMF

۲۰۵
کریستالیزاسیون جزء به جز، روی آن انجام گیرد و نمی‌توان بدون مشخص نمونه‌های مورد استفاده، بدست‌آوردن جدایی‌سازی از مشخص‌کننده (12). متغیر در مورد روش استفاده می‌باشد که جزء در دستگاه HMF از موجب نشان می‌گردد. با بهتر است جزء به HMF و همچنین جزء، نسبت به جزء در مدارهای مشخص، درصدی بخصوصی چنین می‌باشد همکاری دارد. این نتایج بین درصدی بخصوصی چنین از مدت زمان‌های مختلف تغییر است (17). برای بررسی ممکن است بودن درصدی بخصوصی چنین از دست‌آوردهای جفت شده به روش آزمون 1 مقایسه آماری گردید. و ممکن دارد تفاوت آن مشخص شد.
نتایج این جدول نشان می‌دهد که به جز HMF8-MMF8، HMF5-MMF5، HMF1-MMF1 جفت های HMF4-MMF4، HMF2-MMF2 درصدی بخصوصی از کاهش می‌باشد. از تدریجی بخصوصی مصرف در حد ۲۱ درصدی بخصوصی از کاهش اجرا و یکی از لحاظ فیزیکی در مرحله عمل این فازها کاملاً از یکدیگر مجزا بوده و به راحتی از هم جدا می‌شوند (به شکلی که پس از ساینسفیوز کدن در لایه کاملاً مجزا تشكل می‌شود، لایه زیرین به صورت کاملاً جامد و کریستالیزه و لایه فوقانی به صورت کاملاً مایع. ولی همان گونه که در که دو روی زاویه ماده به دام آمده در فاز جامد سبب کاهش درصد بخصوصی جذب سیالی در این امر موجب زیادی بودن درصد بخصوصی همکاری با بعضی از اجرا جدایی توسط ساینسفیوز گردید) (13). اگر جدایی‌سازی فازها به صورت کاملاً انجام گیرد، درصدی بخصوصی جذب آن‌ها نیز تغییر کرده و اختلال بین اجرا بازور خواهد بود. بنابراین بهتر است از روش‌های جدایی‌سازی پیچیده‌تر با راندمان بالاتر مانند صاف کننده استفاده گردد (16) اگر چه منجر به افزایش هزینه این فرایند می‌گردد. از طرفی هم‌اکنون از این پوشه‌های توسطی روش مزبور استفاده گردد و نتایج آن تبدیل صنعتی بیشتر بود از روش مزبور استفاده گردد و نتایج آن تبدیل

جدول ۲ میانگین درصدی بخصوصی جامد ۲۷ جزء جدا شده از نمونه چربی (9 چهره از هر کدام از دستگاه‌های NMR در دستگاه HMF، MMF و LLF) نسبت به جزء در دستگاه‌های مختلف متفاوت نشان می‌دهند. با توجه به نتایج این جدول مشخص می‌شود که جزء MMF نسبت به جزء HMF و پس چنین جزء، نسبت به جزء در دستگاه‌های مشخص، درصدی بخصوصی چنین بالاتری دارد. این نتایج بین درصدی بخصوصی چنین از مدت زمان‌های مختلف تغییر است (17). برای بررسی ممکن است بودن درصدی بخصوصی چنین از دست‌آوردهای جفت شده به روش آزمون 1 مقایسه آماری گردید. و ممکن دارد تفاوت آن مشخص شد.

نتایج این جدول نشان می‌دهد که به جز HMF8-MMF8، HMF5-MMF5، HMF1-MMF1 جفت های HMF4-MMF4، HMF2-MMF2 درصدی بخصوصی از کاهش می‌باشد. از تدریجی بخصوصی مصرف در حد ۲۱ درصدی بخصوصی از کاهش اجرا و یکی از لحاظ فیزیکی در مرحله عمل این فازها کاملاً از یکدیگر مجزا بوده و به راحتی از هم جدا می‌شوند (به شکلی که پس از ساینسفیوز کدن در لایه کاملاً مجزا تشكل می‌شود، لایه زیرین به صورت کاملاً جامد و کریستالیزه و لایه فوقانی به صورت کاملاً مایع. ولی همان گونه که در که دو روی زاویه ماده به دام آمده در فاز جامد سبب کاهش درصد بخصوصی جذب سیالی در این امر موجب زیادی بودن درصد بخصوصی همکاری با بعضی از اجرا جدایی توسط ساینسفیوز گردید) (13). اگر جدایی‌سازی فازها به صورت کاملاً انجام گیرد، درصدی بخصوصی جذب آن‌ها نیز تغییر کرده و اختلال بین اجرا بازور خواهد بود. بنابراین بهتر است از روش‌های جدایی‌سازی پیچیده‌تر با راندمان بالاتر مانند صاف کننده استفاده گردد (16) اگر چه منجر به افزایش هزینه این فرایند می‌گردد. از طرفی هم‌اکنون از این پوشه‌های توسطی روش مزبور استفاده گردد و نتایج آن تبدیل صنعتی بیشتر بود از روش مزبور استفاده گردد و نتایج آن تبدیل

در مورد این که کدام مدت زمان نگهداری برای کریستالیزاسیون جزء به جز دو مناسب تر است، نتایج نشان می‌دهد (جدول ۲-۳)، مدت زمان ۶ ساعت اجرا، تکرار تکنیک کاملاً بدون گفت‌های جامد درون کر دیگر تری گلیسریدهای جامد از روان کر دارا و اجرا به دست آمده از مدت زمان نگهداری ۱۸ ساعت نیز تفاوت زیادی با مدت زمان ۱۵ ساعت ندارند، به نظر می‌رسد که مدت زمان نیز مهم‌تر هزینه و وقت بیشتری است، بنابراین زمان ۱۵ ساعت نتوینی. همچنین در مورد دامنه‌های مناسب باید گفت که در هر دو مدت درصدی از روان کر ده به صورت جامد و درصدی به صورت مایع در می‌آید. برای نمونه این درصد در دامنه‌های ۱۲ و ۱۳ درجه سانتی‌گراد متفاوت است، بنابراین به توصیه کالیپر اینم لازم است این نقش مورد نظر بشری در ماده غذایی بررسی شود، آن گاه عمل
جدول 4. مقایسه اجزای به دست آمده به روش کریستالزاسیون جزو به جزو

<table>
<thead>
<tr>
<th>درصد SFC در دماهای مختلف (°C)</th>
<th>زمان جزء</th>
<th>دماه جزء</th>
<th>تعداد</th>
<th>چگونه (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>93</td>
<td>66</td>
<td>9</td>
<td>HMF1</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>62</td>
<td>9</td>
<td>MMF1</td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>59</td>
<td>9</td>
<td>LMF1</td>
</tr>
<tr>
<td>20</td>
<td>47</td>
<td>55</td>
<td>9</td>
<td>HMF2</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>50</td>
<td>9</td>
<td>MMF2</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>50</td>
<td>9</td>
<td>LMF2</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>50</td>
<td>9</td>
<td>MMF3</td>
</tr>
<tr>
<td>0</td>
<td>55</td>
<td>50</td>
<td>9</td>
<td>LMF3</td>
</tr>
<tr>
<td>0</td>
<td>56</td>
<td>50</td>
<td>9</td>
<td>LMF4</td>
</tr>
<tr>
<td>0</td>
<td>57</td>
<td>50</td>
<td>9</td>
<td>LMF5</td>
</tr>
<tr>
<td>0</td>
<td>58</td>
<td>50</td>
<td>9</td>
<td>LMF6</td>
</tr>
<tr>
<td>0</td>
<td>59</td>
<td>50</td>
<td>9</td>
<td>LMF7</td>
</tr>
<tr>
<td>0</td>
<td>60</td>
<td>50</td>
<td>9</td>
<td>LMF8</td>
</tr>
<tr>
<td>0</td>
<td>61</td>
<td>50</td>
<td>9</td>
<td>LMF9</td>
</tr>
</tbody>
</table>

جدول 5. مقایسه اجزای به دست آمده به روش آزمون 4 جفت شده

207
<table>
<thead>
<tr>
<th>مقایسه جفت به جفت</th>
<th>اختلاف میانگین</th>
<th>معیار</th>
<th>جفت شده</th>
<th>معیار</th>
<th>جفت شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMF5 - LMF5</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>HMF6 - MMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>HMF6 - LMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF6 - LMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF7 - MMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF7 - LMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF8 - MMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF8 - LMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF9 - MMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF9 - LMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF10 - MMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
<tr>
<td>MMF10 - LMF6</td>
<td>2.02</td>
<td>0/00</td>
<td>2/91</td>
<td>0.20</td>
<td>4/79</td>
</tr>
</tbody>
</table>

: اختلاف معیار در سطح 1% تا حد زیادی ملاحظه نمی‌شود. به این ترتیب می‌توان از جهت استفاده کردن بایاپرایانه و سایر استفاده‌های مختلف، حذف معیار، به دلیل داشتن HMF این می‌تواند نیازمند بیشتری برای میانگین محاسبه شده در دسته‌بندی گروه‌های مختلف در مطالعه مشابه با هم‌جویانه‌های مختلف در روش‌های مختلف، از جمله با استفاده از تحقیقات دنبال‌گرای.

نتیجه‌گیری

همانطور که جدول 2 نشان می‌دهد، بین نقطه ذوب، عدد ۱۲ بار ترکیب چربی جامد و با توجه به نتایج خواص فیزیکی، به‌طور کل، اگر اجزایی به دست آمده در دماهای مشخص اختلاف وجود نداشته و به‌طور گسترده‌ای مشاهده می‌شود.