آرش کوچکی، سیدعلی مرتضوی، مهدی نصیری محلاتی و مهدی کریمی

چکیده
به منظور تعیین تأثیر نوع امولسیفادار (لیپین، E471 و E472) و سطح مصرف آن (0.05، 0.1 و 0.15 گرم در صد کیلوگرم آرد) روی نان آماسیشی به صورت فاکتوریل در قالب طرح کامل گردید. در فاصله صفر، 24 و 48 ساعت بعد از پخت، آزمون‌های بافت سنجی و حسی روی نان‌های تهیه شده صورت گرفت. رابطة بین متغیرهای اندوز‌دهی شده با استفاده از رگرسیونهای ساده و چند متغیره مطالعه شد. نتایج آزمایش‌ها نشان داد که افزودن امولسیفادار باعث کاهش سفتی نان شد. در سه نوع امولسیفادار مورد بررسی امولسیفادار E472 پیشترین اثر و E471 کمترین اثر را بر کاهش سفتی نان در 24 ساعت پس از پخت داشت. افزودن آنزیم α-آمالاز نیز باعث کاهش سفتی نان گردید که این اثر در 24 ساعت پس از پخت بیشتر کمتر بود. نتایج مدل‌سازی و کمی گرد روابط بین متغیرهای مختلف حاکی از آن است که در روزهای اولیه تولید حد بهینه امولسیفادارها برای حصول حداکثر کیفیت نان بحرانی برای لیسین حدود 1 درصد، E471، 0.1 درصد و E472، 0.5 درصد بود. مقدار بهینه آنزیم در هنگام استفاده هم زمان آن با امولسیفادارها حدود 3 گرم در 100 کیلوگرم آرد بیشتر بود.

وژده‌های کلیدی: بیانی نان، امولسیفادار، آنزیم α-آمالاز، بافت سنجی، آزمون حسی

مقدمه
اصول‌نام در طی دوره نگهداری، با تغییراتی در ویژگی‌های خود همراه می‌شود که اثر سوزرب کیفیت آن دارد. کاهش درجه مقویت‌گیری نان توسط مصرف کننده‌کان بعلت غیر از آن‌ها در اثر فصاد میکرو‌بهایی حاصل می‌شود. این یکی از بیانی نان نسبت به خود به دو سطح تقسیم می‌شود. یکی بیانی پوسته و دیگری بیانی مغز نان است. بیانی پوسته معمولاً به علت انحلال رطوبت از مغز پوسته صورت می‌گیرد (3) که منجر به

1. به ترتیب دانشجوی دکتری، استاد، دانشیار و دانشجوی دکتری علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
است که انتقال مجدد رطوبت از مغز به پوست نقش مؤثری در ساختار آن دارد.

کمثر مورد اکتشاف مصرف کندگان قرار می‌گیرد. سفتی مغز

ناب حسب محل مغز در فرض نان تفاوت بوده و حداقل

سافت در مرکز فرض نان است (41). هرچه (33) برخی

تغییرات در خصوصیات نان باید را شامل کاهش رطوبت

مغز نان، افزایش رطوبت پوست، کاهش عطر، افزایش سفتی

کاهش توانایی جذب آب در مغز نان، کاهش حساسیت

نسبت به آنورمی‌ها. کاهش ناشتا مخلوط و افزایش

تیلور ناشت‌های بر شریه است. در ایران ضایعات نان در اثر

بیت شدید در سطح خاک‌نوازه را 21 نا 24 دسته گزارش

کرده (2).

مکانیسم‌های بیتای نان بیش از یک قرن مورد مطالعه قرار

گرفته است ولی مشکل بیتای هنوز به قوت خود باقی است.

و خسارات قابل توجهی به صنعت خزی و مصرف کندگان

وارد می‌کند. ساعت و فرجین (39) بیان کرده که تجمع

مخلوط می‌شود و در واقع نان تفاوت قاده به یک گروه به

حالت آبی خود هستند. عامل اصلی بیتای نان است.

نام برگداران نقش آمیلوز در بیتای نان را تاکنون دانستند زیرا

معتقد بودند که این جزء در طی مرحله رنگ‌گذاری و غیر

محلول می‌شود. ارلاندر و ارلاندر (44) اظهار داشتند که

سفتی مغز نان در اثر اتصال آمیلوژ و آمیلوپکین به

پیکیگیر است که این امر می‌تواند در اثر ایجاد کمپلکس

نامتاسب با قشر و پروتئین‌ها متوقف شود. ویلیمور (42)

معتقد است که علاوه بر ناشت‌های گلوتامین، بیتای نان

مؤثر می‌باشد. برخی محققان رتیولگarrow دیسپون پلی‌مرهای

می‌شود (22).

هدف از انجام ازمایش بررسی اثر انواع امولسایفر

ناتوان (47) و آزمایش آزمایش بر کاهش

بیتای نان مصرف ایرانی (ناتوان) می‌باشد.

مواد و روش‌ها

1- آزمایش

آزمایش 1305 درصد سویس گرفته شده جهت ازمایش، از کارخانه
۱. آزمون بافت سنگی

اینده فعالیت‌های شکل‌برداری ۲ میلی‌متر و ضخامت ۴ میلی‌متر از مرکز شکل با استفاده از CNS Farnell Texture Analyzer حاصل شد. همه وارد نیروی مورد نیاز برای شکل‌برداری شدن نان اندازه‌گیری گردید. فاصله ۵×۰ mm دو پازو از هم و سرعت حرکت گیره را در دقیقه ۵۰ mm تعریف کردند. ضعف شروع (Trigger Point) ۵×۰ mm را نیروی اندازه‌گیری شد. سپس، دهنده میزان سفیدی نان می‌باشد.

۲. آزمون‌های حیاتی

آزمون‌های حیاتی برای انتخاب روش رجب زاده (۳۶) انجام شد و از آنگاه افراد آموزش و راهنمایی شدند و میزان ضخامت‌های حیاتی نان از نظر فرم و شکل ظاهری (وجود بارگی و حفره، وضع سطح فوقانی (سولوگنی)، چین، چروک و رنگ) وضع سطح زیرین (سولوگنی، چین، چروک و رنگ). سفید و سفید بافت و ساختار (خمیری بودن، نرم غیر عادی، سفید بودن، ترد غیر عادی و شکننده)، قابلیت جویانه (خشک و سفت بودن، چسبندگی به دندان‌ها)، بود، برچسب و البه‌بندان، مورد ارزیابی قرار گرفت. لازم به ذکر که امیزش مربوط به سه آدره نهی شده است. برای این منظور، آرد مورد نیاز به نهایی می‌باشد.

۳. آزمیزم مورد استفاده از نوع α - آمیلاز فارچی (حاشاژ از نظر Beldem Aspergillus oryzae) بود که از شرکت به آن نهی گردید و مورد استفاده قرار گرفت.

۴. مخمر

خیاره و آزمون‌ها

برای نهی خیار به اساس خصوصیات آرد اولیه با توجه به فرمول مداوا نان تافتند در نان‌های سطح شهر از فرمول زیر استفاده گردید: ۱۰۰ قسمت آرد، ۶۵ قسمت آب، ۱ قسمت روغن، ۱ قسمت نمک و ۲۵ قسمت مخمر خیار با استفاده از دستگاه خیارگیر سری اصفهان تهیه و
شکل 1. تأثیر انواع مختلف امولسیفایر بر نیروی لازم جهت پارگی نان در زمان‌های صفر (الف)، ۲۴ (ب)، ۴۸ (ج) و ۷۲ (د) ساعت پس از پخت (میانگین‌های دارای حروف مشترک در سطح ۵٪ تفاوت معنی‌داری نداشتند).

هر یک از صفات حسی بر سرای مقياس ۰-۱۱ بالاترین و ۵ کمترین امتیاز اختصاص یافته است. بدین ترتیب سهم مؤلفه‌های پذیرش کلی در امتیاز آن مشخص شد. سپس با استفاده از تکیهگاه‌رای در ادای حسی مؤثر در امتیاز پذیرش کلی تعیین و منگرهای اضافی از مدل حذف گردید.

طرح آماری و آنالیز داده‌ها

آزمایش در قالب افکتوریال با طرح یک‌های کاملاً تصادفی در سه تکرار انجام گرفت. نسبت به آزمایش شامل ترتیبی از سه نوع امولسیفایر هر یک در ۶ سطح و آزمیز ۸-امیلاز قارچی در ۴ سطح بود. نتایج نشان داده نان‌های بهبود یافته در ۴ زمان مختلف (صفر، ۲۴، ۴۸ و ۷۲ ساعت) در گروه‌های مختلفی متفاوت بودند.

نتایج و بحث

۱. بانک سنجی

همان‌گونه که در شکل ۱ مشاهده می‌شود امولسیفایرهایی به کار رفته (القاب‌های E471 و E472) به طور معنی‌داری ستاندارد را تأثیر می‌بخشند.

۲. تاثیر میانگین‌های دارای حروف مشترک در سطح ۵٪ تفاوت معنی‌داری نداشتند.
بلافاصله پس از پخت کاهش داده که در این میان اثر افزودن E471 به نشان دهنده افزایش ترکیب امولسیفایرها و لسیتنیان بیشتری از افزودن E472 و لسیتنیان بیشتری از 24 ساعت پس از پخت میزان نیروی مورد نیاز جهت پارکن نان را کاهش داده که این امر نشان از کاهش سختی نان دارد. در اینجا نیز اثر امولسیفایر E471 بیشتر از دو امولسیفایر دیگر بود. افزودن امولسیفایرها باعث شد که در 48 و 72 ساعت بعد از پخت نیز سفید نان کاهش یابد که در این دو زمان اثر امولسیفایر E472 بیشتر از آن که E471 از نظر اثر گدازی در ریشه بعدی قرار داشتند.

gورچان و پانکا (21) اثربخشی امولسیفایر را بر روی تأثیر بیانی بافت نان چاییات مورد مطالعه قرار داده‌اند. غزیری و همکاران (25) اثر امولسیفایرهای مختلف را بر میزان بیانی نان مسطح ایرانی مورد بررسی قرار دادند و مشاهده نمودند که افزودن امولسیفایر باعث کاهش میزان بیانی نان می‌شود. فورسول و همکاران (17)، دیبردو و همکاران (22)، هارینگ و همکاران (23)، فریدو و فینی (15) و برخی دیگر از محققین آزمایش‌های مختلفی را روی اثر افزودن امولسیفایر به میزان سفید نان انجام داده و به نتایج مشابه دست یافتند.

شکل 2. رابطه بین غلظت‌های مختلف امولسیفایر و نیروی کشش مورد نیاز جهت پارکن نان در 4 زمان صفر (T0), 24 ساعت (T1), 48 ساعت (T2) و 72 ساعت پس از پخت (T3).
شکل 3 رابطه بین غلظت‌های مختلف امولسیفایرهای لیسین، E471، E472، و نیروی کنشی مورد نیاز جهت پارگی نان در زمان صفر (T₀) و ۲۲ ساعت پس از پخت (T₂).

سنگینه‌های طور که انتظار می‌رود در نمونه شاهد شناسه‌گردد. علی‌رغم و همکاران (۵) اثر افزودن غلظت‌های مختلف از امولسیفایرهای مختلف را بر روی نان مسطح (نانون) مورد بررسی قرار دادند و مشاهده نمودند که غلظت‌های مختلف امولسیفایرها، بر روی نان دانه‌ای و بارکیه نان دانه‌ای، فرآیند و همکاران (۱۶) اثر غلظت‌های مختلف از امولسیفایرها بر روی
خمر و نان داشتند.

بیشترین کاهش در میزان سفیدی، با افزودن امولسیفرای E472 به‌دست آمده. افزودن غلظت‌های مختلف از E472 و لسپینان در هر دو زمان باعث کاهش میزان سفیدی نان شد (شکل 3).

استفاده از امولسیفرای E471 در زمان صفر باعث کاهش میزان سفیدی نان شد ولی این اثر در 72 ساعت پس از تولید مشاهده شد. با افزودن 1 درصد از امولسیفرای E472 در 24 ساعت پس از تولید میزان سفیدی نان از ناه نازه بدون حضور امولسیفرای بود. از این نکته می‌توان گنی تونی گیری کرد که در صورت استفاده از این امولسیفرای می‌توان بعد از سه روز نان به نرمی نان تازه داشت.

با افزایش مقدار آنژیم، میزان سفیدی نان کاهش یافت. این اثر کاهش دهنده سفیدی در زمان پخت ناجی بود ولی با گذشت زمان در روش‌های بعد اثر آن بیشتر مشاهده شد (شکل 4). هیدا و همکاران (22) مارتینی و همکاران (20) و جرارد و همکاران (18) نیز در آزمایش‌ها خود به ترتیب مشابه نتیجه‌گیری نشان دادند. لنت و گراات (30) مشاهده کردند که آ-آمیلاز‌های مورد نظر در به‌تأخیر آن دارای بیان توده‌ای به‌رد هنگ آین و همکاران (25) خاصیت

!شکل 2: رابطه بین غلظت‌های مختلف آنژیم α-آمیلاز و تریوی کششی مورد نیاز جهت پایه نان در 1.5 زمان صفر (T0)، (T1)، (T2) و (T3)
شکل 5. نیروی کشش تن دسته غلتگ امولسیپرهاي لپین. E471، E472 و آزمیز α-آمیلاز در زمان تولید که از طریق تجزیه سطح عکس العمل بر آراش شده است.
به عنوان یکی از اولین، امتیاز مرزرسی به منظور انالیز داده‌های حسی برای هر یک از نظریه‌های مانگاداری تان از پخت، مدل رگرسیون چند متغیره با کلیه صفات ارژیوی شده (X) در مقابل پذیرش کلی (Y) برآورد گردید.

فرم عمومی این معادله رگرسیون به صورت م杳عه‌ای است:

\[Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 \]

که در آن: \(Y \) امتیاز پذیرش کلی، \(b_0 \) ضریب ثابت م杳عه، \(b_1, b_2, b_3, b_4, b_5 \) به ترتیب امتیاز مرزرسی به معنی، قابلیت جوییدن، حسی به ترتیب امتیاز مرزرسی به معنی، قابلیت جوییدن، و ضعیف سطح تحت‌نحوی، و ضعیف سطح فوقانی و شکل ظاهری می‌باشد. از حذف متغیرهای اضافی در هر تاریخ آزمون حسی، مهم ترین عوامل تعیین کننده امتیاز پذیرش کلی در چهار زمان مورد آزمایش به شرح ذیل مشخص گردید:

\[r^2 = 0.846 + 0.238 \times b_0 + 0.327 \times b_1 + 0.111 \times b_2 \]

(امیات قابلیت جوییدن)\(^2\) (امیات عمق)\(^2\) (امیات شکل ظاهری)\(^2\) (امیات سطح تحت‌نحوی)\(^2\) (امیات سطح فوقانی)\(^2\) (امیات زمان)\(^2\)

در این نتایج نشان می‌دهد که قابلیت جوییدن در بین صفات حسی ارزیابی شده به وسیله داوران در 4 تاریخ ارزیابی و مهم‌ترین معلوله مهمین تعیین کننده امتیاز پذیرش کلی بوده است. علاوه بر این نشان داده شده که امتیاز پذیرش کلی به حاشیه‌ای سفید بافت حاصل شده است. با ترکیب کلیه نتایج حاصل از 3 زمان لبه شده آزمون حسی مشخص شد که مؤلفه‌های اصلی تعیین کننده امتیاز پذیرش کلی در طول دوره
شکل ۶. نیتری اکسین نان بر حسب غلظت امولسیفاپرهای سیستین E471 و آنزیم α-اومیلاز در ۷۲ ساعت پس از تولید که از طریق تجزیه سطح عکس اینالیز شده است.
شکل 7. رابطه بین نیروی کشش مورد نیاز جهت پاره شدن نان با قابلیت جویانه شدن در 72 ساعت پس از پخت

نگهداری نان عبارت است از: تخمیر قابلیت جوده شدن، سفید بات، وضعیت سطح فوقانی نان که مدل رگرسیون به‌دست آمده به شکل زیر می‌باشد:

\[r^2 = 0.61^{**} \]

شکل 8. رابطه بین نیروی کشش مورد نیاز جهت پاره شدن نان با پذیرش کلی در 72 ساعت پس از پخت

ابن مدل که پس از حذف متغیرهای اضافی از مدل رگرسیون اولیه به دست آمده کارایی معنی‌داری در تعیین امیاژ

243
شکل 9- امتیاز پذیرش کلی بر حسب سختی بافت و قابلیت جویدن نان که از طریق تجربه سطح عکس عمل برآورد شده است.

اِن روند در زمان‌های صفر ۲۴ و ۴۸ ساعت پس از تولید کامل چشمه‌گیر و در ۷۲ ساعت پس از تولید کمتر بوده‌اند. همچنین برای افزایش‌یافتن امولسیفایرها، ضروری کاهش سطح قابلیت جویدن نان دارد. در این زمان نداشت. با توجه به شکل ۲ می‌توان نتیجه‌گیری کرد که در ۷۲ ساعت پس از پخت نان، آنتی‌زم آرف بر اثر افزایش میزان سفتی نان بر کاهش میزان سفتی نان پس از ۷۲ ساعت نگهداری داشته و افزودن آنزیم α-آمیلاز نیز باعث کاهش میزان سفتی بافت نان گردید.

با بررسی نتایج مدل سازی و کمیتی کردن روابط بین متغیرهای مختلف مشاهده شد که در زمان‌های اولیه تولید (زمان‌های صفر ۲۴ و ۴۸ ساعت پس از پخت) حد بینهایت امولسیفایر ۱ و امولسیفایر ۲ به طرف مقدار حدود ۱/۵ ردیاب و مقدار حدود ۱/۵ ردیاب از این افزودن هست. در هنگام استفاده توان ای امولسیفایرها و آنزیم α-آمیلاز قارچی، مقدار بینهایت آنزیم حدود ۵ گرم آنزیم در ۱۰۰ کیلوگرم آرد بود و در ۷۲ ساعت پس از پخت برای دسته‌بندی به محصولی مناسب مقدار امولسیفایرها متفاوت بود. در این شرایط است: لسیتین ۱ درصد E472 و همچنین آنزیم α-آمیلاز تأثیری ندارد. همچنین نتایج آزمون آنزیم α-آمیلاز تأثیری بر پذیرش کلی در ۷۲ ساعت پس از پخت نداشت.

نتیجه‌گیری

در این پژوهش، اثر افزودن سه نوع امولسیفایر (لیسین، E472 و همچنین آنزیم α-آمیلاز قارچی روی بافت و خصوصیات حسی نان مورد بررسی قرار گرفت. نتایج به وضوح نشان داد که اضافه کردن امولسیفایرها به آرد، سختی بافت نان را نسبت به نمونه شاهد به طور معنی‌داری کاهش داد.