تنوع گیاه‌های الکتروفوروزی پروتينی زنجیره‌ای دانه در ماش

فرهاد قوامی، عبدالالهی رضایی، سیروس عیدمیشانی و احمد ارزانی

چکیده
تنوع الکتروفروزی دانه با استفاده از روش الکتروفروز زل پایا کریلاجیدی در حضور سدیم و دسیل سولفات و ارتباط
احتمالاً با برخی صفات مورفولوژیکی و فیزیولوژیکی در 1924 نمونه از گلکسین ماس ایران مورد مطالعه قرار گرفت.
الکتروفوروز پروتئین‌های دانه شش الکترفرود را اشکال ساخت که تنها در 2 نوار آلومینیوم و 4 نوار گلیوبولین موجود در محدوده
وزن مولکولی 23 500 تا 23 5000 دانشواری متقابل پرداخت. الگوها 1 و 2 فراوانی کننده داشتند ولی فراوانی سایر الگوها انک در بوده و بر
احتمال توی در زمان‌های دنیای تئوری و در سیر تکاملی ماس به وجود آمدند. تجزیه خشورهای دانه‌ها و شهرها با استفاده از فراوانی زیبر
وادهای آلومینیوم و گلیوبولین، حاکی از عدم ارتباط بین تنوی جغرافیایی با فاصله تنشاب حاصل از فراوانی زیبر و چندو
ماست. همچنین وزن زوارهای بوده با تفاوت در ابعاد الگی زنجیره‌ای و G, G, G و G با روند تا شروع رسیدگی و
زمینه مورد توجه واقع شده.

واژه‌های کلیدی - الگوریتم، الکتروفروز پروتئین دانه، تجزیه خشوری، تنوی زنجیره‌ای، گلیوبولین، ماش

مقدمه

روش‌های قبیل ارائه داده‌اند. این روش بسیار مؤثرتر از زمان و
سیری است و روی‌های سنتی است و علاوه بر اینها از تغییرات
محیطی تأثیر نگرفته، احتمالی نیز به زیمن و کارهای بزرگ
تاداد (1).

اکثر صفات مورفولوژیک و فیزیولوژیکی که در رویداد
مدادولی بنیاد مورد بررسی قرار می‌گیرند تقلیدی بوده و
تحت تأثیر می‌باشد می‌گیرند. همچنین مطالعه ننو
زنجیره‌ای و تعیین پتانسیل ذخایر زنجیره‌ای می‌باشد و
مرکز موزه‌های سپیار پروتئین دانه، مساحتی ردیاب این
اراضی را به خوب انتخاب می‌دهد و وقتی می‌باشد این
رو دانشمندان روی الکتروفروز پروتئین دانه را به دارایی قدرت
تشخیص و ت här می‌باشد به عنوان چرایی پرای

* بمنزیت دانشجوی ساین کارشناسی ارشد استاد و استادیار اصلاح نباتات، دانشکده کشاورزی دانشگاه صنعتی اصفهان
** استاد اصلاح نباتات دانشکده کشاورزی دانشگاه تهران

47
علوم و تکنولوژی گازهای ممنوع یکی از اصلی‌ترین مباحث مورد توجه و مطالعه قرار گرفته است.

در آزمایش‌های قبلی، با استفاده از روش‌های مختلفی از جمله گل‌ریزی، گل‌ریزی به وسیله مولکول‌هایی که توانایی تغییر شکل و شکل‌داری داده‌های مربوط به گل‌ریزی را دارند، و نیز به وسیله مولکول‌هایی که توانایی تغییر شکل و شکل‌داری داده‌های مربوط به گل‌ریزی را دارند، و نیز به وسیله مولکول‌هایی که توانایی تغییر شکل و شکل‌داری داده‌های مربوط به گل‌ریزی را دارند، و نیز به وسیله مولکول‌هایی که توانایی تغییر شکل و شکل‌داری داده‌های مربوط به گل‌ریزی را دارند، و نیز به وسیله مولکول‌هایی که توانایی تغییر شکل و شکل‌داری داده‌های مربوط به گل‌ریزی را دارند، و نیز به وسیله مولکول‌هایی که توانایی تغییر شکل و شکل‌داری داده‌های مربوط به گل‌ریزی را دارند.

1- Phaseolin
2- Polymorphism
3- Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis
4- Vicia fava
5- Green gram (Vigna radiata)
6- Black gram (V. mungo)
7- V. sublobata
8- V. sublobata var. sublobata
9- V. sublobata var. silvestris
تنوع الگوهای الکتروفورزی پروتئین ذخیره‌ای دانه در ماش

الگوها با خصوصیات مورفولوژیک و فنولوژیک طراحی گردید.

مواد و روش‌ها

زنتوپه‌ها

زنتوپه‌های مورد بررسی، ۹۳ نمونه از کلکسیون ماش طرح حیوانات دانشکده کشاورزی دانشگاه تهران بوده که ۹۴ رقم آن از ایران و بقیه از کشورهای آمریکا، اندونزی، یوگسلاوی، ترکیه و هند جمع‌آوری شده‌اند.

صنایع مورفولوژیک و فنولوژیک

منظور خصوصیات مورفولوژیک و مورفولوژیک قابل طرح اگرت‌کردن، همراه با به‌سیا که (پروتئین، و یک رقم محیطی اصفهان) در ۱۵ بلوک انجام شد و صفات تاریخی را و اولین گل، ۵۰ درصد گل‌های، ظرفیت اولین غلاف، ۵۰ درصد غلاف‌های سری‌گذاری، ۹۰ درصد رستاگی، تعداد غلاف در بیوت، تعداد دانه در غلاف، تعداد شاخه‌های جانبه و زنگ ظروف داده و عملکرد بیوت با اجرای دقیق گردید.

استخراج پروتئین‌ها

برای استخراج پروتئین‌های ثامن از هر زنتوپه، یک دانه (حدود ۲۵ میلی‌گرم) توسط انرژی در داخل کاغذ تمپر و تأسیس‌های خوبی آزمایش گردید. هر دانه در داخل لوله‌های درب‌دار پلاستیکی ۲ با حجم ۱۵ میلی‌لیتر ریخته شد. به هر لوله ۸۰۰ میکرولیتر از بایر SDS-PAGE به شکل ۲ دیده

۱- Augmented design ۲- Ependorf ۳- Tris
۵- Vortex ۶- Calibration kits ۷- Pharmacia ۸- Loading
۹- Statistical Analysis System (SAS), ۱۹۹۳ ۱۰- ANOVA

۲۹
نتایج و بحث

نتایج الکتروفورز پروتئین به روش SDS-PAGE روی ژنتیپ‌های مورد بررسی تعداد زیادی نوار بر روی زد آشکار ساخت. تعداد نوارها آنلاین واقع و تابی رنده از 18 تا 21 عدد متغیر بود و تعداد کل آنها به 23 عدد (شکل 1) رسید. علاوه بر نوارها ذکر شد، تعدادی نوار ضعیف نیز در طول زل پاکترن نوید. بنابراین مورد استفاده از تعداد این نوارها کالیبراسیون با وزن مولکولی کم، وزن مولکولی زیراوهای موجود با دقت خوبی (9895) (R²=0.992) بود.

الگی الکتروفورزی به دست آمده از تمام ژنتیپ‌های مختلف شباهت بسیاری با یکدیگر نشان دادند، به طوری که نوارهای شماره 1 تا 14، 20 و 23 نوار، آنها متفاوت بودند.

توموکا و همکاران (20)، در مطالعه 8581، در مطالعه مشابه، اختلاف الگی نوارها در محصولات 16، 17، 18 دالتون تعیین نمودند که مطابق با وزن مولکولی نوارها شماره 13 تا 22 در ژنتیپ‌های این مطالعه می‌باشد. همچنین نوارهای مشابه در شده در این فاصله (345-470 دالتون) مورد تحلیل قرار گرفتند. جداسازی الیسوم‌ها و گلولین‌ها نشان داد که نوارهای شماره 8 و 9 و تجمع زمینه‌های ژنتیپ‌های الیسومی و گلولینی به دست می‌آیند. همچنین با استفاده از این تجزیه نوع نوارها به دست آمده در محصولات وزن مولکولی 23500 تا 27100 مشخص و 10 نوار پروتئینی موجود در این محصول به 5 نوار گلولینی تکثیک گردید. نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و نوارهای 17 و 19 تا 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلولین‌های 1 تا 6 (G1 تا G6) نوارهای 13 تا 14 و 18 آلیسوم‌های 1 تا 6 (A1 تا A6) و 22 گلول
جدول 1- مخلوط پروتئین موجود در هر شیشه از کیت کالیبراسیون با وزن مولکولی کم

<table>
<thead>
<tr>
<th>نوع پروتئین</th>
<th>وزن مولکولی</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorylase b</td>
<td>94000</td>
<td>بادت، ماهیچه‌ای، خرگوش</td>
</tr>
<tr>
<td>Albumin</td>
<td>67000</td>
<td>سرم گاو</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>43000</td>
<td>سفیده تخمرغ</td>
</tr>
<tr>
<td>Carbonic Anhydrase</td>
<td>30000</td>
<td>اتریلوستاتیگاوار</td>
</tr>
<tr>
<td>Trypsin Inhibitor</td>
<td>20100</td>
<td>سویا</td>
</tr>
<tr>
<td>α - Lactalbumin</td>
<td>14500</td>
<td>شیرگاو</td>
</tr>
</tbody>
</table>

وزن مولکولی نیز شیب‌های قابل قبول با آنها نشان دادند. وجود نواحی اضافی G5 و G6 ممکن است در اثر نفوذیات احتمالی در روش استخراج و با غلظت SDS BIDIL بر پیلی پیش‌گیری سنجین‌های متوسط به این پیلی بپیچد آثربازی‌سازی (19) و یا به احتمال ضعیف مقدار متغیر آدنوریتوتیک (19) باشد. چهار گروه متغیر نوازندگی برای آدنین و سه گروه متغیر نوازندگی مشاهده گردید. بر اساس ترکیب این گروه‌ها به طور کلی شکل گروه متغیر انوادی‌توتیکی در میان زنیتپی‌ها شش‌شاخه‌های شد (شکل 2). فراوانی گروه در کشتهای مختلف (جدول 3) نشان داد که با وجود تعداد کمی تا 7 (عدد) بالاترین توزیع را از نظر انواع گروه پروتئینی دارد. این امر از آن آمیخته 94 نمونه از لحاظ نیاز انواع گروه پروتئینی در مقام بعیج گرفت که در آن فراوانی گروهی 1 و 2 در حدود 49% بود و گروهی 3 و 4 فراوانی بین آنها به‌طور معمولی انجام داشت که هنگامی که عنوان حساسیت مهلک شده است، همین‌طور که عنوان کمی از نظر انواع گروه پروتئینی داشت. حتی این امر شاید کمی را نمودار نموده و یا نموداری با مشاهدات نموده و همکاران (20) که در تجزیه به استفاده از گروهی 246 نمونه از هنگام تنویع کمتری را نسبت با محدودیت‌های افغانستانی، ایران و عراق (با نمودار) مشاهده نمودند. این نظر دادن از نظر این محدوده را با عنوان (53)
جدول ۲ - پراورش میزان چرم مولکولی زیر واحدهای حاصل از کتروفرونز پروتئین‌های کلی دانه

<table>
<thead>
<tr>
<th>چرم مولکولی</th>
<th>لگاریتم چرم مولکولی</th>
<th>مقدار مهاجرت (سانتیمتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراورش شده (صاف)</td>
<td>۵/۰۷۲</td>
<td>۰/۲۱</td>
</tr>
<tr>
<td>۹۱۶۲۴</td>
<td>۴/۹۴۴</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>۸۸۷۷۶</td>
<td>۴/۹۴۴</td>
<td>۰/۱۵</td>
</tr>
<tr>
<td>۸۲۶۵۶</td>
<td>۴/۹۳۱</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۷۸۹۱۸</td>
<td>۴/۹۷۲</td>
<td>۰/۹</td>
</tr>
<tr>
<td>۷۰۲۷۱</td>
<td>۴/۸۷۲</td>
<td>۰/۶</td>
</tr>
<tr>
<td>۶۸۰۴۰</td>
<td>۴/۸۱۳</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۶۱۹۶۰</td>
<td>۴/۷۹۲</td>
<td>۰/۸</td>
</tr>
<tr>
<td>۵۷۰۲۱</td>
<td>۴/۷۹۲</td>
<td>۰/۹</td>
</tr>
<tr>
<td>۵۰۱۹۴</td>
<td>۴/۷۰۰</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>۴۸۶۲۴</td>
<td>۴/۷۰۰</td>
<td>۰/۱۱</td>
</tr>
<tr>
<td>۴۰۳۴۹</td>
<td>۴/۶۷۵</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۳۷۱۱۹</td>
<td>۴/۶۸۰</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>۳۵۷۱۰</td>
<td>۴/۶۰۰</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۳۴۰۲۵</td>
<td>۴/۵۵۲</td>
<td>۰/۱۵</td>
</tr>
<tr>
<td>۳۲۵۲۰</td>
<td>۴/۵۱۹</td>
<td>۰/۱۶</td>
</tr>
<tr>
<td>۳۲۳۲۳</td>
<td>۴/۵۱۵</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۳۱۲۱۷</td>
<td>۴/۴۵۰</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۲۹۷۷۱</td>
<td>۴/۳۴۴</td>
<td>۰/۱۹</td>
</tr>
<tr>
<td>۲۷۸۶۷</td>
<td>۴/۲۰۶</td>
<td>۰/۲۰</td>
</tr>
<tr>
<td>۲۴۰۲۲</td>
<td>۴/۲۸۱</td>
<td>۰/۳۰</td>
</tr>
<tr>
<td>۲۳۵۱۱</td>
<td>۴/۲۳۸</td>
<td>۰/۳۰</td>
</tr>
<tr>
<td>۱۵۲۶۸</td>
<td>۴/۲۳۸</td>
<td>۰/۳۰</td>
</tr>
</tbody>
</table>

* ۹ تماش در ۲۱ دنی در زنوتیپ، دیدن کل و چرم مولکولی آن از زل می‌گردد. کلی مقدار مهاجرت آن ذکر نگردیده است.

نمونه درختی حاصل از تجزیه خودشای کشورها با استفاده از فراوانی نوارهای آلبومین و گلوپولیپین در شکل ۳ نشان داده شده است. با قطع نمونه درختی در فاصله اقیانسی ۳۴۲/۴۰، دو گروه مشاهده گردید. گروه اول شامل کشورهای ایران، آمریکا، قوی در زمانهای دورتری نسبت به گوشهای ۶، ۵ و ۴ شکل گرفته است. زنوتیپ این نوار از ایران، کانادا و افغانستان واردگریده‌اند.
تنوع الگوهای الکتروفورزی پروتئین ذخیره‌ای دانش در ماش

شکل ۲- الگوهای متفاوت الکتروفورزی مشاهده شده در زنویع‌های مورد مطالعه (الگوه سمت چپ مربوط به پروتئین‌های استاندارد می‌باشد)

فواصل تناوب تغییرات الگوهای مربوط به پروتئین‌های ۱ و ۳

شکل ۳- نمودار درختنی کشورهای مورد مطالعه بر اساس فراوانی نوارهای آلوده و گلوپولین

فواصل تناوب تغییرات الگوهای مربوط به پروتئین‌های ۱ و ۳

شکل ۴- نمودار درختنی شهرهای مورد مطالعه بر اساس فراوانی نوارهای آلوده و گلوپولین
جدول ۳- منشا، تعداد نمونه و انواع الهوایی پروپتینی در کشورها و شهرهای مختلف

<table>
<thead>
<tr>
<th>کشورها</th>
<th>منشا</th>
<th>تعداد نمونه</th>
<th>تعداد نمونه</th>
<th>تعداد نمونه</th>
<th>تعداد نمونه</th>
<th>تعداد نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایران</td>
<td>۱۹۶</td>
<td>۱۰۶</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>افغانستان</td>
<td>۱۰۹</td>
<td>۱۰۹</td>
<td>۱۰۹</td>
<td>۱۰۹</td>
<td>۱۰۹</td>
<td>۱۰۹</td>
</tr>
<tr>
<td>امریکا</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>پاکستان</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>ترکیه</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
</tr>
<tr>
<td>هند</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
</tr>
<tr>
<td>اصفهان</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
</tr>
<tr>
<td>تبریز</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>دزفوس</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>ساری</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>کرج</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>نیشابور</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>کل</td>
<td>۱۹۶</td>
<td>۱۹۶</td>
<td>۱۹۶</td>
<td>۱۹۶</td>
<td>۱۹۶</td>
<td>۱۹۶</td>
</tr>
</tbody>
</table>

جدول ۴- ضرایب همبستگی، توزیع آلفاموین و غلیظ‌پیچ‌های با صفات کمی

<table>
<thead>
<tr>
<th>صفات</th>
<th>G_0</th>
<th>G_1</th>
<th>G_2</th>
<th>G_3</th>
<th>A_0</th>
<th>A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا اوایل غلیظ‌دهی</td>
<td>۰/۰۲۲</td>
<td>۰/۰۲۲</td>
<td>۰/۰۹۰</td>
<td>۰/۰۹۰</td>
<td>۰/۰۹۰</td>
<td>۰/۰۹۰</td>
</tr>
<tr>
<td>روز تا غلیظ‌دهی</td>
<td>۰/۰۴۰</td>
<td>۰/۰۴۰</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
</tr>
<tr>
<td>روز تا غلیظ‌دهی</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
<td>۰/۱۰۷</td>
<td>۰/۱۰۷</td>
<td>۰/۱۰۷</td>
<td>۰/۱۰۷</td>
</tr>
<tr>
<td>روز تا غلیظ‌دهی</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
<td>۰/۱۰۷</td>
<td>۰/۱۰۷</td>
<td>۰/۱۰۷</td>
<td>۰/۱۰۷</td>
</tr>
<tr>
<td>روز تا غلیظ‌دهی</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>روز تا غلیظ‌دهی</td>
<td>۰/۱۵</td>
<td>۰/۱۵</td>
<td>۰/۱۵</td>
<td>۰/۱۵</td>
<td>۰/۱۵</td>
<td>۰/۱۵</td>
</tr>
<tr>
<td>روز تا غلیظ‌دهی</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
<tr>
<td>تعداد غلاف در بهاره</td>
<td>۰/۰۳۶</td>
<td>۰/۰۳۶</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
<td>۰/۰۸۴</td>
</tr>
</tbody>
</table>

1- ضرایب همبستگی بوزگان‌گر از ۱۲۸/۲ به کوکوردان از ۱۲۸/۲ در سطح احتمال ۰/۰۵ به فرضیه‌های مبتنی بر همبستگی بوزگان‌گر از ۱/۰۰۰ در سطح احتمال ۰/۰۵ می‌باشد.

2- توزیع آلفاموین و غلیظ‌پیچ‌های ذکر نشده باید به دارای واریانس صفر می‌باشند لذا در جدول ضرایب همبستگی آفریده تصدیق.
جدول ٥- تجزیه و اریانثیا و مقایسه میانگین‌های
الگوهای الکتروفورزی زنوتی‌های وارد مورد مطالعه

<table>
<thead>
<tr>
<th>جدول</th>
<th>صفات</th>
<th>میانگین مریعات زنوتی‌های داخل الگو</th>
<th>میانگین مریعات الگو</th>
<th>الگوی</th>
<th>الگوی</th>
<th>الگوی</th>
<th>الگوی</th>
</tr>
</thead>
<tbody>
<tr>
<td>٥</td>
<td>روز نخست</td>
<td>٧٤/٥٠</td>
<td>٧٥/٥٠</td>
<td>٧٦/٣٣</td>
<td>٧٧/٢٩</td>
<td>٧٧/١٦</td>
<td>٧٦/٣٩</td>
</tr>
<tr>
<td>٣</td>
<td>روز نخست</td>
<td>٧٣/٣٣</td>
<td>٧٥/٠٦</td>
<td>٧٥/٣٩</td>
<td>٧٦/٣٩</td>
<td>٧٩/٠٦</td>
<td>٧٣/٩٩</td>
</tr>
<tr>
<td>٢</td>
<td>روز نخست</td>
<td>٧٥/٠٦</td>
<td>٧٦/٣٩</td>
<td>٧٨/٥٧</td>
<td>٧٨/٥٧</td>
<td>٧٦/٥٧</td>
<td>٧٨/٥٧</td>
</tr>
<tr>
<td>٠</td>
<td>روز نخست</td>
<td>٧٨/٥٧</td>
<td>٧٨/٥٧</td>
<td>٧٨/٥٧</td>
<td>٧٨/٥٧</td>
<td>٧٨/٥٧</td>
<td>٧٨/٥٧</td>
</tr>
<tr>
<td>٥</td>
<td>روز نخست</td>
<td>١٠١/٣٣</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
</tr>
<tr>
<td>٣</td>
<td>روز نخست</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
</tr>
<tr>
<td>١</td>
<td>روز نخست</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
</tr>
<tr>
<td>٠</td>
<td>روز نخست</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
<td>١٠٠/٢٢</td>
</tr>
</tbody>
</table>

* ١- درجه بیان‌گویی زنوتی‌های داخل الگو ۱۸۷ می‌باشد.
* ٢- در هر دیده برای هر صفت میانگین‌های که حداکثر یک فرد مشترک هستند بر مبانی میانگین‌های جدید مریعات در سطح احتمال ٥ درصد فاقد معنی دار می‌باشند.
* ٣- معنادار در سطح احتمال ٥ درصد.
آفانستان، ترکیه و هند به کودک در آنها نوارهای G2 و G1
حوادثی که از آنها نوارهای G2 و G1 وجود دارد. هر یک از این نوارها بجز گروه 2 نشان داده و از این نظر به
مقادیر خیلی زیادی از گروه اول فاصله داشت. نمونه درختی
حاصل از تجربه خونه‌های شیرین (شکل 2) با استفاده از ترکیب
نوارهای آلبومین و گلوپرولین سه گروه را تشکیل داد. گروه اول
شامل نیشبوک، تنوز و گریده‌ها، گروه دوم شامل ساری و گروه
سوم شامل دمگز، کلی و گریده‌ها بود. همین که تفکیک در این گروه
نوارهای اصلی G1 و G2 بود که در گروه‌های مختلف به طور
محسوس تفاوت داشتند. آنچه از تجربه خونه‌های شیرین و
کشورها استنباط می‌شود، عدم ارتباط بین الگوهای پروتئینی با
فوالات از کاهش بین نوارهای گروه اول و دوم می‌باشد.
با آن که در برخی از الگوها از الگوها اکثریت بین الگوها صورت گرفت
الگوهای 1 و 2 در مطالعه این نوارهای در طبیعت
می‌تواند انتخاب یک واریس به نور در وسیله نور این
قلمروی تغییراتی در این گروه‌ها می‌باشد.

بنا بر پژوهش، نظر زبان و نژاد انسان نوارهای
آرایی از طبقه سرنشینی و اندازه دانه (15) به چشم خورد. همان طور که از جدول 4 مشاهده

منابع مورد استفاده

