ارزیابی تحمل به خشکی لایه‌های گلرنگ براساس شاخص‌های تحمل و حساسیت به تنش رطوبتی

چکیده

به منظور ارزیابی تحمل به خشکی لایه‌های انتخاب شده از توده‌های مومی گلرنگ (Carthamus tinctorius L.) آزمایشی در سال 1381 در زمینه تحقیقاتی دانشکده کشاورزی صنعتی اصفهان انجام شد. در این آزمایش 12 لایه اصلاحی انتخاب شده از توده‌های مومی گلرنگ همراه با دو رقم خارجی و یک رقم درونی در قالب طرح پلوکه‌ای کامل تصادفی به سه نمونه و در دو رژیم رطوبتی شatial آماری بر اساس 70% و 85% تخلیه رطوبتی از خاک از تولید، مورد ارزیابی قرار گرفتند. نتایج نشان داد که در هر دو رژیم رطوبتی، تهاوند معنی‌داری در سطح احتمال 0/1/ از ناحیه عملکرد دانه بین زنوتیب‌ها مشاهده گردید. اثر تقابل بین زنوتیب و رژیم رطوبتی نیز در سطح احتمال 5% معنی‌دار بود. بررسی اثر تقابل زنوتیب و محیط (روش اسندر و دیک) نشان داد که در بین زنوتیپ‌ها، زنوتیپ 77 یکی از ادبیاتنایکی بهترین ترکیب تنش رطوبتی در لایه‌ها و هکار بود. رقم مورد کشت در اصفهان (توده کوشه) یکی از دو روش بر گیاهان و ضوابط کشاورزی به خشکی مانند داده و در این رژیم‌های رطوبتی به ترتیب دارای عملکرد دانه بالای 852 و 342 کیلوگرم در هکار بود. با بررسی شاخص‌های مختلف تحمل و حساسیت به تنش رطوبتی نشان داد که در سطح اساسی زنوتیب‌های متحمل تر بود و بر اساس این نتایج نشان داد که زنوتیب Ac-Sunset E32488 و E36248 به عوان متحمل بود که رقم خارجی از 70% و در صورت کمیابی به عوان بانی‌کار در فاصله 200 و 252/8 کیلوگرم در هکار بود. بررسی برای ZnO ترتیب 2004 و 2038 کیلوگرم در هکار بود.

واژه‌های کلیدی: گلرنگ، زنوتیب، تحمل، خشکی

مقدمه

گیاهان دانه روغنی از نظر ارزشی ارزی مورد تیزی انسان و دام در بین محصولات زراعی از جایگاه ویژه‌ای برخوردارند و یکی از آنها رزین ترین محصولات بخش کشاورزی به شمار می‌روند. به ترتیب دانشجوی ساین کارشناسی ارشد و دانشیار اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

407
حاصل از آن یکی از مهم‌ترین و رایج‌ترین تنها‌های محیطی است که تولیدات کشاورزی را در کشور ما، خصوصاً در منطقه اصفهان با محدودیت رودهای می‌سازد. انتخاب‌های غنی‌های گیاهی مناسب و ارقام اصلی شده‌ای که دارای عملکرد مطلوب و همچنین متحمل به شرایط تن و رطوبت‌پای بشنده، امکان استفاده بهتر از منابع موجود پیشرفت می‌تواند موجود سطح زیر کشت گیاهان و افزایش بازده تولید می‌گردد.

گارنگی به عنوان یک گیاه بومی ایران و به دلیل ویژگی‌های مطلوب و خاص نظر استفاده‌های دارویی و غذایی از کل‌های آن، تولید روغن نباتی یا کفته‌ی از گیاه به عنوان یک گیاه به دلیل وجود بیش از ۹۰ درصد اسید‌های اسید غیر بکات، خصوصاً اسید اولین و اسید اولین‌ریک هرگونه روغن باید به آن توجه کنیم. تولید کننده به عنوان مکمل غذایی مناسب برای دام، می‌تواند نسبتاً زیاد آن به تنها یک گیاه زنده از جمله شوری، خشک‌کن و سرمای در منطقه از هم‌پیوست

خاصی برای تأمین دانه‌ای و روغن مورد نیاز کشور خصوصاً در استان اصفهان برخوردار است. به‌طور کلی دانه گارنگ دارای تا ۲۵ تا ۴۰ درصد (در ارقام جدید، درصد) و ۱۲ تا ۲۰ درصد پروتئین است. وجود نیروی محیطی و انواع تنها ویژگی‌های وحشی گارنگ نشان از سازگاری آن با شرایط آب و هوای مناطق وسیع از کشور ما است (۲، ۱، و ۳).

تحقیقات می‌تواند برای ارزیابی عملکرد گیاهان زراعی در شرایط نشان در کشاورزی و بدون هیچ‌گونه مشکل به عنوان نشان‌دهنده تشکیل‌گر نیاز باید به تنها دارای شرایط کاربری زنی‌های محیطی و اثرات افزایشی در هر دو هوا و گرمی (Mean Productivity) و شاخص میانگین تولید (Tolerance) RA پیشنهاد نموده و متعادل که انتخاب بر مبنای مقایسه MP کمتر به گریت زنی‌های منجر می‌شود که عملکرد آنها در محیط تنش ندارد نسبت به محیط بدون تنش، کاهش می‌گذارد و تا دارای لایه عملکرد خواهد بود. نتایج عرضی از تحقیقات (۱۰) نشان داده است که این شاخص در تشخیص زنی‌های محیطی که در هر دو محیط تنش و بدون تنش عملکرد
ارزیابی تحلیل به‌خصوصی لایه‌های گل‌گره با رشته‌های شاخه‌های تحلیل و...

برای شناسایی زننی‌های متغیر بتوان رطوبت در گیاه لوبیا استفاده نمودند و ضمن مشاهده تفاوت معنی‌دار بین زننی‌ها، نتیجه‌گیری کردند مسیر‌های روش برای اصلاح مقاومت به خشکی در لوبیا معمولی، انتخاب بر مبنای مقدار بالایی

GMP و مقادیر کم می‌باشد. استاندارد و همکاران (2) با یک نواری شاخه‌های GMP و شاخه‌های را برای

SII انجام شناسایی زننی‌های متغیر بتوان رطوبت در

گیاه که بردن و از لحاظ این زننی‌های جدیدتر، زننی‌هایی در گیاه L. (Phaseolus vulgaris L.) شاخه‌هایی با مقاومت به خشکی

SII در ارتباط با بهتری در این گیاه گزارش نمودند. استمر و دویک (13) با بررسی نحوه واکنش رزنتی‌ها و اثر

مقاومت زننی‌ها و میزان مصرف مایعی Zn زننی‌های متغیر به

Glycine max (L.) بیان کردند که بعضی از ارقام این گیاه از توانایی تحلیل به تنش بالایی برخوردارند. هدف از این پژوهش، ارزیابی عملکرد و تحلیل به خشکی

رای انجام شده از تنش به سوی گل‌گره با استفاده از

شنایه‌های مختلف بود تا نباید زننی‌هایی بتوان و همچنین

شنایه بهتر را برای شناسایی زننی‌های متغیر به‌طور سیستماتیک

شنای رطوبت معرفی نمود.

مواد و روش‌ها

این پژوهش در سال 1381 به منظور ارزیابی لایه‌های حاصل از

تنش به سوی گل‌گره در و رطوبت معنی‌دار در مرغع

تحقیقاتی دانشگاه شهید بها دانشگاه صنعتی اصفهان در منطقه

شرودان در نوبات شهرستان فاریاب واقع در 30 کیلومتری

اصفهان انجام شد. خاک مزرعه داری بافت آن رضوی با جرم

مخصوص ظاهری 1/175 کرم بر سانتی‌متر مکعب و متوسط pH

409
رشتیت خاک مزروع در مراحل ۳۰۰-۴۰۰ متری در آزمایش بدون ننش تریپ به ترتیب به ۲۱/۲۹ و ۲۲/۳۰ درصد و در آزمایش دارای نتش تریپ بدون ننش به ترتیب به ۱۵/۲۰ و ۱۷/۳۰ درصد می‌رسید. این انجام نشان می‌دهد علف‌های هر زیر تریپ بصورت دستی کنترل شدند. عامل‌های دانه زنوتیپ‌ها بر مبنای عملکرد دانه برداشتی از ۳ ردیف وسط هر واحد آزمایش با روشی حذف ۱۰٪ تعیین گردید.

برای بررسی نحوه واکنش زنوتیپ‌ها و دیگر مقابل منطقی، زنوتیپ X محیط از روشهای استالر و دمک (۳۰) استفاده شد. بر اساس این روش، زنوتیپ‌ها در پهنه‌هایی به‌شکل متساوی در نش این تریپ دارای مواردی های واکنش حساسیت و تحميل نشان داده می‌نمایند. به نشانه‌های مختلف تحميل و حساسیت به خشکی و تریپ ارزیابی واکنش زنوتیپ‌ها استفاده شد که عبارت‌اند از:

1. شاخص‌های تحميل (TOL) و میانگین تولید (MP) که به توسط نش و روشی و همچنین (11) پیش‌نگه‌گری، است و به صورت

\[TOL = \frac{Y_p + Y_s}{2} \]

\[MP = \frac{Y_p}{Y_s} \]

به ترتیب عملکرد دانه یک زنوتیپ را در شرایط بدون نتش و تریپ دارای نتش نشان می‌دهد. مقادیر زیاد TOL بیان کننده حساسیت پیش‌نگه‌گری بیشتر و مقادیر بایلی نشان دهنده تحميل بیشتر و نتش می‌باشد.

2. شاخص حساسیت به خشکی (SSI) (توسط فیشر و مورور)

\[SSI = 1 - \left(\frac{Y_s}{Y_p} \right) \]

به نشانه شد‌ه و به صورت زیر محاسبه می‌شود:

\[SSI = \frac{1 - \left(\frac{Y_s}{Y_p} \right)}{SI} \]

برای بررسی تریپ در شرایط و تریپ بدون نتش، نشان داد که از لحاظ عملکرد زنوتیپ‌ها در شرایط بدون نتش می‌باشد. مقادیر

\[SSI = \frac{1 - \left(\frac{Y_s}{Y_p} \right)}{SI} \]

برای بررسی تریپ در شرایط و تریپ بدون نتش، نشان داد که از لحاظ عملکرد زنوتیپ‌ها در شرایط بدون نتش می‌باشد. مقادیر

\[SSI = \frac{1 - \left(\frac{Y_s}{Y_p} \right)}{SI} \]
جدول ۱ عامل‌کردن دانه زنوتیپ‌ها در شرایط تشی و بدون تشی و رطوبت

<table>
<thead>
<tr>
<th>شرایط دارای تشی</th>
<th>شرایط بدون تشی</th>
<th>منشا یا نظر</th>
<th>زنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸۵۹/۹</td>
<td>۳۷۷۹/۶</td>
<td>A</td>
<td>زوئیده آذری‌پایان غربی</td>
</tr>
<tr>
<td>۱۵۲۱/۸</td>
<td>۲۰۰۴/۳</td>
<td>Ac-Sunset</td>
<td>توده کاسه</td>
</tr>
<tr>
<td>۲۳۲۵/۴</td>
<td>۲۶۵۸/۱</td>
<td>C۱۱۲</td>
<td>توده اصفهان</td>
</tr>
<tr>
<td>۳۸۷۴/۳</td>
<td>۳۳۶۸/۱</td>
<td>کانادا</td>
<td>توده اصفهان مرکزی</td>
</tr>
<tr>
<td>۴۲۳۶/۱</td>
<td>۴۳۲۴/۸</td>
<td>C۱۱۸</td>
<td>توده خراسان</td>
</tr>
<tr>
<td>۴۳۱۷/۱</td>
<td>۳۹۷۲/۵</td>
<td>Ac-Stirling</td>
<td>توده کردنی</td>
</tr>
<tr>
<td>۴۷۷۱/۱</td>
<td>۴۰۶۰/۹</td>
<td>K۱۲</td>
<td>توده کونه</td>
</tr>
<tr>
<td>۴۸۰۸/۱</td>
<td>۴۸۷۰/۵</td>
<td>LSD(۰/۰۵)</td>
<td></td>
</tr>
</tbody>
</table>

ذ.capM اکس نتایج به دست آمده از تجزیه اثر مقابل زنوتیپ و محیط بی‌یک‌باره عملکرد دانه مطالعه روش اسلندر و دیمک (۱۳) زنوتیپ در ۴۴۳ دارد موارد واکنش تحلیل به تشی خشکی یا نشان داد وی در هیچ موردی واکنش حساسیت نداشت (جدول ۲). بنابراین بطور مرسد براساس این روی، زنوتیپ مناسب‌ترین زنوتیپ برای شرایط تشی خشکی باشد. در H۲۷۷ ضمن از لحاظ عملکرد دانه نیز این زنوتیپ یکی از بهترین زنوتیپ‌ها در شرایط تشی و بدون تنش (جدول ۱)، توده کونه بهترین واکنش حساسیت را دارا بود و در هیچ موردی واکنش تحلیل نشان داد (جدول ۲) و در شرایط بدون تنش با عملکرد ۲۳۵۹/۴ خودک و در هنگام یک حرف مشترک هستند. با استفاده از آزمون LSD و در سطح احتمال ۵٪ تفاوت معنی‌داری ندارد.

کیلوگرم در هكتار یکی از برترین زنوتیپ‌ها بود ولی در شرایط دارای تشی، عملکرد آن به میزان زیادی کاهش داشت. این امر نشان دهنده حساسیت توده کونه به شرایط تشی خشکی می‌باشد (جدول ۱). عملکرد توده کونه در شرایط دارای تشی توسط به روش X۲۰۰۴/۳ در AC-Sunset ویکانش حساسیت نداشت و رقم خارجی آن با ۷/۱ درصد موارد واکنش حساسیت نشان داد، پیشتر بود (جدول ۲). زنوتیپ‌های H۲۷۷ و E۱۴۴۴ دارای بیشترین میزان واکنش تحلیل از نوع دوم بودند و پیش باره نظریه اسلندر و دیمک (۱۳) می‌توانند برای کشت در شرایط دارای تشی ناشی از کم آمیز

411
شاخص‌های تحميل و حساسیت به نش طی بسیاری از محصولات مصرفی

شاخص‌های تحمیل و حساسیت به نش کم ایبی برابر اساس علم‌کرد Ac-Sunset و "Ac-Stirling"، تول، SSI، و ZNNP به یک مجموعه متغیر و تول، ZNNP به یک مجموعه متغیر و TOL می‌باشد.

主旨: در این مقاله، اثرات مختلف فشاری بایستی بر میزان حساسیت به نش در محصولات مصرفی بررسی شده است.

مقدمه: حساسیت به نش نشانه‌ای از خسارت محیطی است که می‌تواند باعث تغییرات در محصولات مصرفی شود.

در این مقاله، صبرگی‌ها در مورد تغییرات میزان حساسیت به نش در محصولات مصرفی بررسی شده است.

نتایج: در این مطالعه، نشان داده شد که نش باعث تغییراتی در محصولات مصرفی می‌شود.

بحث: نتایج این مطالعه نشان داد که باعث تغییراتی در محصولات مصرفی می‌شود.

گزارش: در این مطالعه، نشان داده شد که باعث تغییراتی در محصولات مصرفی می‌شود.

جدول 3. مقادیر عمکرد زنوتیپ‌ها در محیط دارای تنش (ηs) و بدون تنش (ηp) (اعداذ داخل پانترز) و

<table>
<thead>
<tr>
<th>شماره زنوتیپ</th>
<th>میانگین مربعات زنوتیپ های برای هر صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac-Sunset</td>
<td>2</td>
</tr>
<tr>
<td>کوسه</td>
<td>3</td>
</tr>
<tr>
<td>M1420</td>
<td>4</td>
</tr>
<tr>
<td>C116</td>
<td>5</td>
</tr>
<tr>
<td>S149</td>
<td>6</td>
</tr>
<tr>
<td>E2428</td>
<td>7</td>
</tr>
<tr>
<td>S3110</td>
<td>8</td>
</tr>
<tr>
<td>A1</td>
<td>9</td>
</tr>
<tr>
<td>C128</td>
<td>10</td>
</tr>
<tr>
<td>ET417</td>
<td>11</td>
</tr>
<tr>
<td>H27</td>
<td>12</td>
</tr>
<tr>
<td>Ac-Stirling</td>
<td>13</td>
</tr>
<tr>
<td>K14</td>
<td>14</td>
</tr>
<tr>
<td>C111</td>
<td>15</td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که دارای حداکثر یک حرف مشترک هستند با استفاده از آزمون LSD و در سطح احتمال 5% تفاوت معنی داری ندارند.
ارزیابی تحمیل به خشکی لایه‌های گرانیک براساس شاخص‌های تحلیل و...

شکل 1. پراکنش زنیت‌های براساس عملکرد در محیط‌هایی درازی (Ys) و بدون تنش (Yp) و شاخص STI در شدت تنش پراکنده ۲/۳

نسبت برای کل زنیت‌های موجود در آزمایش اندازه‌گیری می‌کند. بنابراین در زنیت‌های عملکرد زیاد و کم می‌توانند SSI مقادیر یکسانی داشته باشند. چون اختلاف عملکرد بین شرایط دارای تنش و بدون تنش برای هر دو زنیت‌هایی می‌تواند بی‌کار باید (۲). در این پژوهش نیز دو زنیت‌های Y35 و C12۸ از دیوار مقادیر SSI نسبتاً یکسانی هستند ولی از لحاظ میانگین تولید (MP) و عملکرد دانه در شرایط دارای تنش (Ys) دارای تفاوت معنی‌دارند. انتخاب بر اساس SSI موجب گروه زنیت‌هایی متمرکز به خشکی و باعث کاهش پتانسیل عملکرد دانه در محیط‌های مطلوب و بدون تنش می‌شود (۶). در این پژوهش دو زنیت‌های C12۸ و Y35 از دیوار مقادیر پایین بوده و بر اساس این شاخص تحمیل بین زنیت‌هایی می‌باشد، ولی در شرایط بدون تنش جریان بهترین پتویت‌ها نیستند. اما در نظر گرفتن مقادیر MP و GMP، زنیت‌هایی E2۳۸ و E۳۳۱۰ و STI می‌توانند جزء متحمل ترین زنیت‌هایی در نظر گرفت انتخاب براساس MP باعث گروه زنیت‌هایی با توانایی عملکرد بالا Zn‌پردازشی شد. شاخص STI به مقدار نسبتاً زیاد Ys می‌گردد.
جدول 2: سهم هر مولفه در کل تغییرات مربوط به شاخص‌ها و مقدار ضرایب شاخص‌ها برای هر مولفه

<table>
<thead>
<tr>
<th>ضرایب شاخص‌ها</th>
<th>STI</th>
<th>SSI</th>
<th>TOL</th>
<th>GMP</th>
<th>MP</th>
<th>Ys</th>
<th>Yp</th>
</tr>
</thead>
<tbody>
<tr>
<td>سهم هر مولفه</td>
<td>0/24</td>
<td>0/18</td>
<td>0/24</td>
<td>0/24</td>
<td>0/27</td>
<td>0/27</td>
<td>0/24</td>
</tr>
<tr>
<td>PC1</td>
<td>0/24</td>
<td>0/24</td>
<td>0/65</td>
<td>0/71</td>
<td>0/72</td>
<td>0/22</td>
<td>0/27</td>
</tr>
</tbody>
</table>

بالاترین مقدار مولفه اول (شکل 2) و همچنین مقدار بالایی بود (جدول 3) با توجه به اینکه منشاً این لاین اصلاحی بوده، از اصقلان است، بنابراین دور از انتظار نیست که این زوتین خارجی سازگاری بیشتری با شرایط محیط مطلقه باشد و توسعه ای عملکرد مناسبی در هر دو محیط با تشکیل مبنی نماید. در مقایسه، زوتین‌های (AC-Sunset) (AC-Stirling) نشان دهنده (شماره 13) مقدار مولفه اول بودند (شکل 2) و پایین‌ترین مقدار Ys، Yp در حدود 80 درصد زوتین‌های این مولفه آنها بسیار پایین‌بود. STI قرار گرفته که مقدار STI این مولفه از آنها بسیار پایین‌بود. حداکثر 80 درصد زوتین‌های این مولفه آنها بسیار پایین‌بود. STI قرار گرفته که مقدار STI این مولفه از آنها بسیار پایین‌بود.

ترکیب نتایج اصلی شاخص‌های تحمیل و حسابی به تنش به منظور درک بیشتر ارتباط بین شاخص‌ها از نظر منطقی و اصیل استفاده شد. می‌توان میزان تغییرات این مولفه اول جمعاً 0/69 در این مولفه اول تغییرات کل شاخص‌های برابر با 0/27 بود (جدول 4). در این مولفه اول، بهترین ضرایب STI و GMP، MP، Ys، Yp عوامل شاخص‌های تنش را به خود اختصاص دادند. این کارکرد با نظر می‌رسد. داده‌های STI و GMP، MP، Ys، Yp بهترین ضرایب عوامل شاخص‌های تنش را به خود اختصاص دادند. این کارکرد با نظر می‌رسد.

در این مولفه، STI و GMP، MP، Ys، Yp بهترین ضرایب عوامل شاخص‌های تنش را به خود اختصاص دادند. این کارکرد با نظر می‌رسد. داده‌های STI و GMP، MP، Ys، Yp بهترین ضرایب عوامل شاخص‌های تنش را به خود اختصاص دادند. این کارکرد با نظر می‌رسد.

شکل 2. نمایش بازیابی و اکتشاف زنوتیپ‌ها و خط مشی تحلیل و حسابی به تنش و عملکرد در محیط‌های نش و بدون نش

در محیط دارای تنش و بدون تنش رطوبیت استفاده شده، STI مؤلفه STI به‌شکلی که مشخصه برازش و انتخاب
زنوتیپ‌ها برتری باشد، زیرا اندازه‌گیری رطوبیت‌هایی که بر اساس این شاخص گزینش می‌شود دارای توان عملکرد بالاتر
بوده و در ضمن از حمل خودی نسبت به شرایط تنش رطوبیت
برخوردار باشد. در این پژوهش زنوتیپ برهنگی انتخاب
براساس این شاخص گزینش می‌شود دارای توان عملکرد بالاتر
بر اساس STI بهترین زنوتیپ بود و علاوه بر این که پیش‌ترین
حمل را به تنش رطوبیتی داشت، پیش‌ترین عملکرد داشته را نیز در
هر دو رژیم رطوبیتی دارا بود (جدول ۳).

متون مورد استفاده

1. امیدی‌تبریزی، ا. و. م. احمدی. ۱۳۷۹. مروری بر تحقیقات به‌نزدیکی و به‌زراعی گل‌نگ در جهان و ایران. ماهنامه علمی -
تخصصی زیتون ۴۲: ۱۴-۱۸.

2. امیدی‌تبریزی، ا. و. م. احمدی. ۱۳۷۸. مروری بر تحقیقات به‌زراعی اقاقام گل‌نگ به‌همه از طریق
روش‌های جدید متغیره‌آمیزی. علوم کشاورزی ایران ۳۰(۸): ۸۱۷-۸۲۶.

3. زیبنی، ا. و. م. امیدی‌تبریزی. ۱۳۷۸. گل‌نگ (شناخات، تولید و معصاری)، انتشارات دانشگاه علوم کشاورزی و منابع طبیعی گرگان. ۱۴۴ صفحه.