ارزیابی تحمّل به خشکی لایه‌های گلرنگ براساس شاخص‌های تحمّل و حساسیت به رطوبت

چکیده

به منظور ارزیابی تحمّل به خشکی لایه‌های آنیومیا انتخاب شده از توده‌های بومی گلرنگ (Carthamus tinctorius L.) آزمایشی در سال 1381 میلادی انجام شد. در این آزمایش 12 لایه اصلاحی انتخاب شده از توده‌های بومی گلرنگ به‌طور همزمان در برابر بار خاکی و یک توده بومی در قابل درجه‌بندی خاکی کامل تصادفی با استفاده از تکنیک‌های آلوده و در رزیم‌های مختلف شامل آب‌بندی به‌واسه رطوبت محاسبه و تشریح شد. نتایج بیانگر هسته‌ای که در هر دو رزیم رطوبتی ثابت و سطح معتاد در هر ام‌ام‌سی در لایه‌های گلرنگ با در نظر گرفتن مکان‌گذاری دانه‌های زنوتیپ آماری مشابه و در اثر مقایسه بین جنس و در هر رزیم رطوبتی نیز در سطح احتمال 5/0 معنی‌دار بود. بررسی اثر مقایسه زنوتیپ و محیط (روش استمر و دنبال) نشان داد که در بین دو دوره، زنوتیپ H77 بیشترین واکنش تحمّل را دارا بود و در رزیم‌های آبیاری 25/0 و 28/0 رطوبتی به ترتیب دارای عملکرد با برای 343 و 387 کیلوگرم در هکتار بود. رقم مورد کشته در اصل گوناگون (توده‌های کوچه) بیشترین واکنش حساسیت به خشکی را نشان داد و در این رزیم‌های رطوبتی به ترتیب دارای عملکرد دانه برابر 2764 و 387 کیلوگرم در هکتار بود. با بررسی شاخص‌های مختلف تحمّل و حساسیت به نشانات رطوبتی STI در استادی‌های زنوتیپ متفاوت تر بود و بر اساس این (MP, GMP, TOL, STI, SSL) شکل‌گیری‌های قبلی (E2778) با (عوامل بررسی تری و رزیم خاکی) در آمیزه‌گاه آزمایشگاهی زنوتیپ معرفی شد. نتایج از (کشور کانادا) با (عوامل حساسیت تری زنوتیپ) عرضی در (Ac-Sunset) عملکرد دانه‌های زنوتیپ E2778 در رزیم‌های آبیاری مذکور به ترتیب برابر 4172 و 4328 کیلوگرم در هکتار و باید زنوتیپ ترتیب برای 2004 و 2004 کیلوگرم در هکتار بود.

واژه‌های کلیدی: گلرنگ، زنوتیپ، تحمّل، خشکی

مقدمه

گیاهان دانه روغنی از نظر امنیت آن‌ها رود مورد تیکای انگیز و در بین محصولات زراعی از جایگاه ویژه‌ای برخوردارند و یکی از با ارزش‌ترین محصولات بیش کشاورزی به شمار می‌روند. ۱. به ترتیب دانشجوی سالی کارشناسی ارشد و دانشیار اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

407
ساخته‌ای با اتسائدها و افزایش باره‌شدن می‌گردد.

گارگانگ به عنوان یک گیاه بومی ایران و به دلیل ویژگی‌های مطلوبی و هماهنگ نظر استحصایی‌های دارویی و غذاهای از کل‌های آن، تولید روش‌های بی‌ارگی چاپ به دلیل وجود بیش از ۹۰ درصد اسیدولتیک در رغی خاص، خصوصاً اسیدولتیک و اسید لیتوپاتیک در رغی، به عنوان مکمل غذایی مناسب برای دام، فاقد نیاز زیادی است. به‌طور کلی در اقلیم غرب زندگی شرودی، خشک‌شوی و سرمایی زمستانی، از همیشه خاص برای آمادگی داروی مورد نیاز کشور خصوصاً در استان‌های بزخوردار است. بطور کلی در اقطاب غربی نیز، تولید کنجکاو به عنوان محلول سازگاری آن با شرایط آب و هوایی مناطق وسیعی از کشور ما دارد (۱ و ۲). و همواره با استفاده از شاخص‌های محاسبه‌دار و مشابه، ساخته‌ای که از نظر کلی شاخص‌ها (Vigna radiata L.) در بین زنوز پیشگویی نمودار و نشان‌دهنده بوده و بیشترین شاخص‌های مربوط به زنزین‌های تولید می‌تواند استحصایی باید انتخاب زنوز‌های برتر و متسلسل به خاص برای کشت در شرایط محیطی و محدودیت‌های پیشنهاد شده (TOL) (۸) و روزیل و همبی (۱۱) شاخص محاسبه‌ی (Mean Productivity) و شاخص‌های محلی تولید (Tolerance) را بیشتر به عنوان دارای مقدار بسیار بالا لحاظ کنیم که در هر دو می‌توانند اضافه کرد به شرایط محیطی بودن نشان دهنده عملکرد بالایی دارند. این باید که در هر دو می‌توانند بیشتر بودن نشان بدهد عملکرد بالایی دارند. این یک تحقیق (۱۰) نشان داده است که به خصوصی‌های زنوز‌هایی که در هر دو محیط نشان دهنده عملکرد بالایی دارند، فاقد می‌شوند.

SSS و GMP رامیرز-والجو و کلی (۱۰) از شاخص‌های بهتر از منابع موجود را می‌تواند و موجب توجه سطحی زیر کشت گیاهان و افزایش باره‌شدن می‌گردد.

یافته‌های از شاخص‌های محاسبه‌دار و مشابه، ساخته‌ای که از نظر کلی شاخص‌ها (Vigna radiata L.) در بین زنوز پیشگویی نمودار و نشان‌دهنده بوده و بیشترین شاخص‌های مربوط به زنزین‌های تولید می‌توانند استحصایی باید انتخاب زنوز‌های برتر و متسلسل به خاص برای کشت در شرایط محیطی و محدودیت‌های پیشنهاد شده (TOL) (۸) و روزیل و همبی (۱۱) شاخص محاسبه‌ی (Mean Productivity) و شاخص‌های محلی تولید (Tolerance) را بیشتر به عنوان دارای مقدار بسیار بالا لحاظ کنیم که در هر دو می‌توانند بیشتر بودن نشان بدهد عملکرد بالایی دارند. این یک تحقیق (۱۰) نشان داده است که به خصوصی‌های زنوز‌هایی که در هر دو محیط نشان دهنده عملکرد بالایی دارند، فاقد می‌شوند.

SSS و GMP رامیرز-والجو و کلی (۱۰) از شاخص‌های بهتر از منابع موجود را می‌تواند و موجب توجه سطحی زیر کشت گیاهان و افزایش باره‌شدن می‌گردد.

یافته‌های از شاخص‌های محاسبه‌دار و مشابه، ساخته‌ای که از نظر کلی شاخص‌ها (Vigna radiata L.) در بین زنوز پیشگویی نمودار و نشان‌دهنده بوده و بیشترین شاخص‌های مربوط به زنزین‌های تولید می‌توانند استحصایی باید انتخاب زنوز‌های برتر و متسلسل به خاص برای کشت در شرایط محیطی و محدودیت‌های پیشنهاد شده (TOL) (۸) و روزیل و همبی (۱۱) شاخص محاسبه‌ی (Mean Productivity) و شاخص‌های محلی تولید (Tolerance) را بیشتر به عنوان دارای مقدار بسیار بالا لحاظ کنیم که در هر دو می‌توانند بیشتر بودن نشان بدهد عملکرد بالایی دارند. این یک تحقیق (۱۰) نشان داده است که به خصوصی‌های زنوز‌هایی که در هر دو محیط نشان دهنده عملکرد بالایی دارند، فاقد می‌شوند.

SSS و GMP رامیرز-والجو و کلی (۱۰) از شاخص‌های بهتر از منابع موجود را می‌تواند و موجب توجه سطحی زیر کشت گیاهان و افزایش باره‌شدن می‌گردد.

یافته‌های از شاخص‌های محاسبه‌دار و مشابه، ساخته‌ای که از نظر کلی شاخص‌ها (Vigna radiata L.) در بین زنوز پیشگویی نمودار و نشان‌دهنده بوده و بیشترین شاخص‌های مربوط به زنزین‌های تولید می‌توانند استحصایی باید انتخاب زنوز‌های برتر و متسلسل به خاص برای کشت در شرایط محیطی و محدودیت‌های پیشنهاد شده (TOL) (۸) و روزیل و همبی (۱۱) شاخص محاسبه‌ی (Mean Productivity) و شاخص‌های محلی تولید (Tolerance) را بیشتر به عنوان دارای مقدار بسیار بالا لحاظ کنیم که در هر دو می‌توانند بیشتر بودن نشان بدهد عملکرد بالایی دارند. این یک تحقیق (۱۰) نشان داده است که به خصوصی‌های زنوز‌هایی که در هر دو محیط نشان دهنده عملکرد بالایی دارند، فاقد می‌شوند.

SSS و GMP رامیرز-والجو و کلی (۱۰) از شاخص‌های بهتر از منابع موجود را می‌تواند و موجب توجه سطحی زیر کشت گیاهان و افزایش باره‌شدن می‌گردد.
ارزیابی تحلیل به‌شکلی که لایه‌ها گلرگن بر پایه شاخص‌های انجام و...

برای شناسایی زنوتیپ‌های متحمل به تنش رطوبتی در گل‌های لوبیا استفاده نمودند و ضمن مشاهده نفروی در بین زنوتیپ‌ها، نتیجه‌گیری کردند مسئولیت روش برای اصلاح مقاومت‌ب
شکست در لوبیا معمولی، انتخاب بر مبنای مقایسه بالایی GMP و مقادیر کم می‌باشد. اسنادی و همکاران (۱۱) با
به‌کارگیری شاخص‌های GMP و SSI برای ارزیابی Znوتیپ‌های لوبیا معمولی (Phaseolus vulgaris L.)

شاخص‌های شناسایی Znوتیپ‌های متحمل به تنش معرفی کردند. کلاکی و همکاران (۱۶) نیز شاخص SSI برای
شناسایی و ارزیابی Znوتیپ‌های متحمل به تنش رطوبتی در
گندم بر یک سرده و از لحاظ میزان زنوتیپ‌های
مورد بررسی، تنوع زیادی مشاهده گردند. فرزین و همکاران (۷)

نیز با استفاده از شاخص SSI برای ارزیابی مقاومت به خشکی Znوتیپ‌های آتیوگردان (Helianthus annuus L.)

زاویه را برای مقاومت به خشکی در این گیاه گزارش نمودند. این نتایج نشان دهنده است که با رشد و

مقاومت Znوتیپ‌های متحمل به تنش خشکی در سیگما (Glycin max L.)

بیان کردن که بعضی از ارقام لایه‌ها از توئیلی تحلیل به تنش بالایی بحرانی هستند. هدف از این پژوهش، ارزیابی اعمال کردن و تحلیل به خشکی
لایه‌ای بیماران تشکیل از توئیلی و گلرگن بر اساس

شاخص‌های مختلف بود تا نمونه‌های Znوتیپ‌های برتر و همچنین

شاخص‌های برتر را برای شناسایی Znوتیپ‌های متحمل به شرایط تنش رطوبتی معرفی نمود.

مواد و روش‌ها

ابن پژوهش در سال ۱۳۸۱ به منظور ارزیابی لایه‌های حاصل از توئیلی بومی گلرگن در دو رژیم رطوبتی مختلف در مرکز

تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان در منطقه شرودان در نواحی شهرستان فلاورجان واقع در ۳۰ کیلومتری

اقتصاد انجام شد. خاک مزرعه دارای بلوس لایه نمی‌باشد، ولی pH مخصوص طاهری ۱/۷ به‌سابقه در سالی

409
روتیت خاک مربوط به افزایش‌های 300–350 سانتی‌متری در آزمایش بدون نش به ترتیب بیش از 21 و 23/9 درصد و در آزمایش دارای نش رطوبتی بیش از 21 و 15 درصد می‌رسید. آیا انجام نشاند. علی‌رغم‌های هر نیز بیش‌سوزن‌های دستی کنترل شدند. عامل‌های دیگر نشاند هم‌زمان عملکرد دانه برداشتی از 3 ردیف وسط هر واحد آزمایش و با رطوبت حدود 10% تعیین گردید.

برای بررسی نحوه واکنش زنوتیپ‌ها و اثر متغیرهای میانگین‌های 1 (MP) و میانگین‌های 1 (STI) به‌سادگی است. بر اساس این روش، زنوتیپ‌ها در سه تیپ گروه‌بندی می‌شوند. برای هر زنوتیپ درصد مواردی که واکنش حساسیت و تحمل نشان دهنده محسوب شد.

در این تحقیق شامل های مختلف تحمل و حساسیت به خشکی نیز باید ارزیابی واکنش زنوتیپ‌ها استفاده شد که عبارت است از:

1. مجموعه‌های تحلیل (TOL) و میانگین‌های 1 (MP) به‌سادگی است. بر اساس این روش، زنوتیپ‌ها در سه تیپ گروه‌بندی می‌شوند. برای هر زنوتیپ درصد مواردی که واکنش حساسیت و تحمل نشان دهنده محسوب شد که

2. تحلیل رژیم‌های آب و هوا (SSI) به‌سادگی است. بر اساس این روش، زنوتیپ‌ها در سه تیپ گروه‌بندی می‌شوند.

روتیت خاک مربوط به افزایش‌های 300–350 سانتی‌متری در آزمایش بدون نش به ترتیب بیش از 21 و 23/9 درصد و در آزمایش دارای نش رطوبتی بیش از 21 و 15 درصد می‌رسید. آیا انجام نشاند. علی‌رغم‌های هر نیز بیش‌سوزن‌های دستی کنترل شدند. عامل‌های دیگر نشاند هم‌زمان عملکرد دانه برداشتی از 3 ردیف وسط هر واحد آزمایش و با رطوبت حدود 10% تعیین گردید.

برای بررسی نحوه واکنش زنوتیپ‌ها و اثر متغیرهای میانگین‌های 1 (MP) و میانگین‌های 1 (STI) به‌سادگی است. بر اساس این روش، زنوتیپ‌ها در سه تیپ گروه‌بندی می‌شوند. برای هر زنوتیپ درصد مواردی که واکنش حساسیت و تحمل نشان دهنده محسوب شد که

1. مجموعه‌های تحلیل (TOL) و میانگین‌های 1 (MP) به‌سادگی است. بر اساس این روش، زنوتیپ‌ها در سه تیپ گروه‌بندی می‌شوند. برای هر زنوتیپ درصد مواردی که واکنش حساسیت و تحمل نشان دهنده محسوب شد که

2. تحلیل رژیم‌های آب و هوا (SSI) به‌سادگی است. بر اساس این روش، زنوتیپ‌ها در سه تیپ گروه‌بندی می‌شوند.
جدول ۱. عملکرد دانه زنوتیپ‌ها در شرایط نش و بدون نش رطوبتی

<table>
<thead>
<tr>
<th>منشا</th>
<th>تعداد آذربایجان غربی</th>
<th>کانادا</th>
<th>تعداد اصفهان</th>
<th>تعداد استان مرکزی</th>
<th>تعداد خراسان</th>
<th>تعداد همدان</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلوگرم در هکتار</td>
</tr>
<tr>
<td>۲۰۰۹/۹ h</td>
<td>۸۷۲۹/۳ h</td>
<td>۷۷۳۸/۵ hde</td>
<td>۳۷۲۹/۶ hde</td>
<td>۱۲۳۷/۵ h</td>
<td>۲۰۰۲/۳ h</td>
<td>۲۳۲۹/۱ e</td>
</tr>
<tr>
<td>۲۰۰۲/۳ h</td>
<td>۴۷۵۲/۵ hde</td>
<td>۷۳۵۴/۳ h</td>
<td>۳۰۲/۱ h</td>
<td>۳۶۵۲/۱ cd</td>
<td>۱۳۲۱/۹ cd</td>
<td>۳۶۵۲/۱ cd</td>
</tr>
<tr>
<td>۲۳۲۹/۱ e</td>
<td>۱۲۷۱/۹ a</td>
<td>۱۲۷۱/۹ ab</td>
<td>۳۶۵۲/۱ cd</td>
<td>۱۲۷۱/۹ ab</td>
<td>۱۲۷۱/۹ ab</td>
<td>۱۲۷۱/۹ ab</td>
</tr>
<tr>
<td>۱۲۷۱/۹ ab</td>
<td>۱۳۶۵/۳ ab</td>
<td>۱۳۶۵/۳ ab</td>
<td>۱۳۶۵/۳ ab</td>
<td>۱۳۶۵/۳ ab</td>
<td>۱۳۶۵/۳ ab</td>
<td>۱۳۶۵/۳ ab</td>
</tr>
<tr>
<td>۲۰۰۹/۹ h</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که حداقل یک حرف مشترک هستند، با استفاده از آزمون LSD و در سطح احتمال 5% تفاوت معنی‌داری ندارند.

کیلوگرم در هکتار یکی از برترین زنوتیپ‌ها بود. ولی در شرایط دارای نش، عملکرد آن به‌طور یکتا کاهش داشت. این امر نشان دهنده حساسیت تولید کوره به شرایط نش خشکی می‌باشد. در حالیکه عملکرد تولید کوره در شرایط دارای نش نسبت به رقم خارجی AC-Sunset در ۷/۱۲ درصد موارد و اکتش حساسیت نشان داد، باشکه بود (جدول ۲). زنوتیپ‌های H۲۷ و ۲۷۷۷ هم زیر بخشی از بهترین زنوتیپ‌ها در شرایط نش بودند (جدول ۱). تولید کوره زیر بخشی و اکتش حساسیت دارا بود و در هنگ موردی واکنش انجام نداد (جدول ۲) و در شرایط بدون نش با عملکرد ۲/۵۲۵/۱ بود.
جدول 2: درصد واکنش تحمض و حساسيت زنوتیبها بر منابع اثر مقاومت زنوتیب و محیط

<table>
<thead>
<tr>
<th>زنوتیب بدون اثر مقاومل</th>
<th>منشأ</th>
<th>درصد حساسیت</th>
<th>درصد تحمض</th>
<th>نوع اول</th>
<th>نوع دوم</th>
<th>نوع سوم</th>
<th>نوع اول</th>
<th>نوع دوم</th>
<th>نوع سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>توده آذربایجان</td>
<td>A2</td>
<td>21/4</td>
<td>3</td>
<td>7/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده کوتسه</td>
<td>Ac-Sunset</td>
<td>71/4</td>
<td>19</td>
<td>6/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده اصفهان</td>
<td>اصفهان</td>
<td>14/3</td>
<td>5</td>
<td>7/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده مرکزی</td>
<td>M420</td>
<td>21/4</td>
<td>5</td>
<td>7/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده کوتسه</td>
<td>C116</td>
<td>7/1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>4/1</td>
</tr>
<tr>
<td>توده خراسان</td>
<td>S149</td>
<td>42/9</td>
<td>21/4</td>
<td>2</td>
<td>7/1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4/1</td>
</tr>
<tr>
<td>توده خراسان</td>
<td>S3110</td>
<td>7/1</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده آذربایجان</td>
<td>A1</td>
<td>21/4</td>
<td>1</td>
<td>7/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده کوتسه</td>
<td>C128</td>
<td>71/4</td>
<td>19</td>
<td>6/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده اصفهان</td>
<td>E4247</td>
<td>14/3</td>
<td>5</td>
<td>7/1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده همدان</td>
<td>HV</td>
<td>7/1</td>
<td>4</td>
<td>1/1/2</td>
<td>4/3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>توده کرمانستان</td>
<td>K12</td>
<td>14/3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1/1/2</td>
<td>4/3</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>توده کوتسه</td>
<td>C1111</td>
<td>7/1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1/1/2</td>
<td>4/3</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
شناختیه‌ی تحمل و حساسیت به نش کم آبی

شناختیه‌ی میکروکچرک STI و GMP، MP، TOL، SSI و Znیگویی

Znیگویی‌ها در محدودیت‌های سیستم نزه و بودن در نش رطوبی و بر

اساس شدت نش STI (برابر 1/43) محسوب شده است. مقاوت

منی در اثر احتمال 1/4 از احتمال کلی شناختیه‌ی

مکرر بین Znیگویی‌ها به دیگه شد (جدول 3). نتیجه حاصل از

مقایسه میانگین شناختیه‌ی (جدول 3) نشان داد که براساس

شناختیه‌ی Znیگویی‌های C128 و C138، SSI و TOL به بیشترین تحمل به نش کم

می‌باشد.

شناختیه‌ی تحمل به نش کم آبی

شناختیه‌ی استرالیا و بیشترین تحمل به نش C128

GMP را داشتند. بتای پایین همچنین می‌باشد که این اندازه

بین زننی‌ها بودند. به نظر من به دو شناختیه

MGP و MP بودند. این آزمایش نشان‌دهنده شناختیه‌ی

E2428 یافته‌است که این اندازه‌ای

TOL با احتمال 1/42، که در زننی‌ها

کلی (1/0) از ارزیابی مقاومت به نش کمی

می‌باشد. گزارش‌ها نشان‌دهنده شناختیه‌ی

TOL زننی‌های C128 و C138 با مقدار کم

Si3110 محصول را به نش رطوبی داشتند. مقاوت این شناختیه‌ی

کمترین تحمل به نش رطوبی داشتند. مقاوت این شناختیه‌ی

بین 314/9 تا 317/8 کیلوگرم در هکتار منفی بود (جدول 3). با

توجه به شناختیه‌ی میانگین TOL (MP) Znیگویی‌ها

با AC-Sunset 318/9 کیلوگرم در هکتار بیشترین زننی‌ها و

Znیگویی‌های C128 171/8 کیلوگرم در هکتار مکرر مقادیر این شناختیه به درجه

اختصاص دادند.

مورد توجه قرار گیرنده. نتایج نشان می‌دهد که در بین Znیگویی‌ها

از لحاظ درصد واکنش تحمل به نشکی، تنوع وجود دارد و

پتانسیل Zنیگویی تحمل به نشکی آنها متفاوت است (جدول 2).

بنابراین انتخاب بیشتر شایعی زننی‌های Zنیگویی طولانی

و محصول را انتخاب نمود. استر و دیویک (13) نشان دادانه

این صفت در بین Zنیگویی‌های سویا می‌تواند زیادی را مشاهده

نمودند و مطالعه کردن که از این نوع در برنامنه‌ای اصلاحی

سویا استفاده نمایند.
جدول 3. مقادیر عمکرد زنوتیپ‌ها در محیط دارای تنش (YS) و بدون تنش (YP). شاخص‌های تحلیل و حسابی به شکلی همراه با رتبه زنوتیپ‌ها (اعداد داخل پانیرز) و میانگین مربعات زنوتیپ‌ها برای هر صفت

<table>
<thead>
<tr>
<th>شماره زنوتیپ</th>
<th>STI</th>
<th>GMP</th>
<th>MP</th>
<th>TOL</th>
<th>SSI</th>
<th>Yp</th>
<th>Ys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون میانگین حاصلی که دارای حرف مشترک هستند با استفاده از آزمون LSD و در سطح احتمال 5% تفاوت معنی‌داری ندارند.
شکل 1. پراکنش زنوتیپ‌ها براساس عملکرد در محیط‌های دارای تش (Ys) و بدون تش (Yp) (شاخص STI)

نسبت برای کل زنوتیپ‌های موجود در آزمایش اندامه‌گیری می‌کند. با این‌حالین زنوتیپ با عملکرد زیاد و کم می‌توانند مقاومت یکسانی داشته باشند. چون اختلاف عملکرد بین شرایط دارای تش و فاقد تش برای هر دو زنوتیپ می‌تواند یکسان باشد (1). در این پژوهش نیز سه زنوتیپ C128 و C777 دارای مقاورد (MP) و عملکرد دانه در شرایط تش (Ys) دارای تفاوت ممکن دارند. انتخاب بر اساس SSI موجب گروه زنوتیپ‌های محیط‌های مطلوب و بدون تش می‌شود (4). در این پژوهش دو زنوتیپ C128 و C777 دارای مقاورد پایین بوده و بر اساس این شاخص، متحمل ترین زنوتیپ‌ها می‌باشد، ولی در شرایط بدون تش جزء بهترین زنوتیپ‌ها نیستند. با در نظر گرفتن مقاورد MP و GMP این شاخص می‌توان جزء متحمل ترین زنوتیپ‌ها در نظر گرفت. انتخاب براساس باعث گروه زنوتیپ‌هایی با یکسانی عملکرد بالا می‌گردد. شاخص MP برخلاف GMP به مقافردین بین SSI
جدول 2: سهم هر مولفه در کل تغییرات مربوط به شاخ‌های و مقادیر ضرابی شاخ‌ها برای هر مولفه

<table>
<thead>
<tr>
<th>ضرابی شاخ‌ها</th>
<th>STI</th>
<th>SSI</th>
<th>TOL</th>
<th>GMP</th>
<th>MP</th>
<th>Ys</th>
<th>Yp</th>
<th>مقادیر هر مولفه</th>
<th>باین</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>مولفه‌های STI</td>
<td>0/72</td>
</tr>
<tr>
<td>مولفه‌های AC-Stirling</td>
<td>0/72</td>
</tr>
</tbody>
</table>

ملاحظه مبدئی و بدون تنش، عامل‌کرد پایین دارند. (AC-Stirling) قرار گرفتن به مقدار STI آن‌ها بسیار پایین بود. حدود 80 درصد زنوتیپ‌های نازدیکی در گروه A قرار گرفتند. به عبارت دیگر به جز چند زنوتیپ، پهلو دارای پتانسیل عامل‌کرد بهار در هر دو محیط با ناشی و بدون ناشی بودند. توده کم‌کم در گروه B قرارگرفت که در محیط قافله ناشی، عامل‌کرد مناسب داشت، ولی در شرایط داری یان مربوط به عامل‌کرد آن کاهش نسبت به ناشی داد (دل 1 و شکل 1). بنابراین به نظر می‌رسد که این امر به ویژه در شرایط داری ناشی رضوتوی مناسب تابید. زنوتیپ‌های گروه D ارقام بودند که منشأ‌انجی داشتند (کشک‌کاپاد) و به دلیل عدم وجودی شاخ‌های زنوتیپی که شرایط محیطی مناسب، به‌طور کلی در هر دو رژم رضوتوی داری عامل‌کرد پایین بودند.

تجزیه مولفه‌های اصلی شاخ‌های تحمیل و حساسیت به تنش

به منظور درک بیشتر ارتباط بین شاخ‌های از تجزیه مولفه‌های اصلی استفاده شد. قرار گرفتن اول جمعاً 99% از تغییرات مربوط به شاخ‌های تحمیل به ناشی نمود. در سه مولفه اول تنبیه تغییرات کلی شاخ‌های پرتاب با 72/0 نمود. (جدول 2). در مولفه STI و SSI اول، بیشترین ضرابی و تیت شاخ‌های یپ با 62/7 نمود و در این مولفه‌ها داشتند. سهم هر مولفه در کل تغییرات مربوط به شاخ‌های و تنش‌های طبیعی داشت. ناشی که در شرایط تنش نشست و تنش داشت، مولفه‌های اول در حدود 69% از تغییرات مربوط به شاخ‌های با دادن گیاه لوبیا توجیه نمود و در این

* STI: AC-Stirling
* SSI: AC-Sunset
* TOL: TOL
* GMP: GMP
* MP: MP
* Ys: Ys
* Yp: Yp

را به حد استخوان داد و این مولفه به عنوان مولفه پتانسیل تولید معرفی گردید. در مبانی انتخاب بر اساس این مولفه، زنوتیپ‌هایی را که عامل‌کرد که عامل‌کرد بالایی در هر دو محیط دارای تنش و بدون ناشی دارند. زنوتیپ (E2248) دارای
ارزیابی تحمل به خشکی لایه‌های گلرنگ براساس شاخص‌های تحمل و...

شکل 2. نمایش بازیابات و آکتیویت زنوبیت‌ها و 5 شاخص تحمل و حساسیت به تنش و عملکرد در محیط‌های تنش و بدون تنش

در محیط دارای تنش و بدون تنش رطوبتی استفاده نمود. در STI شاخص مناسبی برای انتخاب زنوبیت‌های برتر باشد. زیرا انتظار می‌رود زنوبیت‌هایی که بر اساس این شاخص گزینش می‌شود دارای توان عملکرد بالاتری بوده و در ضمن از تحمل خوبی نسبت به شرایط تنش رطوبتی برخوردار باشند. در این پژوهش زنوبیت 2428 بر اساس STI بهترین زنوبیت بود و علاوه بر این که بیشترین تحمل را به تنش رطوبتی داشت، بیشترین عملکرد داشته و نیز در هر دو رزیم رطوبتی دارا بود (جدول 3).

منابع مورد استفاده

1. آمیدی تبریزی، اح. و. م. احمدی، 1379. مروری بر تحقیقات بهنزدایی و پرورشی گلرنگ در جهان و ایران. ماهنامه علمی تخصصی زیتون 14: 14-18.
2. آمیدی تبریزی، اح، و. قناده‌ها، م. احمدی وع. پیغمبری، 1388. بررسی صفات مهم زراعی ارقام گلرنگ به‌هاره از طریق روش‌های جدید منع راه‌آهن ایران 30(2): 817-820.
3. زینلی، ا. 1378. گلرنگ (شناتخت، تولید و مصرف)، انتشارات دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 144 صفحه.

417