ناهمگینی اجزای واریانس مقدار شیر در سطوح متفاوت تولید گاو‌های هله‌تاين ایران

محمد مرادی شهبایی، مصطفی صادقی، سید رضا میرانی آشتیانی و محمدمبقر صبادنزا

چکیده
در این پژوهش از رکورد‌های زایش اول مربوط به ۹۵۲۹۴ رأس گاو هله‌تاين، که طی سال‌های ۱۳۷۱ تا ۱۳۷۹ در ۶۷۸ شهر توسط مرکز اصلاح نژاد دام کشور جمع‌آوری شده، استفاده شد. رکورد‌ها بر اساس ۲۳۰ رون شریکی و دوباره دویش در روز تصحیح شدند. داده‌ها براساس سطح تولید گاو، به سه گروه تولیدی پایین، متوسط و بالا (پیشرفت از ۲۷۸۵ کیلوگرم) دسته‌بندی شدند. برآورد مولفه‌های واریانس و کوواریانس با استفاده از مدل‌های بک صفتی برای هر یک از دسته‌ها و با استفاده از مدل‌های ساختاری مقدار شیر در سطوح تولیدی و روش جداکار در دسته‌های محدود شده و الگوریتم بی‌نیاز مشتق‌گیری (DFREML) انجام شد. نتایج آزمون بارتلر در بین سه سطح تولید گاو (متوسطی دار ۲۰۱۳–۰۳، متوسطی دار ۲۰۱۴–۰۴، متوسطی دار ۱۹۵۹–۰۳) بوده و نشان دهنده عدم یکنواختی گروه‌ها در سه سطح تولید گاو می‌باشد. در تجزیه‌بندی در تجزیه یک‌تایی و سه‌تایی مشاهده و برای سطح تولید بالا، متوسط و بالا به ترتیب ۵/۸۸، ۱/۶۴، ۱/۴۸، در دامنه ۸۰ تا ۸۵ درصد و حداکثر همبستگی زیان‌زا بین سطح تولید بالا و بالا به ترتیب ۱/۸۸ و ۱/۸۴ قرار داشت. که این تابی دای بر اثر ناهماهنگی واریانس بر بی‌پراورد پارامترهای زیان‌زا صفات مورد مشاهده می‌باشد. بیشترین مقدار همبستگی رتبه‌ای ارزش‌های اصلاحی بین مدل یک‌تایی و سه‌تایی مربوط به سطح تولید متوسط بوده و میانگین تغییرات رتبه ارزش‌های اصلاحی حیوانات مشترک در ۱ درصد کاهش می‌یابد و بین ۵ درصد گاو‌هایی که ترک به رشد تولید نسبت به این گروه‌ها می‌تواند با سطح تولید بالا مشابه باشد.

واژه‌های کلیدی: تولید شیر، ناهماهنگی واریانس، اجزای واریانس، هله‌تاين

مقدمه
پرآورده مولفه‌های واریانس برای مشخص نمونه سهم آثار زیان‌زا ویرایش‌های اصلاحی طراحی برنامه‌های اصلاح نژاد و پیشرفت زیان‌زا ضروری

۱. به ترتیب استادیار، کارشناس ارشد و دانشیار علوم دامی، دانشکده پردیس کشاورزی و منابع طبیعی، دانشگاه تهران
۲. کارشناس ارشد مرکز اصلاح نژاد دام کشور، کرج

437
داشتی باشد. با تبدیل لگاریتمی داده‌ها می‌توان این نامگه‌ای را تصحیح نمود (18). در مطالعه ایلانز و همکاران (20) درصد از گاوهای ماده بتر در نتیجه وضعیت کودکانه‌ها و لیست حذف شدند (11). جایی‌الا بی‌طرفی در نظر گرفتن نامگه‌ای واریانس، تشخیص چند صفتی را پیشنهاد نموده است که رکورد‌های هر سطح تولید به عنوان یک صفت در نظر گرفته می‌شود (8).

با توجه به این که گاو به هسل‌نشین در ایران در گله‌های مختلف دارای سطح تولید نماینده‌سکستن ولی در ارزیابی‌های غربی، فرض همگنی مولفه‌های واریانس اعمال می‌شود. بنابراین، هدف این پژوهش اثبات نامگه‌ای واریانس بین سطح متفاوت تولید شیر اثر آن بر برآورد پارامترهای و ارزیابی‌های غربی در گاوهای هسل‌نشین ایران بود. همچنین در این خصوص مقایسه تجربی یک صفت و هم‌ساختار یک اثر آن بر ارزیابی‌های غربی و رتبه‌بندی حیوانات مورد توجه ورود کرده.

مواد و روش‌ها

داده‌ها

داده‌های مورد استفاده در این پژوهش رکورد‌های زایش اول مربوط به راس گاو هسل‌نشین بود که در طی سال‌های 1377 تا 1374 در 501 کلو توسط مرکز اصلاح نژاد دام کشور جمع آوری شده است. رکورد‌ها با اساس ۲۰ روز شیردهی و در بار دوosh در روز تصسیح شدند. داده‌های حیواناتی که سن آنها در شیردهی اول خارج از محدوده ۲۰ ماه بوده و همچنین گله‌هایی که کمتر از ۵ رکورد در سال حذف شدند، آماده‌سازی و تنظیم داده‌ها با استفاده از نرم‌افزارهای انجام شد. داده‌ها با اساس سطح تولید گله-سال به سه گروه تولیدی پایین (کمتر از ۵۲۷۵ کیلوگرم)، توسط (20) به سه گروه تولیدی پایین (کمتر از ۵۲۷۵ کیلوگرم) به سه گروه تولیدی پایین (کمتر از ۵۲۷۵ کیلوگرم) و سه گروه (بیش از ۶۸۴ کیلوگرم) نسبت می‌شود که نسبت به ارزیابی‌های غربی با میانگین بالایی از میانگین موجود در گروه‌ها با میانگین پایینی با گروه با میانگین بالایی از میانگین وجود در گروه‌ها (۱) اگر بین انحراف‌های استاندارد و میانگین تولید، رابطه‌های مستقیم وجود

ب دست می‌آید. این فرض ممکن است غیر واقعی باشد.

نامگه‌ای واریانس زنیتکی و میوه‌دیامی و پایین‌ماده‌برای صفات تولیدی در تعدادی از مطالعات که در شده است (18) (19) (20)، در برخی نتایج ارتباط مشابه بین میانگین تولید با واریانس صفات و با واریانس پایین‌ماده نشان داده شده است (15) و (16). در این حالت فرض همگنی واریانس‌ها احتمالاً در رتبه‌بندی جویندید خواهد شد و گاوهای بتر در گله‌های با واریانس پایین‌ماده، بالاتر ارزیابی می‌شوند و گاوهای ممتاز، پیشرفت از گله‌های با واریانس بالا و میانگین بالای انتخاب می‌شوند (15).

گریک و یون و لک ناشی دادن که وقتی نامگه‌ای واریانس‌ها در آزمون نتایج نهایی گرفته شود، پیشرفت زنیتکی بیش از درصد کافی می‌باشد. عواملی از واریانس سطح تولید، دوره‌های زمانی، مناطق جغرافیایی و مدیریت به عنوان منابع نامگه‌ای واریانس‌های زنیتکی و پایین‌ماده در جمع‌یابی جهانی شناخته شده‌اند (3). ۷۲ (19) (20)، تغییرات اندوزه کل و مدیریت‌های متفاوت تغذیه برابری‌های مختلف گوشه‌ها می‌توانند درون گله‌ها و بی‌تفاوت در انتخاب و استفاده از گیاهی متفاوت زنیتکی خارجی در طول زمان، عمل نامگه‌ای واریانس‌های محیطی و بازی‌های زبانی در دوره‌های زمانی نشان دهند (3). در مطالعه اثر سطح تولید، مؤلفه‌های واریانس در سطح تولید بالا بزرگتر و سطح تولید بالا از گروه‌های تولید بالا لگاریتمی نیز اجزای واریانس در سطح تولید بالا اندکی بیشتر از سطح تولید پایین بوده و انتخاب می‌تواند در همیشه‌های زنیتکی بین سطح متفاوت‌های زنیتکی بین سطح مختلف تولیدی، نشان دهنده این است که نامگه‌ای محیطی واریانس‌ها ناشی از اثر متقابل بین زنیتکی و محیط بی‌تفاوت است. آگر میزان واریانس درون گله‌های گرامه ازار میانگین سطح تولید زیاد بود، تغییر معیار گروه‌ها داده‌ها از میانگین تولید شیر بی واریانس درون گله‌های دوره‌های موجود در گروه‌ها با میانگین پایینی با نتایج با میانگین بالایی از میانگین وجود در گروه‌ها (۱) اگر بین انحراف‌های استاندارد و میانگین تولید، رابطه‌های مستقیم وجود
جدول 1. خلاصه فاصل شجربک هر یک از دسته‌های سطوح تولیدی

<table>
<thead>
<tr>
<th>سطح تولید</th>
<th>تعداد</th>
<th>رکورد</th>
<th>تعداد</th>
<th>پایین</th>
<th>متوسط</th>
<th>بالا</th>
</tr>
</thead>
<tbody>
<tr>
<td>پایین</td>
<td>12089</td>
<td>672</td>
<td>377</td>
<td>956</td>
<td>2482</td>
<td>1287</td>
</tr>
<tr>
<td>متوسط</td>
<td>1260</td>
<td>12311</td>
<td>2655</td>
<td>2662</td>
<td>5482</td>
<td>5597</td>
</tr>
<tr>
<td>بالا</td>
<td>1379</td>
<td>13176</td>
<td>1257</td>
<td>6400</td>
<td>24656</td>
<td>15190</td>
</tr>
</tbody>
</table>

گردید که تولید شیر در سطح تولید به عنوان یک صفت در
نظر گرفته شد. مدل‌های واریانس براورد شده از تجزیه یک
مقدار مدل را می‌توانند با استفاده از داده‌های مربوط به
باتی‌های از این داده‌ها و

\[
y_{ij} = \mu + H_{ij} + b_i + a_j + e_{ij}
\]

که: مشاهده می‌کنم مربوط به تولید شیر در حیوان Q3 در گله - سال- فصل

\[
E(y) = Xb
\]

\[
V(y) = \begin{pmatrix} \mathbf{g}_{11} \mathbf{A} & \mathbf{g}_{1,1} \mathbf{A} & \mathbf{g}_{1,2} \mathbf{A} \\
\mathbf{g}_{1,1} \mathbf{A} & \mathbf{g}_{2,1} \mathbf{A} & \mathbf{g}_{2,2} \mathbf{A} \\
\mathbf{g}_{1,2} \mathbf{A} & \mathbf{g}_{2,1} \mathbf{A} & \mathbf{g}_{2,2} \mathbf{A} \\
\end{pmatrix}
\]

\[
\mathbf{a}_1 = \begin{pmatrix} \mathbf{g}_{11} \mathbf{A} & \mathbf{g}_{1,1} \mathbf{A} & \mathbf{g}_{1,2} \mathbf{A} \\
\mathbf{g}_{1,1} \mathbf{A} & \mathbf{g}_{2,1} \mathbf{A} & \mathbf{g}_{2,2} \mathbf{A} \\
\mathbf{g}_{1,2} \mathbf{A} & \mathbf{g}_{2,1} \mathbf{A} & \mathbf{g}_{2,2} \mathbf{A} \\
\end{pmatrix}
\]

\[
\mathbf{a}_2 = \begin{pmatrix} \mathbf{g}_{11} \mathbf{A} & \mathbf{g}_{1,1} \mathbf{A} & \mathbf{g}_{1,2} \mathbf{A} \\
\mathbf{g}_{1,1} \mathbf{A} & \mathbf{g}_{2,1} \mathbf{A} & \mathbf{g}_{2,2} \mathbf{A} \\
\mathbf{g}_{1,2} \mathbf{A} & \mathbf{g}_{2,1} \mathbf{A} & \mathbf{g}_{2,2} \mathbf{A} \\
\end{pmatrix}
\]

\[
\mathbf{e}_1 = \begin{pmatrix} \mathbf{r}_{1,1} \\
\mathbf{r}_{1,1} \\
\mathbf{r}_{1,1} \\
\mathbf{r}_{1,1} \\
\end{pmatrix}
\]

\[
\mathbf{e}_2 = \begin{pmatrix} \mathbf{r}_{1,2} \\
\mathbf{r}_{1,2} \\
\mathbf{r}_{1,2} \\
\mathbf{r}_{1,2} \\
\end{pmatrix}
\]

\[
\mathbf{e}_3 = \begin{pmatrix} \mathbf{r}_{1,3} \\
\mathbf{r}_{1,3} \\
\mathbf{r}_{1,3} \\
\mathbf{r}_{1,3} \\
\end{pmatrix}
\]

\[
\mathbf{e}_4 = \begin{pmatrix} \mathbf{r}_{1,4} \\
\mathbf{r}_{1,4} \\
\mathbf{r}_{1,4} \\
\mathbf{r}_{1,4} \\
\end{pmatrix}
\]

امید رایاضی و مارترینس واریانس معادله مدل به

\[
E(y) = Xb
\]

\[
V(y) = ZGZ' + R
\]

\[
E(a) = \mathbf{0}
\]

\[
E(e) = \mathbf{0}
\]

\[
V(Y) = ZGZ' + R
\]

امید رایاضی معادله مدل به صورت زیر است:

\[
E(y) = \mu + H_{ij} + b_i + a_j + e_{ij}
\]

\[
E(a) = \mathbf{0}, \quad E(e) = \mathbf{0}
\]

\[
V(Y) = ZGZ' + R
\]
جدول ۲. خلاصه آماری مقدار تولید شیر در هر یک از سطوح تولید

<table>
<thead>
<tr>
<th>سطح تولید</th>
<th>تعداد داده</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>ضریب تغییرات</th>
<th>انحراف اشباع</th>
<th>ضربه چولگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بالا</td>
<td>۱۰۹/۰۴</td>
<td>۳/۹۷</td>
<td>۷/۴۶</td>
<td>۲/۹۲</td>
<td>۱۹/۶۱</td>
<td>۰/۰۱۱۲</td>
</tr>
<tr>
<td>متوسط</td>
<td>۱۵۰/۰۴</td>
<td>۳/۴۴</td>
<td>۲/۴۴</td>
<td>۲/۴۴</td>
<td>۱۴/۶۴</td>
<td>۰/۰۱۲۷</td>
</tr>
<tr>
<td>پایین</td>
<td>۲۰۱/۰۴</td>
<td>۹/۲۹</td>
<td>۶/۲۹</td>
<td>۶/۲۹</td>
<td>۹/۹۷</td>
<td>۰/۰۱۲۴</td>
</tr>
<tr>
<td>کل</td>
<td>۴۶۰/۰۴</td>
<td>۲/۱۸</td>
<td>۲/۱۸</td>
<td>۲/۱۸</td>
<td>۱۹/۹۷</td>
<td>۰/۰۱۱۲</td>
</tr>
</tbody>
</table>

به سطح تولیدی و بعد از آن مربوط به دوره زمینی و اندکی گله بود. نتایج مربوط به برآورد مولفه‌های واریانس با استفاده از مدل‌های یک‌فصلی و سه‌فصلی برای سطوح مختلف در جدول ۳ ارائه شده است.

تاریخچه نمایه دهد که واریانس زینتیکی افزایشی در سطح تولید متوسط و واریانس باقی‌مانده در سطح تولید بالا بیشترین مقدار را دارد. واریانس پذیری سطح تولیدی بالا کمترین و سطح تولیدی متوسط، بیشترین است. در حالی که بعضی از تحقیقات هیچ ارتباطی بین واریانس زینتیکی و ضریب تغییرات با میانگین تولید گزارش نموده‌اند (۱۲ و ۱۳). در تعدادی از تحقیقات ارتباط مثبتی بین میانگین تولید و واریانس پذیری و یا اجزای واریانس صفات تولیدی گزارش شده است (۶ و ۷). گریک و ون‌ولک واریانس تغییرات تولید شیر در سطح تولید بالا، متوسط و بالا به ترتیب ۰/۲۶، ۰/۳۰ و ۰/۱۱ گزارش نموده و نتایج گزارش که مقدار واریانس پذیری تحت تأثیر میانگین قرار می‌گیرد. ولی در تحقیق‌های دیگر، مقدار واریانس پذیری در سه سطح تولیدی بالا، متوسط و بالا به ترتیب ۰/۲۲، ۰/۲۶ و ۰/۲۲ گزارش شد و ارتباط بین سطح تولید و واریانس پذیری مشاهده نشد (۱۶). در پژوهش حاضر اجزای واریانس و واریانس پذیری در تجزیه یک‌فصلی و سه‌فصلی تفاوت اندکی دارند و مقدار همبستگی بین میانگین تولید با واریانس تغییرات و واریانس زینتیکی افزایشی به ترتیب ۰/۴۶ و ۰/۴۶ به دست آمد. به دست آمد. ویشر و همکاران همبستگی بین میانگین تولیدی و واریانس فنی‌تری به ترتیب ۰/۴۶ و ۰/۴۶ گزارش نمودند (۹) همبستگی‌های زینتیکی و فنی‌تری در سه سطح تولیدی با R و G A واریانس-کورلیوادنی و میانگین تولید شیر در هر یک از سطوح تولید

نتایج و بحث

خلاصه آماری مقدار تولید شیر برای هر یک از سطوح مربوط به سطح تولیدی در جدول ۲ ارائه شده است.

طبق نتایج جدول ۲ ضریب تغییرات در گله داری با سطح تولید بالا کمترین مقدار دارد. میانگین یک‌فصلی در گله داری با سطح تولید بالا بیشتر است. تجربه واریانس بالا به استفاده از نرم‌افزار SAS می‌باشد. بالا یک مدل تایب نشانه دهد که اثر گله، سال زایش، فصل زایش و برای نتایج روز تغییرات میزان شیر تولیدی در زایش اول کاملاً معنی‌دار (P<۰/۰۱) است. نتایج آزمون پارکسل نمی‌تواند در بین نماه سطح تولیدی معنی‌دار (P>۰/۰۱) باشد. بوده و نشان دهنده عدم اعضا گله واریانس‌ها در بین سطح تولیدی می‌باشد. ایستادگی و همکاران با انجام آزمون پارکسل نتایج جغرافیایی، اندکی گله و سال زایش مشخص نمودند (۱۰) و یک سطح سطح معنی‌داری در این تحقیق مربوط
جدول 3: مؤلف‌های ارزیابی و وراثت‌پذیری برای سطوح تولیدی در تجزیه یک‌صفن در سطح تولید

<table>
<thead>
<tr>
<th>h^2</th>
<th>r^2</th>
<th>s^2</th>
<th>s^2</th>
<th>سطح تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27±0.19</td>
<td>0.27±0.19</td>
<td>0.27±0.19</td>
<td>0.27±0.19</td>
<td>0.27±0.19</td>
</tr>
</tbody>
</table>

*بایین

جدول 4: هم‌سنتی‌های زنیکی و فنوتیپ در سطح تولید

<table>
<thead>
<tr>
<th></th>
<th>متوسط</th>
<th>بایین</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1782</td>
<td>0/1782</td>
<td>0/1782</td>
</tr>
<tr>
<td>0/1862</td>
<td>0/1862</td>
<td>0/1862</td>
</tr>
<tr>
<td>0/1959</td>
<td>0/1959</td>
<td>0/1959</td>
</tr>
</tbody>
</table>

*بایین

تحت تأثیر قرار گرفتن ارزیابی گاو‌ها در مرداه و رتبه‌بندی 5 درصد کل گاوهای نر و 1 درصد کل گاوهای ماده برتر مورد بررسی قرار گرفت. تعداد حیوانات مشترک رتبه‌بندی شده در مدل یک صفحه و سه صفحه در سطح تولید متوسط بیشتر بود. میانگین تغییرات ریشه در بین حیوانات مشترک در سطح تولید متوسط کمتر نمود. در مقایسه به سبب عدم این کاربرد صفحه نر و ماده مشاهده می‌شد که میانگین تغییرات گاو‌های برتر نسبت به گاوهای ماده برتر کمتر است و این بیانگر این نکته است که تجزیه صفحات، تأثیر بیشتری بر رتبه‌بندی گاوهای ماده برتر دارد. در نظر گرفتن ناهماهنگی و ارزیابی و تصحیح آن با استفاده از تجزیه صفحات روی رتبه‌بندی گاو‌های ماده سبب مسئول است. این اگر گاو‌های گاو نر به تصادفی در گل‌های مختلف خطر نداشتند باشد، این تصحیح روی رتبه‌بندی آنها نیز مؤثر خواهد بود (19). در پژوهش‌ها میانگین زنیکی و تغییرات ریشه گاو‌های نر نیز تا حدی تغییر کرده است و این نشان دهنده عدم انتخاب تصادفی گاو‌های نر در گل‌های مختلف است. احتمالاً گاو‌های نر برتر در گله‌های پرتوی گرفته و برگ و با مدیریت بهتر استفاده

* اعداد داخل پرانتز نتایج تجزیه سه صفحه است.

* هم‌سنتی‌های زنیکی در زیر قطر و هم‌سنتی‌های فنوتیپ در بالای قطر نشان داده شده‌اند. اعداد روی قطر مقدار وراثت بندی

را برا هر سطح تولیدی نشان می‌دهد.

* استفاده از تجزیه صفحات در جدول 4 ارائه شده است.

58 درصد قرار داده و حداکثر هم‌سنتی‌های زنیکی در سطوح تولید بالا و پایین برآورد شده است. در مقابل هم‌سنتی‌های فنوتیپی بین سطوح تولیدی، پایین است و در دامنه 17 تا 19 درصد قرار دارد. همچنین نتایج هم‌سنتی‌های زنیکی بین سطح تولیدی را 95 درصد و بالاتر و همکاران نیز هم‌سنتی‌های زنیکی بین سطوح تولیدی را 90 درصد و بالاتر و همکاران نیز هم‌سنتی‌های زنیکی بین سطوح تولیدی را 90 درصد و بالاتر و همکاران نیز هم‌سنتی‌های زنیکی بین سطوح تولیدی را 90 درصد و بالاتر و همکاران نیز هم‌سنتی‌های زنیکی بین سطوح تولیدی را 90 درصد و بالاتر و همکاران نیز هم‌سنتی‌های زنیکی بین سطوح تولیدی را 90 درصد و بالاتر و همکاران نیز

* برای بررسی اثر تجزیه یک‌صفن و سه صفحات بر ارزیابی زنیکی و رتبه‌بندی گاو‌های نر و ماده، هم‌سنتی‌های ارزش‌های اصلاحی برای 5 درصد گاو‌های نر و 1 درصد گاو‌های ماده به طور جدایی انجام شد (جدول 5).

نتایج جدول 5 حاکی از آن است که مقدار هم‌سنتی‌های رتبه‌بندی ارزش‌های اصلاحی در سطح تولید متوسط بیشترین و نشان دهنده ارتباط زیادی بین ارزیابی حیوانات نر و ماده در مدل یک صفحه و سه صفحات است. به منظور بررسی چگونگی

244
جدول 5: نرخ تغییرات مزبور رتبه‌ی گروهی. تعداد مشترک و میانگین تغییرات رتبه‌ی حیات‌نامه‌نگر و ماده در سطح تولیدی در تجزیه یک‌صفی و سه‌صفی

<table>
<thead>
<tr>
<th>جنس حیوان</th>
<th>سطح تولید بالا</th>
<th>سطح تولید متوسط</th>
<th>سطح تولید پایین</th>
<th>همبستگی رتبه‌ی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اولین</td>
<td>0/8/41</td>
<td>0/7/6</td>
<td>0/6/1</td>
<td></td>
</tr>
<tr>
<td>دومین</td>
<td>0/9/0</td>
<td>0/8/9</td>
<td>0/7/4/2</td>
<td>تعادل (5/1)</td>
</tr>
<tr>
<td>سومین</td>
<td>0/6/2</td>
<td>0/5/3</td>
<td>0/4/1</td>
<td>تعداد مشترک</td>
</tr>
<tr>
<td>چهارم</td>
<td>0/4/1</td>
<td>0/3/2</td>
<td>0/2/1/0</td>
<td>میانگین تغییرات رتبه</td>
</tr>
<tr>
<td>پنجم</td>
<td>3/2/5</td>
<td>2/1/4/2</td>
<td>1/1/3/8</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6: تعداد و درصد گوته‌های ماده انتخاب شده بر اساس تجزیه یک‌صفی و سه‌صفی

<table>
<thead>
<tr>
<th>تجزیه سه‌صفی</th>
<th>تجزیه یک‌صفی</th>
<th>سطح تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد</td>
<td>درصد</td>
<td>تعداد</td>
</tr>
<tr>
<td>پایین</td>
<td>0/2/3</td>
<td>0/3</td>
</tr>
<tr>
<td>متوسط</td>
<td>0/4/2</td>
<td>0/3</td>
</tr>
<tr>
<td>بالا</td>
<td>0/1/5</td>
<td>0/2</td>
</tr>
</tbody>
</table>

در تجزیه یک‌صفی بیشترین درصد گوته‌های ماده برتر از سطح تولید متوسط انتخاب می‌شوند ولی در تجزیه سه‌صفی بیشترین درصد گوته‌های برتر از گل‌های با سطح تولید بالا انتخاب می‌شوند. این باعث بهبود زنی‌های خواهد شد. در پژوهش بولدمان و فرین نیز بیشترین درصد گوته‌های ماده برتر از سطح تولید بالا در مدل‌های تصادفی شده انتخاب شدند.

سیاسگذاری

می‌شوند. بولدمان و فرین نشان دادند که رتبه‌های گوته‌ها برتر برتر تغییرات کمتری نسبت به رتبه‌های گوته‌ها ماده برتر دارند و وقتی از مدل تصادفی شده بای ناهنجاری ارتباطی استفاده کردند تأثیر زیادی بر رتبه‌بندی گوته‌های ماده برتر داشته بود طوری که 20 درصد از 1000 گوته ماده که در مدل معمولی لیست شده بود از لیست خارج شدند ولی در مورد گوته‌های برتر فقط 10 درصد از 100 گوته برتر لیست شده در مدل معمولی از لیست خارج شدند. در مورد گوته‌های ماده بایگانی مانده در لیست نیز تغییرات رتبه‌ی بسیار زیاد بود. بنابراین با توجه به میانگین تغییرات رتبه‌ی گوشه‌های برتر تغییر تیپ می‌کرد که تاسیسها نهایی بر این نتایج تأثیر زیادی نداشته ولی در مورد گوته‌های برتر این گونه لیست تغییر سه‌صفی از انتخاب شده است که بیشترین درصد افراد از گله‌های با سطح تولید بالا

انتخاب شوند (جدول 6).