بهینه‌سازی کاربری اراضی در حوزه‌های آبخیز به منظور کمیته سازی فرسایش خاک با استفاده از برنامه‌ریزی خطی (مطالعه موردی حوزه آبخیز پریمرونده، استان کرمانشاه)

خليل جليلي، سيد حميدرضا صادقی و داوود نك كامي

چکیده

غم وجود مدلی صحیح استفاده از اراضی در یک حوزه آبخیز، تأثیرات نامناسب بر منابع موجود در آن دارد. بهینه‌سازی کاربری اراضی یکی از راه‌کارهای مناسب برای دستیابی به توسعه پایدار و کاهش بهره‌وری منابع خاک. تحقیق حاضر در حوزه آبخیز پریمرونده به سال 1397 950 هکتار در استان کرمانشاه به منظور تعیین مناسب‌ترین ترکیب کاربری اراضی شامل گل، کشت آبی، کشت دیم و مرتع جهت کمیته‌سازی فرسایش خاک و بهینه‌سازی سود صورت گرفت. برای انجام تحقیق حاضر، مهندسین فرسایش، سود خالص و نیز تکنیک‌های تهیه شده طبق استانداردهای استفاده از اراضی به عنوان ورودی توابع هدف و محدودیت‌های مدل بهینه‌سازی کاربری اراضی حل شد. نتایج به‌دست آمده از استفاده شد. مدل برنامه ریزی خطی چندهدفی تهیه و با استفاده از نرم‌افزار ADBASE و ارائه شده و انجام شده بر کاهش اراضی دم و افزایش اراضی بازگی در منطقه تأکید دارد. نتایج به‌دست آمده از تحلیل حساسیت نیز نمایانگر تأثیر پذیری زیاد توابع هدف از حداکثر استفاده از نسبت اراضی کشاورزی آبی و باقی است.

واژه‌های کلیدی: بهینه‌سازی، کاربری اراضی، فرسایش خاک، برنامه‌ریزی خطی، پریمرونده، کرمانشاه

مقدمه

یکی از مشکلات بشر در آستانه قرن 21 به یاد می‌ریزد محیطهای مایع و تخریب منابع طبیعی است. منابع موجود به لحاظ محدودیت، کیفیت و مشخصاتی که به چاره‌اندیشی برای مبارزه با آن پرداخته و استفاده از برنامه‌سازی کاربری اراضی به صورت محاسباتی و مستمر از

1. پژوهشگر گروه هیدرولوژیک و منابع آب چهاردانگه استان کرمانشاه
2. استادیار مهندس آبخیزداری، دانشگاه منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
3. استادیار پژوهشگر مركز تحقیقات حفاظت خاک و آبخیزداری تهران

15
تهیه سازی که در واقع دست‌یابی به منابع تحصیلی و نقدار خروجی یک سامانه که توجه به محیط‌های حاکم بر آن می‌باشد، می‌توان دچاره گرفت به‌نهایت کاربری ارائه، که از راه‌داری منابع برای حفاظت خاک است که به مدت‌بندی می‌باشد و تصمیم‌گیران این اختیار را می‌دهد از بین گرفته‌های مختلف کاربری ارائه، به‌خاکی تصمیم را اتخاذ کند (۲۲) تکنیک‌های فرآیند برای بهینه‌نماگیری مسال‌های موجود در جذور‌های آبی‌خیز وجود دارد که یکی از این روش‌ها استفاده از برنامه‌ریزی خطی (Linear programming) است. بررسی‌های به عمل آمده نشان داد که برای برنامه‌ریزی خطی در راستای به‌رهبردی مدیریت جذور‌های آبی‌خیز به‌ندر مورد استفاده قرار گرفته است. در این میان نیز برینگانی (۲۰) و نیک‌کامی (۱۵) در خصوص به‌رهبردی مدیریت جذور‌های آبی‌خیز خاک در یکی از زیربخش‌های آبی‌خیز دانشگاه کاربرد آن به منظور کاهش تأثیرات حیطه و اقتصادی جذور‌های خاک اشارة تیم تحقیق ارائه شده در کارهای ۵ درصدی تولید روابط و ارایش دیده در سود سالانه در منطقه مورد استفاده دالد دارد. بینگ و سیگن (۲۴) حذایگزبان سازی تولید و سود با به کارگیری برنامه رژیم شکست را در یک مطالعه موردی ماهی کاماند (Mahi Comand) هنگ انجام داده‌اند. این تحقیق همچنین نشان داد که برنامه‌ریزی به‌نرک شکست در سطح منطقه تولیدات را از ۷۰ تا ۶۹ درصد و ۲۳ تا ۱۰ درصد و پرکش خالص را از ۲۶ درصد افزایش داده است. به‌عنوان مثال (۲۳) از مدل برنامه‌ریزی رژیم خرید حاکم نمونه قدامی رودخانه‌ها و تایب داده‌ها در این آزمایش منطقه، در هنگ استفاده نرسند و تایب تحقیق به استخراج استراتژی مدیریت آب‌های زیرزمینی و محصولات منجر گردید. رابط (۲۴) آزمونی به‌رهبردی برنامه‌ریزی کاربری ارضی برای ناحیه کوهستانی با استفاده از برنامه‌ریزی دسته‌بندی جغرافیایی (Geographic Information System) (GIS) به‌پایان‌ریزی خاطر می‌سپرده اطلاعات‌گیرشی جهت دسته‌بندی به پایان‌ریزی خاطر می‌سپرده اطلاعات‌گیرشی
بهینه سازی کاربری اراضی در حوزه‌های آبخز به منظور کمینه سازی فرسایش

تفیق مذکور دارد. به و تانگ (29) الگوریتم برنامه‌ریزی خلوتی را جهت تعیین استراتژی‌های مدیریت کاربری اراضی در مناطق ساحلی تاوان به کار گرفته و نتیجه‌گیری نمودند که آب‌های زیرزمینی برای استفاده در مراعات پرورش ماهی بکار نروند و در منطقه، مطلع مربوط به پرورش ماهی می‌تواند به استفاده‌های دیگری تبدیل شود. کنالی و یک استینج (17) بهینه سازی جند منظوره کاربری اراضی را با استفاده از شبکه‌های عصبی مصنوعی (Artificial Neural Network) در چهار مدل مورد بررسی قرار دادند. مدل ANN، یک سیستم تعاملی را در آفریقا جنوبی مورد ارزیابی قرار دادن. مدل DSS طراحی شده برای بازگشت منابع گیاهی و کارا و مؤثر برای تصمیم گیری به منظور در مدیریت منابع طبیعی با استفاده از آنالیز و تحلیل نتایج سیستم عمومی را پیشنهاد نموده است.

پیشنهاد می‌شود در ایران نیز در خصوص کاربرد مدل‌های بهینه‌سازی در مدیریت کاربری اراضی حوزه آبخز علیه به نیک‌کامی (16) در دست آمده نشان دهید. بر اساس این تحقیق اراضی حوزه شامل باغ‌های مرغ، کشاورزی آبی و کشاورزی دیم، مناطق مسکونی و اراضی صحرای است که وسعت آنها به ترتیب 28/37، 2011/2012، 497/97 و 50/17 هکتار می‌باشد (13).

روش تحقیق

به منظور انجام تحقیق حاضر در ابتدا کلیه مطالعات موجود شامل مطالعات زیرزمینی، خاک‌شناسی، فرسایش و رسوب، زیست‌شناسی و زوئولوژی، بوم‌گیاهی، هواشناسی، هیدرولیک و منابع آب، اقتصادی – اجتماعی از مدیریت آبخزیاری استان کرمانشاه (13) جمع آوری و طی بذرده‌های

مواد و روش‌ها

منطقه مورد مطالعه

حوزه آبخز بیرمودر در با دست کلان ماسکو در کشور کش افرا در 20 کیلومتر شمال شرقی وسیله در استان کرمانشاه واقع است. این منطقه از لحاظ کشاورزی حائز اهمیت بوده و بر روی فرسایش خاک و تولید روست، سپر مشکلاتی از مهم آنها، منابع دریاچه ای آبی است. و سعت منطقه از مراکز مطالعات زیرزمینی ۴۵ هکتار و در حد واسط طول های ۲۵ ۲۵ تا ۳۳ تا ۲۵ ۴۵، ۲۵ هکتار و عرض های ۲۴، ۳۴ تا ۳۳ تا ۲۵ ۱۸ تا ۲۳ تا ۲۵ ۱۸، ۳۴ تا ۳۳ شال در قرار گرفته است (13). شکل 1 موقیعیت و شمار کلی منطقه مورد مطالعه را نشان می‌دهد. متوسط بارندگی سالانه منطقه ۲۰۰/۵ میلی‌متر و اقلیم حوزه بر اساس روش آمریزو، نیمه خشک معتدل می‌باشد. استفاده‌های اصلی از اراضی حوزه شامل باغ، مرغ، کشاورزی آبی و کشاورزی دیم، مناطق مسکونی و اراضی صحرای است که وسعت آنها به ترتیب 28/37، 2011/2012، 497/97 و 50/17 هکتار

پیشنهاد نموده است.
شکل ۱. موقعیت چگرافیایی و شماری کلی منطقه مورد مطالعه

\[
\text{Min}(Z_r) = \sum \limits_{i=1}^{n} C_{Ei}X_i
\] \[\text{[3]}\]

\[
X_i \leq B_i
\] \[\text{[4]}\]

\[
X_r \leq B_r
\] \[\text{[5]}\]

\[
X_r \leq B_r
\] \[\text{[6]}\]

\[
X_r + X_r \leq B_r
\] \[\text{[7]}\]

\[
X_i + X_r + X_r + X_r = X_2
\] \[\text{[8]}\]

صحراپایی تکمیل گردیده، بنابر اطلاعات به دست آمده، شکل کلی مسئله به صورت روابط ۱ تا ۱۱ است.

\[
\text{Max}(Z_r) = \sum \limits_{i=1}^{n} C_{Bi}X_i
\] \[\text{[1]}\]

رابطه ۱ را می‌توان به صورت رابطه ۲ تشریح نمود.

\[
\text{Max}(Z_r) = \sum \limits_{i=1}^{n} \left[A_{hi} - (A_{hi} + A_{hi'})X_i\right]
\] \[\text{[2]}\]
برآورد مقادیر نیاز

یک برآورد مقادیر نیاز، در شرایط معادل امکان تغییر در استفاده از اراضی مسکونی، راه‌ها، اراضی صحرایی و مراتب دارد. بنابراین می‌توانیم این واحد از سطح حوزه آبخیز کم شده و مقادیر بایق بینه به عنوان سطح مورد نظر در به‌یک سایز کاهشی و کاربردی، مقدار سطح حوزه آبخیز کم شده که به‌نوعی باید بسیاری اراضی باید کمترین استفاده می‌شود که به نسبت واحد هکتار در محدودات استفاده شده‌اند.

 destroymente

\[X_i \geq B_v \] [9]

\[X_i \geq B_v \] [10]

\[X_i, X_j, X_k, X_l \geq B_v \] [11]

\[\text{که در آن‌ها} Z_2 \text{ و} Z_3 \text{ به ترتیب درآمد خالص سالانه (میلیون ریال) و فرسایش سالانه (ت‌ن) در واحد سطح هر کاربری است. مقدار سالانه (میلیون ریال) و فرسایش سالانه (ت‌ن) در واحد سطح هر کاربری می‌باشد.}\]

\[\text{میزان فرسایش خاک (میلیون ریال) در واحد سطح هر کاربری در سال است. به‌نوعی باید} B_2 \text{ تا} B_1 \text{ تا} B_1 \text{ باید سطح کل اراضی، کمترین سطح اراضی بایگان و کمترین سطح اراضی مربوط می‌باشد که باید حسب واحد هکتار در محدودات استفاده شده‌اند.}\]

\[\text{هیچ‌یک از اراضی از سطح رفته سطح اراضی از سطح رفته} \times \text{رخش یک هکتار زمین} \]

\[\text{یک سطح کاربری‌های مختلف در طرف راست معادلات (Right Hand Side) محدودیت مورد استفاده شده، مثلاً اراضی مزاجا سر، روش ADBASE (Modified Pacific Southwest Inter-Agency Committee) تخمین داده شده.\]

\[(m^2/ha) \times (m/3) = \text{میزان فرسایش خاک (میلیون ریال) در واحد سطح هر کاربری} \]

\[(m^2/ha) \times (m/3) = \text{میزان فرسایش خاک (میلیون ریال) در واحد سطح هر کاربری} \]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]

\[\text{میزان تولید رسوپ به‌بیان‌های استفاده از روش (Sediment Delivery Ratio) می‌باشد.}\]
جدول 1. نتایج محاسبات برآورد خسارت فرسایش خاک در کاربری‌های مختلف

<table>
<thead>
<tr>
<th>کاربری</th>
<th>وزن منحصر به شیب خاک (ت/م³)</th>
<th>عمق ریشه (م)</th>
<th>فرسایش ویژه (ت/هکتار)</th>
<th>فرسایش هر رشته (م³/هکتار)</th>
<th>هریه (ص)</th>
<th>(R/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>باغ</td>
<td>366/25</td>
<td>0/15</td>
<td>4/27</td>
<td>1</td>
<td>582/04</td>
<td>6/44</td>
</tr>
<tr>
<td>مزرعه</td>
<td>543/27</td>
<td>0/15</td>
<td>4/27</td>
<td>1</td>
<td>582/04</td>
<td>6/44</td>
</tr>
<tr>
<td>کشت آبی</td>
<td>478/32</td>
<td>0/15</td>
<td>4/27</td>
<td>1</td>
<td>582/04</td>
<td>6/44</td>
</tr>
<tr>
<td>کشت دم</td>
<td>247/32</td>
<td>0/15</td>
<td>4/27</td>
<td>1</td>
<td>582/04</td>
<td>6/44</td>
</tr>
</tbody>
</table>

مدل بهینه سازی کاربری اراضی در نظر گرفته شد:

\[
X_1 \leq 24/244/65 \\
X_2 \leq 24/244/65
\]

تحت قید محدودیت دوم مربوط به زمین‌های است که کشت محصولات مختلف از این قرار در آنها دارای 200 هکتار برآورد گردیده و لی با توجه به شرایط استاندارد مورد نیاز برای کشت آبی و نیز قابلیت نیاز برای کشت دم، محدودیت دوم دسترسی به آب 4244/64 هکتار از اراضی منطقه‌های باران‌بروز کشت آبی و همچنین دهلیز روانی این اراضی از پتانسیل کشت آبی هستند و به همین دلیل میزان اراضی از

حل مساله بهینه سازی حوزه آبخیز برموند

شکل مساله بهینه سازی حوزه مورد مطالعه به صورت زیر ارائه می‌گردد:

\[\text{Max}(Z_f) = y_1 + 0.1X_1 + 0.15X_2 + 0.12X_3 + 0.13X_4 + 0.14X_5 \]

\[\text{Min}(Z_f) = y_2 + 0.12X_1 + 0.13X_2 + 0.14X_3 + 0.15X_4 + 0.16X_5 \]

به دلیل شیوه حل مساله در روش سیمپلکس به صورت بیشتر، مساله کمینه‌سازی فرسایش را تغییر داده و به صورت بیشتر منفی محدود نظر گرفته است. در این ارتباط در مورد مساله بهینه سازی حوزه آبخیز برموند، محدودیت‌های زیر جهت شناسایی مکان‌های حوزه‌های مختلف و محدودیت‌های کاربری اراضی در نظر گرفته شد. برای این منظور میزان درصد نرمال حجم هزینه مربوط به منطقه ای که به آبخیز برموند انتقال می‌دهد، مشخصی از تغییرات دری از پارامترهای مورد بررسی و در نهایت حساسیت تابع هزینه نسبت به آنها مورد ارزیابی قرار گرفت.

نتایج و بحث

نتایج زیر حاصل بهینه‌سازی و سه انتخاب کاربری اراضی در حوزه آبخیز برموند با استفاده از برنامه‌ریزی خطی می‌باشد که بر اساس روش کار ارائه‌شده در پیش قرار به دست آمده است.

\[\text{Min}(Z_f) = y_2 + 0.12X_1 + 0.13X_2 + 0.14X_3 + 0.15X_4 + 0.16X_5 \]

[17] محدودیت دوم مربوط به زمین‌های است که زیر شرایط استاندارد اراضی محصولات مختلف از این قرار در آنها دارای 200 هکتار برآورد گردیده و لی با توجه به شرایط استاندارد مورد نیاز برای کشت آبی و نیز قابلیت نیاز برای کشت دم، محدودیت دوم دسترسی به آب 4244/64 هکتار از اراضی منطقه‌های باران‌بروز کشت آبی و همچنین دهلیز روانی این اراضی از پتانسیل کشت آبی هستند و به همین دلیل میزان اراضی از

\[\text{Max}(Z_f) = y_1 + 0.1X_1 + 0.15X_2 + 0.12X_3 + 0.13X_4 + 0.14X_5 \]

[16] محدودیت اول در این مساله مربوط به سطح اراضی واغ موجود است که 283/3 هکتار بوده و این می‌تواند به 1518/8 هکتار اراضی یاد شود. این اراضی اکثراً تهیه زمین‌های با شیب بیش از 5 درصد و عمق مناسب خاک به شرح می‌باشد.

\[\text{Max}(Z_f) = y_1 + 0.1X_1 + 0.15X_2 + 0.12X_3 + 0.13X_4 + 0.14X_5 \]

[15] به دلیل شیوه حل مساله در روش سیمپلکس به صورت بیشتر، مساله کمینه‌سازی فرسایش را تغییر داده و به صورت بیشتر منفی محدود نظر گرفته است. در این ارتباط در مورد مساله بهینه سازی حوزه آبخیز برموند، محدودیت‌های زیر جهت شناسایی مکان‌های حوزه‌های مختلف و محدودیت‌های کاربری اراضی در نظر گرفته شد. برای این منظور میزان درصد نرمال حجم هزینه مربوط به منطقه ای که به آبخیز برموند انتقال می‌دهد، مشخصی از تغییرات دری از پارامترهای مورد بررسی و در نهایت حساسیت تابع هزینه نسبت به آنها مورد ارزیابی قرار گرفت.
جدول 2. جدول سیمپلکس برای حمل مسأله بهینه‌سازی کاربری اراضی جوزه آبخیز برپا می‌شود.

<table>
<thead>
<tr>
<th>RHS</th>
<th>نوع تابع</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁ + X₂ + X₃ + X₄ = 4567/27</td>
<td>Max</td>
<td>0.3215</td>
<td>0.1562</td>
<td>0.8789</td>
<td>0.1112</td>
</tr>
</tbody>
</table>

X₄ ≥ 0.4001/27

اگر X₁ + X₂ + X₃ + X₄ = 4567/27 با توجه به عدم وجود محدودت مناسب آن در منطقه ویلی با در نظر گرفتن شرایط شبیه اراضی و عملیات خاک و وزی صحیح و اصولاً را مطابق نظر کارشناسان انجام دهد و از طرفی به عمل و وجود قوانین دولتی نمی‌توان در سطح اراضی مربوط تغییر نشان داد. بنابراین سطح

این اراضی بعش از این میزان پیشنهاد داده شده است.

X₂ + X₃ + X₄ ≤ 0.3841/37

این ضمیمه محدودت سیاله مربوط به سطح اراضی موجود است که برای چهار کاربری باغ، مزرعه، کشت آبی و کشت دیم از 0.9041/83 هکتار پیشنهاد نمی‌گردد.

X₁, X₂, X₃, X₄, X₅ ≥ 0.33

آخرين محدودت مربوط به ضریب بودن متغیرهاست. یعنی سطح اختصاص یافته به هر کاربری باید بیش از 0.33 باید نداشته‌اند. به اراضی مربوطی تبدیل

کرده‌اند.

X₅, X₁, X₂, X₃, X₄, X₅ ≥ 0.33

اگر X₁ + X₂ + X₃ + X₄ = 0.4001/27 با توجه به مطالبی که در محدودت اول بیان شد، سطح اراضی X₁, X₂, X₃, X₄, X₅ ≥ 0.33

Page 21
جدول ۳. نتایج بدست آمده از محاسبات سود و فرسایش در وضعیت کاربری موجود حوزه آبخیز بریوند

<table>
<thead>
<tr>
<th>درصد خالص کل در سال (103/ha)</th>
<th>درصد خالص سالنامه (103/ha)</th>
<th>فرسایش کل (t/ha)</th>
<th>فرسایش ویژه (t/ha)</th>
<th>اراضی اراضی اراضی</th>
<th>پی اراضی اراضی</th>
<th>اراضی اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار فرسایش از 82/91 به 78/38 هزار تن در سال (7/8)</td>
<td>28/24</td>
<td>0/256</td>
<td>874/32</td>
<td>7/389</td>
<td>28/24</td>
<td>0/256</td>
</tr>
<tr>
<td>24/998</td>
<td>64/06</td>
<td>0/156</td>
<td>2838/6932</td>
<td>8/144</td>
<td>24/998</td>
<td>64/06</td>
</tr>
<tr>
<td>19/37/0764</td>
<td>6/74/8</td>
<td>0/212</td>
<td>1824/35</td>
<td>1/112</td>
<td>19/37/0764</td>
<td>6/74/8</td>
</tr>
<tr>
<td>15/2417</td>
<td>6/74/8</td>
<td>0/212</td>
<td>1824/35</td>
<td>1/112</td>
<td>19/37/0764</td>
<td>6/74/8</td>
</tr>
<tr>
<td>24/910045</td>
<td>6/74/8</td>
<td>0/212</td>
<td>1824/35</td>
<td>1/112</td>
<td>19/37/0764</td>
<td>6/74/8</td>
</tr>
</tbody>
</table>

مقدار فرسایش ۸۲/۹۱ به ۷۸/۳۸ هزار تن در سال (۷/۸) مقدار آبخیز بریوند است.

نیک کامی و همکاران (۲۱) نیز در بهینه سازی کاربری اراضی یکی از زیربخش‌های شاخص به ترکیب مشابه دست یافته و افزایش ۳/۵ درصد در سطح اراضی باغی و کاهش ۱۰۰ درصد سطح اراضی دیم را پیشنهاد نموده‌اند. این تغییرات منجر به کاهش ۵ درصد میزان رسوب تولیدی سالنامه در منطقه مورد مطالعه گردیده و افزایش ۱۲۴ درصد در سوداوری کاربری‌های حوزه آبخیز را به دنبال داشته است.

در ارزیابی حساسیت تابع هدف به تغییرات منابع اراضی و ضرایب از نسبت‌های ۲۰ و ۵۰ درصد تغییر نسبت به حالت بهینه استفاده شده و درصد تغییرات مقدار توابع هدف محاسبه کردند (شکل‌های ۲ و ۳). با توجه به شکل‌های ۲ و ۳ در خصوص تحلیل حساسیت می‌توان نتیجه گرفت که کاهش
شکل ۲. تحلیل نانگ کمیته سازی فرسایش خاک نسبت به تغییرات منابع اراضی

شکل ۳. تحلیل نانگ بیشینه سازی سود نسبت به تغییرات منابع اراضی
به‌نهایت سازی خشک چند دوره برای حل به‌نهایت مسئله مطرح و در حوزه آبخیر برای مسئله اجرای در. نتایج به دست آمده از تحقیق نشانگرفت دوی شرایط موجود کاربری از شرایط به‌نهایت در راستای دست‌بافی به مقدار کمی فرسایش و به‌سیله مقدار است به سمت B1 در شکل (3). همچنین در خصوص حساسیت پذیری تابع هدف کمیه سازی فرسایش مواد تناهی و گرفته که کمیه پسین اثری آزمایش می‌رساند به شکل (2). آزمایش‌های آزمایش‌های سه مرحله از حوزه آبخیر به‌صورت نموده و فرسایش خاک حوزه آبخیر برای مسئله را دارای دمای دنیایی. دار.

نتیجه‌گیری
این تحقیق به منظور بهینه‌سازی استفاده از اثرات در حوزه آبخیر برای مسئله است، آزمایش‌های آبخیر کرمانشاه، آموزش و پردازش سری‌های ذاتی، آموزشی آموزشی کرمانشاه و نمایشگاه‌های آموزشی که در انجام این تحقیق ایجاد شد. در مرحله پایان‌نامه، تحقیقات بیشتر و پشتیبانی را در دانشگاه روش و روش‌های مشابه در حوزه‌های آبخیر کشور توصیه می‌نماید.

سیاست‌گذاری
تویست‌گذاری مقاسه‌ها لازم می‌دانند از مساعدت‌های مدیریت آب‌زایی‌داری استان کرمانشاه، آموزش و پردازش و گیاه‌شناسی، امور آب‌زایی‌داری استان کرمانشاه، آموزش و پردازش سری‌های ذاتی، آموزشی آموزشی کرمانشاه و نمایشگاه‌های آموزشی که در انجام این تحقیق ایجاد شد. در مرحله پایان‌نامه، تحقیقات بیشتر و پشتیبانی را در دانشگاه روش و روش‌های مشابه در حوزه‌های آبخیر کشور توصیه می‌نماید.

منابع مورد استفاده

1. ابراهیمی، م. 1380. ارزیابی چهار مدل تجربی برای برآورد رسوب در حوزه آبخیر در نظر گرفته پارس آباد مغان. مجموعه جنگ. مقالات همایش ملی مدیریت اراضی، فرسایش خاک و توسیع پایدار، اکر.
2. برگلک، ک. ج. 1379. آموزش و عملیات دیکتری (ترجمه: م. ج. راشید محصل، و. کوچکی). انتشارات جهاد دانشگاهی دانشگاه مشهد.

24
بهمن سازی کاربری اراضی در حوزه‌های آبخیز به منظور کمینه سازی فرسایش ...

۱. بریمن، ز. ۱۳۷۴. بهبود و پارسازی سازمان. نشر هور، تهران.
۲. کوهن، ک. ۱۳۷۷. بررسی نوع و میزان فرسایش در رابطه با مدیریت بهره‌برداری از اراضی و تعیین سهم رسوب دهی به منظور بهینه سازی کاربری اراضی پایان‌نامه کارشناسی ارشد مهندسی آبخیزداری، دانشگاه ملی تبریز مدرسه، تهران.
۳. حسن زاده، م. ۱۳۸۰. تحقیق اطلاعات رساله مؤثر در مدیریت اراضی، فرسایش خاک و توزه‌برداری. مجموعه مقالات همایش ملی مدیریت اراضی، فرسایش خاک و توزه‌برداری، بهمن ۱۳۸۰، صفحات ۸۵-۸۳. اراک.
۴. رابط، ع. ۱۳۸۰. تحقیق عملیات آبخیزداری در ایجاد جاذبه‌های سیاحتی و تفریح‌گاهی. تیومه موردي آبخیزداری، دانشگاه منابع طبیعی دانشگاه تربیت مدرس، زنجان. مجموعه مقالات همایش ملی مدیریت اراضی، فرسایش خاک و توزه‌برداری، صفحات ۲۶۸-۲۷۸. اراک.
۵. سرگار، م. ۱۳۷۱. دیمکاتری، انتشارات برهمند، تهران.
۶. شبی، طریق. ح. ۱۳۷۲. استفاده بهینه از منابع آب و خاک یک ضرورت ملی برای توسعه کشاورزی پایدار. مجموعه مقالات اولین کنگره برنامه ریزی و سیاست گذاری امور زیربنایی (آب و خاک) در بخش کشاورزی، ۲۰-۲۵ شهریور، تهران.
۷. فرشی، ع. م. و. گریزته، م. و. شهابی، م. و. تولایی. ۱۳۸۳. برآورد آزمودنی واریانس گیاهان رزاقی و بنگی کشاورزی. دانشکده علوم زراعی، دانشگاه آزاد تهران.
۸. فرشی، ع. م. و. گریزته، م. و. شهابی، م. و. تولایی. ۱۳۸۴. برآورد آزمودنی واریانس گیاهان رزاقی و بنگی کشاورزی. دانشکده علوم زراعی، دانشگاه آزاد تهران.
۹. کیستو، ج. پ. ۱۳۷۸. اصول و روش‌های مدیریت زیست محیطی (ترجمه: م. اندرویدی). نشر کنگره، تهران.
۱۰. محسنی ساروی، م. و. فرشتگانی، م. و. کوییی، م. و. خلفی، م. ۱۳۸۳. تعیین الگوی بهره‌برداری از منابع حوزه‌های آبخیز با استفاده از برنامه رژیم هدف منابع طبیعی ایران (۱۸ و ۲۰: ۱۲۰-۱۲۶. تهران.
۱۱. مدیریت آبخیزداری گردشگری، ر. ۱۳۷۹. مطالعات تهیه حوزه آبخیز دریاوش. شرکت مهندسی جهاد، تهران.
۱۲. موسوی، ج. و. زکی، زاده، م. ۱۳۷۹. بررسی دیگرگاه‌های موجود در بهره‌برداری از منابع آب و خاک و نقش ارزیابی منابع اراضی در بهره‌برداری بهینه از آب و خاک. مجموعه مقالات اولین کنگره برنامه ریزی و سیاست‌گذاری امور زیربنایی (آب و خاک) در بخش کشاورزی، صفحات ۲۹۱-۲۹۸. تهران.