بهینه سازی اقتصادی آب آبیاری و کود نیتروژن برای گندم در مفاهیم مختلف بارندگی (در منطقه مراگه)

چکیده

کمبود آب آبیاری عمده‌ترین عامل بازدارنده در زراعت آبی محصول می‌شود. بنابراین مصرف بهینه آب مخصوصاً در مناطقی که قبلاً آب بوده است و تحت تاثیر مفاهیم بارندگی قابل قرار می‌گیرد. نیتروژن خاک نیز نقش کلیدی در تغذیه گیاهی دارد. در این پژوهش نقش پاشان کامل رشد در ناب تولید گندم که در سیستم آب آبیاری و نیتروژن زا شامل می‌شود و سیستم مفاهیم بهینه و سیستم عامل بر مبنای تحلیل اقتصادی مفاهیم بیشتری که تولید کننده می‌تواند بهینه شود. ناب تولید گندم شامل دو متغیر آب (مجمع اول آب اولیه) و باران خاک و نیتروژن (مجموع کود نیتروژن کاربردی و نیتروژن لوله خاک) مصرف و نیروی از تابعیت یک طرح پژوهشی اجرا شده در مرکز تحقیقات دیم مراگه، بهینه و در این تحلیل به کار رفته. بیشتر مراکز قابل استفاده بر اساس ناب تولید به دست آمده 12/8 تن در هکتار است که به مصرف 1/5 تراز آب و 193 کیلوگرم نیتروژن حاصل می‌شود. تنها ترکیب بهینه عوامل تولید در شرایط محدودیت آب و زمین نشان داد که با وجود بیش‌تری که پایین هر دو عامل، آب به دلیل نقص مؤثرتر در ناب تولید در مقایسه با نیتروژن تغییرات بیشتری را نشان می‌دهد. بنابراین تحلیل اگر عوامل تولید قرار بوده و قدرت پرداخت هزینه باید آنها هم فراهم باشند. کاربرد 1/5 تراز آب و 193 کیلوگرم نیتروژن در هکتار منجر به کسب بیشترین سود در واحد سال زیر کشت گندم خواهد شد. می‌چینی مصرف 156/75 تراز آب و 193 کیلوگرم نیتروژن در هکتار سبب کسب بیشترین درآمد و یک حدی مصرفی که استاد به پیشنهاد می‌خواهد. با توجه به گزارش‌های 1994 درصدی مصرف آب و 1/5 تراز مصرف نیتروژن در سال حالت مثابه به خاطر فقط این واقعیت باعث افزایش این آب در تولید و در نتیجه منجر به کمبود آب و کود نیتروژن در کشت گندم که آب باید در نظر گرفته شود. این نتیجه نشان می‌دهد که با توجه به کمبود آب و کود نیتروژن در کشت گندم، بهینه سازی کلیدی است.

ویا ترمیم کشاورزی کم پایه و تعالی کشاورزی نوین، سبب مقدمه

محدودیت مابین آب، تراز جمعیت و ناب در راستای جهاد

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد آبیاری، دانشکده کشاورزی، دانشگاه شیراز
2. عضو هیئت علمی مرکز تحقیقات دیم مراگه
3. استادیار اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

واژه‌های کلیدی: آب، نیتروژن، گندم، بهینه سازی

ویا ترمیم کشاورزی کم پایه و تعالی کشاورزی نوین، سبب
کوههای تیروزوئی هم‌نیازی به تحقیقات بیشتری دارد (۱۲). در حال حاضر تیروزون استفاده برای گسترش ایهایی به عنوان ماده غذایی درد و تلاش برای آن در آینده نیز پیشرفت خواهد شد (۱۱).

تحقیقات نشان می‌دهد که گندم عموماً به کود تیروزون عکس عمل خویی نشان می‌دهد (۱۶، ۲۱، ۱۴، ۲۳) و ۱۷ و ۱۸. همچنین این گیاه و پدیده مناسب به پیشنهاد کود تیروزون و آب آبیاری بررسی می‌شود.

یکی از ابزاری‌های مهم در این زمینه به صورت گروه‌های استخراج بار بالا رشد در غذای تولید، از طرف آب و تیروزون را شامل می‌شود. وارد و سپس مقداری از آب‌زدایی و تیروزون برای یکول محصول بیشترین تعیین شده است. پس از آن با محاسبه اسم‌های تولید پکیج بکار گرفته می‌شود و از تولید مصرف آب و تیروزون مختلف تولید از شرایط محدودیت آب و زمین مبادرت شده است. همچنین ترکیبی از عوامل که به کمک بهینه شده در آب و هیدرولیز و نیز واکنش حجم آب آبیاری می‌شود تعیین شده است. در نهایت نیز می‌توان از تولید روش مصرف‌های یکول پکیج‌های ماشین‌سازی تعیین شده است.

اصول نظری

م Bounty می‌تواند معنی‌دار است از منظر هندسی ناقص که از ترکیب‌های مختلف عوامل تولید مقدار تولید ثابت از تولید را به واسطه قرار گرفته این ترکیب‌ها پیش‌بینی شدند. منحنی را به صورت گروه‌های می‌توان رسم گرد. این منحنی ها در آن یکی از خاصیت مهم می‌باشد. اولاً توزیع هستند و به همین دلیل امکان سازی مصرف آب و کود، ترکیب آنها در دسترس به دو نیازمند روش‌های آبیاری بهره‌برداری یا نیازمندی برای گیاهان برای از میان آب و خاک، شاخه‌های چندی مؤثر است که از جمله مهم‌ترین آنها نتیجه‌گیری و تیپینگ گیاه به علت نمک در کشاورزی است. هر گونه کمبود در مقدار آب یا تیروزون سبب کاهش محصول می‌گردد (۱۹).

از کل ۱۷ میلیون هکتار اراضی کشاورزی کشور، حدود ۵۶ درصد آن به کشت دیم (یا آبی) دارد. ۳۷ درصد به کشت آبی (یا آش) و بقیه (۷ درصد) به جای همو اهمیت دارد. از سوی دیگر حدود ۹۶ درصد کل مصرف شور مربوط به کشاورزی فارابی است (۲۰).

کمبود آب آبیاری عملکرد عامل بارزندگی در زراعت آبی محصول می‌شود. به‌دلیل بحیره‌های کمیک و کم‌مصرف نسبت به این میزان که به‌طور مداوم و تابع عوامل مختلفی می‌باشد. این مرحله از افزایش کیفیت و کم‌مصرف آب از طریق اصلاحات اصلی کشاورزی انجام شده است.

کمبود آب آبیاری عملکرد عامل بازدارنده در زراعت آبی محصول می‌شود. به‌دلیل بحیره‌های کمیک و کم‌مصرف نسبت به این میزان که به‌طور مداوم و تابع عوامل مختلفی می‌باشد. این مرحله از افزایش کیفیت و کم‌مصرف آب از طریق اصلاحات اصلی کشاورزی انجام شده است.

کمبود آب آبیاری عملکرد عامل بازدارنده در زراعت آبی محصول می‌شود. به‌دلیل بحیره‌های کمیک و کم‌مصرف نسبت به این میزان که به‌طور مداوم و تابع عوامل مختلفی می‌باشد. این مرحله از افزایش کیفیت و کم‌مصرف آب از طریق اصلاحات اصلی کشاورزی انجام شده است.
جایگزینی بین عوامل تولید وجود دارد. ثانیاً اگر پیوسته باشد
جانشینی بین عوامل تولید به مقدار بسیار جزئی تأثیر می‌کند.
(10). شکل 1 منحنی تولید یکسانی را در این تابع محصولی
که دو عامل تولید شامل آب (مجمع آبیاری و بارندگی،
و نیتروژن (مجمع نیتروژن اولیه و مصرفی،) را دارد
\(Y = f(w + R, N + N_t)\)
شکل 1- منحنی تولید یکسان برای تولید محصول با دو عامل تولید آب و نیتروژن
\(N + N_t = \frac{C}{P_{N + N_t}} - \frac{P_{w + R}}{P_{N + N_t}}(w + R)\) [1]

شیب این خط همان نسبت قیمت یک واحد عوامل تولید است.
به ازای مقادیر معنی‌زناهی (C) یک خط هزینه یکسان وجود
خواهد داشت. با مساوی شدن شیب منحنی تولید یکسان و
خطر هزینه یکسان (محل تامسک خط هزینه‌ای منحنی تولید
یکسان، شکل 1)، مقادیر بهینه عوامل تولید در آن سطح از تولید
که منحنی شناپ می‌دهد (از جهت کمیته شدن هزینه) به دست
می‌آید. در این راستا با محاسبه مقادیر بهینه آب و نیتروژن
در یک مقدار مشخص تولید می‌شود، شیب خط هزینه
(معادله 1) با شیب منحنی تولید یکسان تابع محصول
(معادله 2) مساوی قرار داده می‌شود:
\[\frac{P_{w + R}}{P_{N + N_t}} = \frac{\partial Y}{\partial (w + R)} / \frac{\partial Y}{\partial (N + N_t)}\] [5]

با استفاده از معادله یکی از متغیرهای تابع تولید بر حسب
متغیر دیگر محاسبه می‌گردد:
\[(w + R) = f(N + N_t)\] [6]

و در نهایت معادله تابع تولید به صورت زیر محاسبه می‌شود:
\[Y = f(w + R)\] [7]

اکنون با این معادله و به ازای تولید معین (Y) مقداری که برای
\[C = P_{N + N_t} (N + N_t) + P_{w + R} (w + R)\] [3]

\[\text{MRTS} = \frac{\partial Y}{\partial \Delta N} / \frac{\partial Y}{\partial \Delta w}\] [2]
جدول 1. مقادیر آب آپاری در تیمارها و سال‌های مختلف کشت

<table>
<thead>
<tr>
<th>سال کشت</th>
<th>تیمار آپاری</th>
<th>مقادیر آب آپاری (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

مواد و روش‌ها

dاده‌های سالهای عملکرد دانه گندم سیلن از لحاظ به طرح پژوهشی اجرا شده در مرکز تحقیقات دانشگاه فارسی، به کمک تابع (w+R) کمک می‌کنند. نیز به‌دست گرفته شده‌اند تولید (N+Nز) بر اساس معادله (C) نیز به‌دست می‌آید. این دو مقدار آب و نیتروژن هر یک در نظر گرفته می‌شود. با تکرار این روند ترکیب‌های بهره‌مند تولید انجام می‌گردد. یکی از مهم‌ترین مراحل در کنار معنی‌داری این مطالعه است. تولید مقدار خواهد بود. با این روش مقدار هر تولید (هر یک آب و نیتروژن) در واقع سطح کشت نیز در شرایط محدودین زمین‌نام‌شده شده است. (9).

در شرایط محدودین آب، کسب سود بیشتر به ازای یک واحد حجم آب مصرف شده می‌باشد. بنابراین در هر مقدار مشخص تولید، ترکیب‌های آب و نیتروژن که منجر به کسب بهینه سود به ازای واحد حجم آب مصرف شده کردند، مقدار بهینه آن عناصر در آن سطح از تولید می‌باشد که در شرایط محدودین آب مهم است (9) و در این تحقیق نیز محاسبه شده است.
بهینه سازی اقتصادی آب ایباری و کود نیتروژن برای گندم در ...

جدول 2. وضعیت بارش استقلا انتقالات دید مراه

<table>
<thead>
<tr>
<th></th>
<th>سال</th>
<th>بارش فصل رشد (میلی‌متر)</th>
<th>بارش سالانه (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1378-79</td>
<td>253</td>
<td>1378-79</td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>234</td>
<td>2024</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>287</td>
<td>2025</td>
</tr>
</tbody>
</table>

جدول 3. درصد نیتروژن کل و مقدار نیتروژن اولیه و چگالی ظهوری خاک استقلا انتقالات دید مراه

<table>
<thead>
<tr>
<th>چگالی ظهوری (g/cm²)</th>
<th>مقدار ازول خاک (N₁)</th>
<th>درصد ازول کل</th>
<th>سال زراعی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1378-79</td>
<td>2024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1380-81</td>
<td>2025</td>
</tr>
</tbody>
</table>

است. در ضمن چون نیتروژن قابل استفاده گیاه به شکل معدنی بوده (نیترات و آمونیم) و تقیباً 5 درصد از کل نیتروژن خاک شکل معدنی دارد (7) بنابراین فقط همان 20% از نیتروژن کل به عنوان نیتروژن اولیه خاک (جدول 2) وارد محاسبات شده است. دریل این امر عدم درستی به جزیی کامل خاک می‌باشد. با استفاده از این داده‌ها و روش رگرسیون چند متغیره (نرم افزار Excel افزار تولید محصول دانه گندم شامل دو منبع آب (آب ایباری و بارندگی) و نیتروژن (نیتروژن اولیه (N₁) و مصرفی (N₂) استخراج شد. هزینه آب و نیتروژن با توجه به قیمت‌های رایج در بazar (200 و 250 ریال بر متر مکعب برای آب ایباری و 220 و 250 ریال بر کیلوگرم برای اوره) منظر گردید. قیمت آب ایباری بر اساس امضاء سازمان جهاد کشاورزی فارس انتخاب شد (23). قیمت خرید کندم نیز 150 ریال بر هرم کیلوگرم در نظر گرفته شد و بر اساس اصول نظیر تشخیص شده تحلیل اقتصادی و بهینه‌سازی صورت گرفت.

نتایج و بحث

الف) ناب تولید گندم

بررسی داده‌های محصول دانه که عملکرد سال سوم در شرایط دیم تفاوت زیادی با دیگر داده‌ها دارد و به نظر می‌رسد
شکل ۲. مقادیر مختلف عامل‌کننده دانه گندم (۲) با افزایش مصرف آب وارد آب‌ریزی مصرفی (مجمع آب‌ریزی) در مقام مختلف کاربرد نیش‌زن به همراه نتایج تولید.
شکل 3: مقدار اندازه گیری شده (نقطه) و پیش بینی شده (روبه) عملکرد گندم در برای آب آبیاری و باران فصل رشد و
نیتروژن اولیه و مصری

سطح کاربرد، تولید بیشتری در مقایسه با دیگر مقدار کود به کار رفته در بر داشته است.

برای تعیین نتایج تولید دانه گندم به صورت یک تابع دو متغیره (شامل آب و نیتروژن) داده‌های عملکرد در برای آب
(آبیاری و بارندگی) و نیتروژن (اولیه و کاربردی) مصری مرتب
شد. بهترین باران داده‌های آب و نیتروژن مصری-عملکرد
می‌باشد تابع تولید از درجه دو به صورت زیر است:

\[
Y(w + R, N + N_I) = \frac{a_1 + a_2(w + R) + a_3(w + R)^2}{a_4(N + N_I) + a_5(N + N_I)^2}
\]

که در آن \(w\) عمق آب آبیاری (m)، مقدار بارندگی فصل رشد
(kg/ha) (\(N_I\)) و به ترین نیتروژن مصری و اولیه خاک (\(N\)) (m) است. شکل مکرلی این معادله عبارت است از:

\[
Y(w + R, N + N_I) = -\frac{7794 + 116(w + R)}{3743(w + R)^2 + 273(N + N_I)^2 - \sqrt{3743(w + R)^2 + 273(N + N_I)^2}}
\]

با این مقدار آب و نیتروژن محصولی برای یک 0/812 تن در
هکتار به دست می‌آید. طبقاً منظور نمودن بارندگی و نیتروژن

\[\frac{\partial Y}{\partial (w + R)} = \frac{1}{65} \text{ m}
\]

\[\frac{\partial Y}{\partial (N + N_I)} = \frac{193}{\text{ kg ha}^{-1}}
\]

بوده است. مقدار F در تعیین این تابع در سطح احتمال

51
شکل ۴. مقادیر اندازه‌گیری شده (\(y_m\)) و پیش‌بینی شده (\(y_p\)) عمکردر گندم در پراپر آب آبیاری و باران نفصل رشد و نتیجه‌گیری اولیه و مصرفی اولیه خاک باعث کاهش مصرف آب و نیتروژن در دستیابی به محصول بهینه می‌شود.

(۱۲) محاسبه نهایی های اولیه و نتیجه‌گیری اولیه

\[
y_p = 0.9869y_m
\]

\[
R^2 = 0.8922
\]

\[
d(N+N_f) = \frac{a_1 + a_2(w+R)}{a_1 + a_2(N+N_f)}
\]

با جایگذاری ضرایب معادله ۹ شیب محاسبه یکسان به صورت زیر در مدل:

\[
d(N+N_f) = \frac{110}{{110} - \frac{7}{50}(w+R)}
\]

با استفاده از معادله ۴ تابع هزینه (شامل هزینه عوامل تولید و یعنی آب و نیتروژن) هم به صورت زیر در نظر گرفته شد:

\[
(N+N_f) = \frac{4}{110} - \frac{7}{50} (N+N_f)
\]

پس قدرت نهایی تولید بهینه را به راحتی به‌صورت معادله ۱۲ می‌یابند که در آن با افزایش نیتروژن و به تعیین آب محصول بهینه نیتروژن‌های مابین دیده‌ها نهایی می‌باشد. در نهایت با تولید محصول مطلق معادله ۷ به صورت زیر محاسبه شد:

\[
y = 110/505 + 7/130\ (N+N_f)^2
\]

پس محصول بهینه نیتروژن‌های اولیه خاک در سطوح تولید شکل ۵ و به کمک معادله ۹ آب مصرفی بهینه (شامل آب آبیاری و باران فعل رشد) محاسبه شد.

(۱۳) محاسبه نهایی های اولیه و نتیجه‌گیری اولیه

برای تعیین مقادیر بهینه آب آبیاری و کود نیتروژن، ترکیب معادله ۱۲ و منجر به معادله زیر شد:

کمک به محاسبه شد.
شکل ۵: منحنی‌های تولید یک‌کان حاصل از تابع تولید گندم (معادله ۸) و مسر توسه‌ی تولید گندم حاصل از تحلیل خطوط هزینه‌ی یک‌کان

در واحد سطح را به دست می‌دهد که معادل تولید ۱۸۵/۸ تن در هکتار است (جدول ۵، شرایط محصولات زمین). وجود ۲۸/۲ میلی‌متر (مانیکین سه ساله مذکور) باعث تولید رشد ۱۹ درصد صرف جویی در مقدار آب لازم (۱/۷۲ متر) را به همراه دارد.

در شرایطی که کشاورز با محصولات آب‌پر به خاطر کمبود منابع (مانند بی‌پارزی از مناطق نواحی شنک و نیمه خشک ایران) یا فیبر زایان آن مواجه باشد، هدف اساسی پیشنهاد می‌شود در آمده خاک به ازای واحد حجم آب مصرفی خود را به ۴۹ تن کاهش دهد. در مقدار تولید فقط کاربرد یک تکیه تا آب و نیتروژن این ماه را تولید در شرایط ۵/۶ تست است. برای تولید مقدار در مجموع ۵ تن در شرایط محصولات زمین نسبت به ویژگی محصول بیشتری به ترتیب ۰/۹۲۵ و ۳۲/۵ درصد (در عملکرد ۱/۵ تن در هکتار) گزارش می‌گردد که تغییرات بیشتر آب ناشی از طبیعت آن در تولید گندم است. اگر عوامل تولید فراهم شود و کشاورز نیز قادر به پرداخت هزینه‌ی آن باشد، کاربرد ۱۴۷/۲ سال آب و ۱۹۶ کیلوگرم نیتروژن در هکتار (معادل تولید ۲۴/۳ تن در هکتار) باید می‌شود که در بین تکیه‌های به‌آب و نیتروژن در شرایط محصولات آب‌پر منحصر به فرد است. کاربرد یک مقدار آب نسبت به شرایط محصول بیشتری (۶۸/۴ درصد شده) تعیین شده و در ۱۸۱ درصد از مقدار سطح
جدول ۱۵ مقدار بهینه آب (آبیاری و بارندگی) و نیتروژن (آبیاری و کاربردی) مصرفی و سود در واحد سطح (شرايط محدودیت زمین) و حجم آب مصرفی (شرايط محدودیت زمین) برای مقدار مشخص تولید

<table>
<thead>
<tr>
<th>شرایط محدودیت زمین</th>
<th>سود</th>
<th>آب آبیاری و بارندگی (نیتروژن اولیه و فصل رسید) (m)</th>
<th>مصرفی (kg/ha)</th>
<th>فصل رسید (m)</th>
<th>عملکرد (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۱۰۹</td>
<td>۲۳۸</td>
<td>۱۸۵</td>
<td>۵/۲۶</td>
<td>۱/۶۵</td>
</tr>
<tr>
<td>۱۱۹</td>
<td>۱۸۶</td>
<td>۳۶۴</td>
<td>۱۵۱</td>
<td>۲/۳۸</td>
<td>۲/۵</td>
</tr>
<tr>
<td>۱۷۷</td>
<td>۲۰۵</td>
<td>۴۰۶</td>
<td>۱۶۱</td>
<td>۳/۶۰</td>
<td>۳/۵</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۲۱۹</td>
<td>۴۶۵</td>
<td>۱۵۹</td>
<td>۴/۲۰</td>
<td>۴/۵</td>
</tr>
<tr>
<td>۱۸۸</td>
<td>۲۹۳</td>
<td>۵۰۵</td>
<td>۱۵۸</td>
<td>۵/۷۰</td>
<td>۵/۵</td>
</tr>
<tr>
<td>۱۵۶</td>
<td>۲۴۹</td>
<td>۵۲۵</td>
<td>۱۵۵</td>
<td>۶/۷۰</td>
<td>۶/۵</td>
</tr>
<tr>
<td>۱۲۷</td>
<td>۳۱۳</td>
<td>۶۶۷</td>
<td>۱۵۲</td>
<td>۷/۵</td>
<td>۷/۵</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۳۹۴</td>
<td>۷۳۷</td>
<td>۱۴۹</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>۱۷۵</td>
<td>۴۶۵</td>
<td>۷۳۷</td>
<td>۱۴۳</td>
<td>۸/۱</td>
<td>۸/۱</td>
</tr>
<tr>
<td>۱۵۲</td>
<td>۷۳۷</td>
<td>۷۳۷</td>
<td>۱۴۵</td>
<td>۸/۲</td>
<td>۸/۲</td>
</tr>
</tbody>
</table>

ملاحظات:
۱. فرمول جزئی مشابه‌هایی در واقع می‌تواند برای زمینی که در هر یک از این حالت‌ها وابستگی داشته باشد، قابل استفاده باشد.

سپاسخواه (۲۴) نتیجه مشابه‌هایی را برای برای درخت گزارش کرده‌است.

۵. تغییرات حصول و مقدار بهینه آب و نیتروژن در برآورد مدرج (در شرایط محدودیت زمین)

اگر کشاورز به‌خواه برای کاربرد بیشتر عوامل تولید (آب و نیتروژن) در شرایط محدودیت زمین، بهینه صرف کند، تغییرات عوامل تولید، مطالعات زیر و منابع آنچه در شکل ۲ نشان داده شده، به‌شکل زیر به‌طور آماری به دست آمده است:

\[w + R = \frac{C}{123.456789} \]

\[N + N_f = \frac{C}{123.456789} \]

طبق این شکل افزایش مقدار بهینه‌ای که زراعت قارد است برای زیر کشت شود. اعداد جدول ۵ در شرایط محدودیت آب نیز باران قبلی و نیتروژن خاکی را در این داده که در نظر گرفته شده است. مانند شرایط محدودیت زمین، باعث صرف‌جویی در مصرف عوامل تولید شده و با مدیریت کشاورزی می‌تواند منجر به افزایش سطح زیر کشت گردد. اگر بارش میلی‌متر (میانگین آمار سال‌های مداوم) در فصل رشد وجود داشته باشد حدود ۵۱ درصد در آب مورد نیاز در این شرایط (۱۵۰۰۰ متر مکعب) مورد جویی می‌تواند صورت گیرد.

مقدار نیتروژن در دو حالت سود به‌شکلی در واحد سطح و حجم آب مصرفی یکسان بوده و همچنین تفاوت کمی با حالت محصول بهینه‌ی دارد که نشان دهنده تأثیر کمتر نیتروژن در تولید درآمده خاصی به دلیل فرمول پایین کود نیتروژن و نشان کمتر آن نسبت به آب در تولید گذشته شده است. زندگی و...
نتایج گیری
نمودار مقدار تعداد آب و تریوزن مصرفی (\(N^\text{2}+R\)) در نیازهای کل (میلیون مترمکعب) از نیازهای آب و تریوزن در شرایط محدودیت زمین

اب و تریوزن صرف کننده، مقادیر بهینه آب را با آن‌های بلندی نسبت به تریوزن افزایش می‌دهد که با خário افراد آب در
تویید محصول است. ضریب این که نسبت کمتر تریوزن در فرآیند
تویید و قیمت پایانی این نیز در این روند مؤثر می‌باشد.

شکل 7 تغییرات عملکرد را در برای ریز مجموع هزینه آب و
تریوزن (بدون هزینه‌های تابع کالا) نشان می‌دهد. طبق این
شکل صرف هزینه بیشتر (به عبارت دیگر کاربرد مقادیر بیشتر
نهاده‌های تولید) تا حد معینی قادر به افزایش تولید محصول
است. بهینه عملکرد در شکل 7 همان بهینه مجموع به دست
آمده از تابع تولید است.

و مسیر توسعه تولید

مسیر توسعه، یک پیوست تقاطع تعادلی که تولید
یکسان و خطورهای یکسان به وجود می‌آید و نقاط واقع بر
این مسیر مقادیر بهینه آب و تریوزن (ابزار اساس کم‌جهن
هزینه تولید) را به ارزی مقدار مناسب تولید بدهد می‌دهد.
این مسیر محاسبات تقاطع تعادلی که تولید یکسان است و در جدول 5 برای شرایط محدودیت زمین
نمایش داده شده است. با مقادیر مذکور محصول 4 مشخص و در
کار منحنی‌های تولید یکسان رسید گردید (شکل 5). طبق این
شکل مسیر توسعه دارای شبیه اندکی بوده و به طرف عامل آب
شکل 7: تغییرات عملکرد در برابر هزینه کل صرف شده برای آب و نیتروژن

مناطق مورد استفاده

1. تولکی، ع. 1381. برگیری مدیریت آبیاری تکیهگاهی به هنگامی که کور نیتروژن برای گندم. گزارش تحقیقات در مرکز تحقیقات دم مراکز، 14 صفحه.
2. سازمان حفاظت کشاورزی استان فارس. 1383. هزینه تولید یک هکتار گندم برای گندم و برنامه‌ای اداره آمار و فناوری اطلاعات، سازمان حفاظت کشاورزی، استان فارس.
3. فهمانی، ب. و. 1375. حساسیت عملکرد نسبی محصولات زراعی به آب و هوایی. 14 صفحه.
4. وزارت حفاظت کشاورزی. 1383. وزارت آماده کشاورزی. جلد 1: محصولات زراعی و باغی. معاونت برنامه‌ریزی و اقتصادی، دفتر آمار و فناوری اطلاعات، وزارت حفاظت کشاورزی، تهران.

