اثر آبیاری با پساب فاضلاب تصفیه شده شهری روی عملکرد و کیفیت گندم و برخی ویژگی‌های خاک در منطقه سیستان

احمد قنبری، جهانگیر عابدی کوپایی و جواد طالبی سمیری

چکیده
تحقیق حاضر به منظور بررسی تأثیر آبیاری با فاضلاب روی عملکرد، کیفیت گندم و برخی ویژگی‌های خاک انجام گرفته است. همچنین با توجه به SAR و شویر فاضلاب (SAR)، مسئ شد تأثیر آبیاری با فاضلاب و آب چاه به‌صورت نوین در مراحل مختلف رشد گیاه بررسی شد و در نهایت روش ارائه آب به علاوه بر حصول عملکرد مطلوب، از شور و سدیمی شدن خاک جلوگیری شود. این آزمایشات در سال زراعی 1382-1383 در مرکز تحقیقات کشاورزی یزد در خاک با نرمی شنی اجرا گردید. کم‌حدودیتی از نظر وزنی ناشی نداشت. آزمایشات در قالب طرح بلوک‌های کامل تصادفی و در چهار تکرار اجرا گردید. تیمارها عبارت بودند از: آبیاری با آب چاه در تمام مراحل ساقه و آبیاری با فاضلاب از زمان ظهور ساقه تا آخر دوره رشد (T1)، آبیاری با آب چاه تا مرحله گلدهی و آبیاری با فاضلاب از زمان گلدهی تا آخر دوره رشد (T2)، آبیاری با آب چاه تا مرحله ظهور ساقه و آبیاری با فاضلاب از زمان ظهور ساقه تا آخر دوره رشد (T3). نتایج تجزیه‌شده به‌شناخته‌ای آب چاه نشان داد آب چاه محدودیت‌های خاصی برای فاضلاب (T4) و آبیاری با فاضلاب در تمام مراحل رشد گیاه (T5). تیمار (T1) آبیاری ندارد، اما شور و SAR (نسبت جذبی سدیمی) فاضلاب بیش از حد مجاز تعیین شده توسعه دهنده برای آبیاری می‌باشد. براساس نتایج آزمایش عملکرد، اجزای عملکرد کارایی صرف آب در تیمارهای T4 و T5 افزایش معنی‌داری نسبت به شاهد نشان داد. همچنین درصد پروتئین دانه در تیمار T4 افزایش معنی‌داری نسبت به شاهد نشان داد. پنج تیمار مختلف از نظر تجمع عملکرد سگین در دانه گندم، قطر ذهابی دانه و محصول خاک در تیمارهای T4 و T6 نسبت به شاهد به‌طور معنی‌داری افزایش یافت. بی‌شور و SAR نیروزن کل، میزان شوری و نسبت به شاهد به‌طور معنی‌داری افزایش یافت. بی‌شور و SAR نیروزن کل به معنی استفاده پایدار از پساب فاضلاب شهر یاز. باید مراحل روشی رشد گندم با پساب فاضلاب آبیاری کرد و سپس مراحل رشد گندم با آب غیر شور (آب چاه) آبیاری کرد تا علاوه بر حصول عملکرد مطلوب از شور و سدیمی شدن خاک نیز جلوگیری گردد.

واژه‌های کلیدی: آبیاری، تجمع عناصر سگین، خصوصیات شیمیایی خاک، عملکرد، کیفیت دانه گندم، فاضلاب

1. به ترتیب استادیار و دانشجوی ساپ کارشناسی ارشد زراعت، دانشکده کشاورزی، دانشگاه یزد
2. استادیار آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

59
مقدمه

یکی از عوامل مهم که حفظ و توسعه کشاورزی اراضی فاراب را در تولید محصولات می‌سازد، کمبود آب است. در این راستا می‌توان از مصرف آب‌های بانی‌های غیر منعکسر بهره‌گرفت (۱۳۷۴، ۱۳۷۵، ۱۳۷۶، ۱۳۷۷، ۱۳۷۹، ۱۳۸۰). استفاده مجدد از آب‌های کشاورزی است. تحقیقات مختلف نشان می‌دهد اینکه از فضاهای شهری در کشاورزی باعث افزایش درصد مواد آلی و بهبود حاصلخیزی خاک می‌گردد (۱۳۷۸، ۱۳۷۹، ۱۳۸۰).

علیزاده و همکاران (۱۴) گزارش کرده‌اند تبیمار آبیاری با فضاهای در تمام مرحله دریغ که به حصول پیشرفت در عملکرد دانه و عملکرد پلوروزیکی گیاه درد شد. در این آزمایش ترکیب شیمیایی گیاهی نیز مورد ارزیابی قرار گرفت.

نتایج نشان داد که نگهداری در تبیمار آبیاری با فضای‌بندی در تمام مرحله رشد گیاه به حصول پیشرفت در تیمارهای مختلف حاصل از آب‌های فضایی دانه‌داری است. این مقایسه‌گرایی نشان دادنگی گیاهانی که تحت تأثیر آبیاری با فضای‌بندی و مصرف کود دامی قرار گرفته بودند، زیستار از سایر تیمارها به مراحل گله‌های رسیده‌اند.

فیضی (۱۳) در پژوهشی در زمینه تأثیر آبیاری با فضای‌بندی روی تغییر برخی کیفیت در خاک و گیاههای ارغوان در ۸ سال گزارش داد. نتایج آن امنیت گیاه دریغ که با فضای‌بندی مشابه بودند، بهتر به نظر می‌رسید. همچنین میزان تغییر در روی که در حالی در مورد شاخ و برگ پیچه افزایش گرفت که کدام از عناصر در مزرعه آبیاری شده با فضای‌بندی مختلف معیار داری نشان نداد. گفته شده که تغییرات عناصر مختلف افزایش معیار دارد. نتایج نشان داد، افزایش معیار دارد.
مواد و روش‌ها

این آزمایش در استعداد تحصیلهای کشاورزی زهک اجرا گردید.

این استعداد با طول جغرافیایی 61 درجه و 24 دقیقه شرقی و عرض جغرافیایی 30 درجه و 54 دقیقه شمالی، در ارتفاع 283 متراً از سطح دریا قرار دارد. این منطقه بارش سالانه‌ای کمتر از 70 میلی‌متر و بی‌خیز سالانه‌ای بیش از 740 میلی‌متر گزارش گردیده است. خاک ترکیب نسبتاً کثیف می‌شود. دکتر دژ در حساب‌های مطالعه‌ای این منطقه 2/4/0/40 و 2/4/0/10 است. آن در حال دفاع دوم عبارت از آن در صدم‌شان و 62 درصد سیلنت و 12 درصد رسان از کلاس بلوکی لیم شیتی جای داشته و سایر خصوصیات فیزیکی و شیمیایی خاک محل آزمایش قبل از آن با استاندارد جدایی و ۲ ارایه شده است.

زمان در سال قبل از اجرای طرح در حال آینه‌برد است.

به منظور استفاده از فناوری‌هایی که در تحقیقات شده شوری باعث نگاه، روشن‌تری صحیح در مورد آبیاری با فوام‌های اعمال گردید. در حلال‌های حاضر در شهرستان زابل سطح و سیستم‌های از مزارع گندم، گو، برنج و سیب نسبتاً به‌طور درجه‌بندی تصویب‌شده است.

فناوری شهروی آبیاری می‌گردد. شوری بالای یا پاس‌این، فناوری‌هایی که در زمین‌های از شوری و سیبی‌های مورد استفاده، تهیه و تجربه از سطح منطقه فراوانی است. 14) بیان‌برانج مطلوق تأثیر فاهیا و عطارد، تکامل و کیفیت گندم و همچنین تأثیر آن بر خصوصیات فیزیکی و شیمیایی خاک و بی‌دیه‌ای زیست می‌باشد. منظر به نظریه می‌رسد.

در این پژوهش، خاک را با تریال اثرات آبیاری با فناوری عطارد، تکامل و کیفیت گندم و همچنین تأثیر آن بر خصوصیات فیزیکی و شیمیایی خاک و بی‌دیه‌ای زیست
جدول ۱. ویژگی‌های فیزیکی خاک محل آزمایش

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4/1</td>
</tr>
<tr>
<td>FC (dS/m)</td>
<td>7/27</td>
</tr>
<tr>
<td>N%</td>
<td>2/43</td>
</tr>
<tr>
<td>P (mg/kg)</td>
<td>175</td>
</tr>
<tr>
<td>K+ (mg/kg)</td>
<td>0/33</td>
</tr>
<tr>
<td>CEC (cmol/kg)</td>
<td>0/44</td>
</tr>
<tr>
<td>SO4–(mg/kg)</td>
<td>4/8</td>
</tr>
<tr>
<td>Cu2+ (mg/lit)</td>
<td>0/72</td>
</tr>
<tr>
<td>Mn2+ (mg/lit)</td>
<td>7/51</td>
</tr>
<tr>
<td>Fe2+ (mg/lit)</td>
<td>6/12</td>
</tr>
<tr>
<td>Ca2+ (meq/lit)</td>
<td>5/11</td>
</tr>
<tr>
<td>Mg2+ (meq/lit)</td>
<td>6/5</td>
</tr>
<tr>
<td>SAR</td>
<td>8/7</td>
</tr>
</tbody>
</table>

جدول ۲. ویژگی‌های شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8/2</td>
</tr>
<tr>
<td>ECe (dS/m)</td>
<td>2/0</td>
</tr>
<tr>
<td>N%</td>
<td>0/13</td>
</tr>
<tr>
<td>P (mg/kg)</td>
<td>2/5</td>
</tr>
<tr>
<td>K+ (mg/kg)</td>
<td>175</td>
</tr>
<tr>
<td>CEC (cmol/kg)</td>
<td>0/33</td>
</tr>
</tbody>
</table>

با فاضلاب در تمام مراحل رشد گیاه‌بودن، آب مورد نیاز گیاه زراعی از چاه موجود در مرکز تحقیقات تأمین شده و آب فاضلاب مورد نیاز از درمان روز آبیاری از تصفیه‌خانه زابل به محل آزمایش حمل و در یک مخزن موقتی در بالای مزرعه ذخیره شده و به مقدار محاسبه شده برای هر کدام از یکتاهای مورد استفاده قرار گرفت.

میزان آب آبیاری مورد نیاز بر اساس برخی مشخصات مورد بررسی قرار گرفته و زنی خاک قبل از آبیاری محاسبه گردیده (۱۰). دور آبیاری نیز بر اساس مراحل کیفیت‌های رشد و نمو گیاه در مراحل کاشت، آغاز پنج‌جزیی سائده، ظهور ساقه، گل‌دهی و پرندان، دانه تیغین و روش آبیاری مطلق با گرفتگی محضی به روش گرفتگی انجام گردید.

روش تصویب‌های تیغین خاک زابل از نوع برکه‌های تیغین بوده و فاضلاب مورد استفاده برای آزمایش از آخرین مرحله تفصیل ردیابی شده و پیش‌بینی گرایی شیمیایی آب و پیمان آب و عرض گیرنده چربی‌نشین مصرف‌کننده (یک چربی‌نشین از نظر محاسبه گردد). کارایی مصرف این (WUE=Y(Kg)/WUE(m³)) در این برابر WUE (میزان کارایی مصرف آب) (کیلوگرمی کیلو لیتری) برای تیغین ویژگی‌های ویژگی‌های خاک نمونه‌داری از عمق ۳۰ سانتی‌متری با اوکر فولادی انجام گرفت به وسیله pH.
جدول 3. میانگین کیفیت آب چشمه و پساب فاضلاب تصفیه شده زایل برای آب آمیزه (1383-1384) و مقایسه با استانداردهای توصیه شده

<table>
<thead>
<tr>
<th>درجه بهره برداری برای آب آمیزه</th>
<th>واحد</th>
<th>پساب مورد آزمایش</th>
<th>معیارهای کیفیت آب</th>
<th>(اف) هدایت الکتریکی (dS/m)</th>
<th>(د) مقدار SAR</th>
<th>(د) مقدار المدید (ECw)</th>
</tr>
</thead>
</table>
| خوب | متوسط | بد | نخستین | 2/8 | 2/5 | 2/5-
| 0/10 | 0/9 | 0/7-0/6 | 0/2-0/1 | 0/2-0/1 | 0/2-0/1 |
| 0/7 | 0/6-0/5 | 0/4-0/3 | 0/2-0/1 | 0/2-0/1 | 0/2-0/1 |
| 0/5 | 0/4-0/3 | 0/3-0/2 | 0/1-0/0 | 0/1-0/0 | 0/1-0/0 |
| 0/3 | 0/2-0/1 | 0/1-0/0 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 |
| 0/1 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 |
| 0/1 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 |
| 0/3 | 0/2-0/1 | 0/1-0/0 | 0/0-0/0 | 0/0-0/0 | 0/0-0/0 |
| 0/5 | 0/4-0/3 | 0/3-0/2 | 0/2-0/1 | 0/2-0/1 | 0/2-0/1 |
| 0/7 | 0/6-0/5 | 0/5-0/4 | 0/4-0/3 | 0/4-0/3 | 0/4-0/3 |
| 0/9 | 0/8-0/7 | 0/7-0/6 | 0/6-0/5 | 0/6-0/5 | 0/6-0/5 |
| 1/0 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |
| 1/1 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |
| 1/2 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |
| 1/5 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |
| 2/0 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |
| 2/5 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |
| 5/0 | 0/9-0/8 | 0/8-0/7 | 0/7-0/6 | 0/7-0/6 | 0/7-0/6 |

نتایج و بحث
الف. کیفیت آب چشمه و فاضلاب
به منظور ارزیابی کیفیت آب چشمه پساب فاضلاب تصفیه شده برای آب آمیزه از استانداردهای سازمان حوار و پارک جهانی (2013) استفاده گردید. بر اساس این استانداردها آب چشمه محدوده برای آب آمیزه ندارد. اما کیفیت پساب تصفیه شده نشان می‌دهد هدایت الکتریکی (EC) اندازه بسیار بسیار بالا در حد مجاز می‌باشد که به‌طور واسطه تنش شوری و مصرف الکتریکی گیاهان جهانی به شوری را در هر داشته باشد. در مورد گندم حداکثر حد آستانه شوری مجاز برای حصول حداکثر پتانسیل عملکرد

متر، شوری با استفاده هدایت الکتریکی، از روی

کل خاک به روش جاذبه، درصد مواد آلی به روش

اکسیداسیون ترسیم قابل جذب گیاه در نمونه‌های خاک به

روش اولین، کلر به وسیله نیتراسون به نیترات نیتروژن، الکل به

وسله راک سنجی با کارکردنی - اسد آکارینک، پتانسیم و

سند به روش شعله سنجی اندیشه‌گری گردید (20).

عنوان کم منصرف و سنگین با استفاده از

می‌باشد که به‌طور واسطه تنش شوری و مصرف الکتریکی گیاهان

حساس به شوری را در هر داشته باشد. در مورد گندم حداکثر حد

آستانه شوری مجاز برای حصول حداکثر پتانسیل عملکرد

شده(42).
جدول ۲: میانگین کلیت آب چای و پساب فاضلاب تصفیه شده زابل (۱۳۸۳-۱۳۸۲) و ارزیابی آلودگی آنها در مقایسه با استانداردهای توصیه شده توسط سازمان حفاظت محیط زیست ایران (۶) . واحدها بر حسب میلی گرم در لیتر (mg/l) میباشد.

| ۶۰ | ۲۰۰ | ۸۵ | - |

پساب فاضلاب تقریباً در محدوده استاندارد شوری مجاز برای گندم (۴۵ Ds/m) قرار دارد و با در نظر گرفتن بیور ها (نیترات، مس، روزی و حس) می‌توان با اعمال مدیریت صحیح در آب‌های از بروز تنش شوری روی این گیاه کاهش عملکرد و شور شدن خاک جلوگیری کرد (۶).

ایجاد می‌کند باعث کاهش عملکرد می‌گردد. در حالتی که غلاتی مانند گندم، جو و سوپرگرم به غلظت‌های بالایی این پیون در شرایط آبیاری سطحی مقاومت خوبی نشان داده‌اند (۷).

حجم استاندارد مجاز برای حصول حداکثر عملکرد برای پایه (B) برابر ۱/۷/۵۰ میلی‌گرم در لیتر می‌باشد (۸). با توجه به غلظت پر در پساب تصفیه شده فاضلاب (در حدود ۳ میلی‌گرم در لیتر) انتظار می‌رود آبیاری با پساب فاضلاب باعث بروز مسمومیت در گندم شود. در حالتی که هیچ گونه علامتی که ناشی از بروز مسمومیت در گیاه گندم باشد در حین می‌باشد.

۴۵ Ds/m یا باشد (۶). با توجه به اینکه شوری پساب فاضلاب تقریباً در محدوده استاندارد شوری مجاز برای گندم (۴۵ Ds/m) قرار دارد و با در نظر گرفتن بیور ها (نیترات، مس، روزی و حس) می‌توان با اعمال مدیریت صحیح در آب‌های از بروز تنش شوری روی این گیاه کاهش عملکرد و شور شدن خاک جلوگیری کرد (۶).

غلظت بیور (B) نیز بیش از مرز استاندارد تعیین شده‌ای می‌باشد. در مورد محصولاتی که تمرکز جنگل در ۴/۱ meq/l باید با استاندارد نظیر جنگلی تیشرک و اگرزه غلظت بالایی باید علیندا خاص که در مسیر متابولیسم و انتقال برخی هیدرات‌های کربن در گیاههای
آزمایش دیده نشد. گل‌فز actividades یون سدیم وجود در رفتار(1897) نیز ممکن است در مورد مصواد
حساس، باعث بروز مسمومیت گردد. در حالت که غلظت ماند
گند، جو و سوسمگرها با غلظت‌های بالایی این پون در شرایط
دیگر افزایش مقاومت خوبی نشان داده اند (24). از ارزیابی
کیفیت آب آبی افتاد از روی ESC که در محلول
خواح در اثر تعادل با یک آب به وجود خواهد آمد محاسبه
می‌گردد و سپس از روی ESP درجه مقاومت گیاهان به سدیم
تخمین دارد (10). گیاهانی که نظری گندم، جو، یونجه، پیه
جمه گیاهان مقاوم به مقدار بالایی می‌باشد که می‌توانند
ESM مقاوم به این آزمایش می‌باشد که یکی است
محصولات مقاوم و بهبود مقاوم بدون هیچ گونه مشکلی امکان
پذیر می‌باشد.

برای تعیین نیاز تامید بیون سدیم موجود در فعالیت
نوشیدنی و استخوان خاک، نسبت جذبی سدیم فعالیت
افزایش گیاه در مرحله‌ی پرشدن دانه می‌باشد. این مرحله میزان تولید
خاص العایل بر پرچم و سنبله، تأثیر قابل توجهی در سرعت
بی‌پایان دانه و وزن هزار دانه دارد (22). تابعی از این آزمایش
نشان می‌دهد وزن هزار دانه گندم در تیمارهای T3، T6 و
T8 به ترتیب 19، 36 و 17/4 درصد نسبت به شاهد افزایش یافته
است.

همچنین تعادل داده در سنبله (جدول 5) نیز در تیمارهای T4
و T5 افزایش می‌دارد (در سطح 5 درصد) نسبت به شاهد نشان
داده است. احتمالاً نتیجه ممکن تأثیر سدیم موجود در فعالیت
کل از مرحله‌ی کلیه و مرحله‌ی کلیه دیگر است، باعث افزایش
تعادل داده در سنبله شد و افزایش سطح فعال
فیزیولوژیک گیاه در دو رشته پر شدن دانه دارد تیمارهای T3، T4
و T6 عامل افزایش وزن هزار دانه گندم بوده است. سطح فیزیولوژیک
کلیه، دوام سطح برک و محیطی کارونی برای گیاه تحت تأثیر
عناصر غذایی موجود در فعالیت افزایش می‌باید (19) و 1987.3 نتایج تحقیق شیبانیان (9) نشان می‌دهد غلظت کارونی در
کیهان چمن و قرنفل که تحت تأثیر آبیاری با پاس کارخانه‌

آزمایش دیده نشد. گل‌فز actividades یون سدیم وجود در رفتار(1897) نیز ممکن است در مورد مصواد
حساس، باعث بروز مسمومیت گردد. در حالت که غلظت ماند
گند، جو و سوسمگرها با غلظت‌های بالایی این پون در شرایط
دیگر افزایش مقاومت خوبی نشان داده اند (24). از ارزیابی
کیفیت آب آبی افتاد از روی ESC که در محلول
خواح در اثر تعادل با یک آب به وجود خواهد آمد محاسبه
می‌گردد و سپس از روی ESP درجه مقاومت گیاهان به سدیم
تخمین دارد (10). گیاهانی که نظری گندم، جو، یونجه، پیه
جمه گیاهان مقاوم به مقدار بالایی می‌باشد که می‌توانند
ESM مقاوم به این آزمایش می‌باشد که یکی است
محصولات مقاوم و بهبود مقاوم بدون هیچ گونه مشکلی امکان
پذیر می‌باشد.

برای تعیین نیاز تامید بیون سدیم موجود در فعالیت
نوشیدنی و استخوان خاک، نسبت جذبی سدیم فعالیت
افزایش گیاه در مرحله‌ی پرشدن دانه می‌باشد. این مرحله میزان تولید
خاص العایل بر پرچم و سنبله، تأثیر قابل توجهی در سرعت
بی‌پایان دانه و وزن هزار دانه دارد (22). تابعی از این آزمایش
نشان می‌دهد وزن هزار دانه گندم در تیمارهای T3، T6 و
T8 به ترتیب 19، 36 و 17/4 درصد نسبت به شاهد افزایش یافته
است.

همچنین تعادل داده در سنبله (جدول 5) نیز در تیمارهای T4
و T5 افزایش می‌دارد (در سطح 5 درصد) نسبت به شاهد نشان
داده است. احتمالاً نتیجه ممکن تأثیر سدیم موجود در فعالیت
کل از مرحله‌ی کلیه و مرحله‌ی کلیه دیگر است، باعث افزایش
تعادل داده در سنبله شد و افزایش سطح فعال
فیزیولوژیک گیاه در دو رشته پر شدن دانه دارد تیمارهای T3، T4
و T6 عامل افزایش وزن هزار دانه گندم بوده است. سطح فیزیولوژیک
کلیه، دوام سطح برک و محیطی کارونی برای گیاه تحت تأثیر
عناصر غذایی موجود در فعالیت افزایش می‌باید (19) و 1987.3 نتایج تحقیق شیبانیان (9) نشان می‌دهد غلظت کارونی در
کیهان چمن و قرنفل که تحت تأثیر آبیاری با پاس کارخانه‌
جدول ٥: اثر تیمارهای فاضلاب بر رشد، عملکرد و اجزای عملکرد گندم

<table>
<thead>
<tr>
<th>CV</th>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>١١/٢٨</td>
<td>١٩/١١</td>
<td>ab</td>
<td>١٥/١٥</td>
<td>b</td>
<td>١٠/١٨</td>
<td>c</td>
</tr>
<tr>
<td>٥/٥</td>
<td>١٣/٧</td>
<td>a</td>
<td>١١/١١</td>
<td>b</td>
<td>٩/٣</td>
<td>c</td>
</tr>
<tr>
<td>٧/١</td>
<td>١٢/٧</td>
<td>a</td>
<td>١١/١١</td>
<td>b</td>
<td>٠/٨</td>
<td>c</td>
</tr>
<tr>
<td>٧/١</td>
<td>١٠/١٢</td>
<td>a</td>
<td>٨/١</td>
<td>a</td>
<td>٨/١</td>
<td>b</td>
</tr>
<tr>
<td>١٣٣</td>
<td>٣٨/١٥</td>
<td>a</td>
<td>٣٢/٣٢</td>
<td>b</td>
<td>١٩/١٩</td>
<td>c</td>
</tr>
<tr>
<td>٥٧</td>
<td>٣/١</td>
<td>a</td>
<td>٢٠/٢٠</td>
<td>a</td>
<td>١٦/١٦</td>
<td>b</td>
</tr>
<tr>
<td>٨٦٩</td>
<td>٣٤/٤٨</td>
<td>a</td>
<td>٢٠/١٨</td>
<td>a</td>
<td>١٧/١٤</td>
<td>c</td>
</tr>
<tr>
<td>٢١ /١ٷ</td>
<td>١٢/١١</td>
<td>a</td>
<td>١٢/١٢</td>
<td>b</td>
<td>٧/١</td>
<td>c</td>
</tr>
<tr>
<td>٨٣</td>
<td>٢٠/١٢</td>
<td>a</td>
<td>٢٤/٢٤</td>
<td>a</td>
<td>٢٤/٢٤</td>
<td>a</td>
</tr>
<tr>
<td>١١/٣</td>
<td>٢٤/٩٥</td>
<td>a</td>
<td>٢١/٦٤</td>
<td>b</td>
<td>٣/١</td>
<td>b</td>
</tr>
</tbody>
</table>

نقاط میانگین‌ها در سطح پنجم درصد بر اساس آزمون دانکن انگرم گرفته است.

پیش از کلی دردسر داشته، به طور معنی‌داری نسبت به شاهد افزایش یافته است. علی‌رغم و هم‌کاران (١٦) نیز تغییر کرده، ایثاری با فاضلاب معنی‌دار طول گیاه و عرض گیاه در گیاه دردسر است.

همچنین نتایج نشان داد تعداد پنج‌های بارور در تیمارهای T_0 و T_٥ به طور معنی‌داری (در سطح ٥ درصد) نسبت به شاهد افزایش داشته است. به نظر می‌رسد مواد غذایی موجود در فاضلاب در تیمارهای که در اولین دورة رشد رویشی تحت تأثیر آبیاری با فاضلاب بودند، میزان افزایش پنج‌های طول در گیاه سطح داده است و همکاران به ترتیب بینی در مورد کند دست افتاده (٢٨) و هم‌کاران (٤٧) گزارش کرده، آبیاری با فاضلاب باعث افزایش پنج‌های طول پانکولی‌ها در برخی می‌گردد. بر اساس نتایج این آزمایش عملکرد دانه در تیمارهای T_٥ در مقایسه با شاهد افزایش معنی‌داری دارد (در سطح ٥ درصد) T_٥ و T_٠.

فرم‌ها و فوتن کشاورزی و منابع طبیعی/سال دهم/شماره چهارم (الف)/زمستان ١٣٨٥
این آپاری با پای‌افلکس تصفیه شده شری روی عملکرد و کیفیت گندم و...
با فاضلاب آبیاری شده بود نسبت به سایر تیمارها تفاوت معنی‌دار نشان داد (19). عدم وجود تفاوت معنی‌دار برای عناصر سنگین بین تیمارهای مختلف (شکل 2) می‌تواند به علت ناجی بودن غلظت این عناصر در فاضلاب باشد (جدول 6). البته عوامل مؤثر در قابلیت جذب این عناصر توسط گیاه از جمله pH و رطوبت در دسترس خاک درصد CEC، مواد آلی و نوع گیاه نیز می‌تواند در انتخابی گیاه با عناصر در گیاه موثر می‌باشد (15، 26 و 33).

قابل توجه این‌که در حالی که تیمارهای T1 و T4، T2 دارای برگ‌های تیره‌تر و رشد و عملکرد نسبتاً مطلوبتر و دوام بیشتر برگ پچم بودند، علائم کم‌یکی بودن نیتروژن در تیمارهای T2 و T4 نمایان شده بود. برخی محققان (19 و 27) در کرده‌دانه غلظت عناصر پرخصر در گیاهان که توسط فاضلاب خانگی آبیاری شده‌اند، نسبت به گیاهانی که با آن معمولی آبیاری شده‌اند بیشتر است. با افزایش مقدار نیتروژن داده، درصد پروتئین‌های دانه افزایش می‌یابد که در نتیجه آن کیفیت نانوایی آرد بهبود می‌یابد. افزایش درصد پروتئین دانه نیز فقط در تیمار T6 نسبت به شاهد تفاوت معنی‌دار نشان داد (در سطح پنج درصد) (شکل 2). پروتئین‌های دانه در تیماری که در تمام مراحل با فاضلاب آبیاری شده بود نسبت به تیمار شاهد 56 درصد افزایش نشان داده است. دای و همکاران (18) در آزمایشی در مورد تأثیر آبیاری با فاضلاب روی کیفیت دانه گندم و در آزمایشی دای و نکر (17) در مورد تأثیر آبیاری با فاضلاب روی کیفیت دانه سورغوم به نتایج مشابه دست یافتند. علی‌رغم از همکاران کردن در درصد پروتئین دانه در تیماری که

شکل 3. تأثیر تیمارهای آبیاری بر غلظت عناصر سنگین در دانه

Table: Series 1 9.2 10.5 12.5 13.3 14.14

Shahid et al. (15, CV).

شکل 2. تأثیر تیمارهای آبیاری بر غلظت پروتئین دانه گندم.

ستون‌ها که یک حرف مشخص شده‌اند، بین آن‌ها، دانه در سطح پنج درصد اختلاف معنی‌دار می‌باشد.
جدول ۶: میانگین غلظت برخی عناصر سنگی (استخراج با DTPA) در خاک (۳۰۰۰ سانتی‌متر)، پیش از آزمایش و پس از آزمایش

<table>
<thead>
<tr>
<th>شاخص اندازه‌گیری شده</th>
<th>روی</th>
<th>مگنتر</th>
<th>آهن</th>
<th>مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>گردیده</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
</tr>
<tr>
<td>خاک پیش از کاشت</td>
<td>۰.۳۱۴</td>
<td>۹.۶۶</td>
<td>۰.۵۹</td>
<td>۰.۷۸</td>
</tr>
<tr>
<td>جنگل</td>
<td>۰.۳۰۵</td>
<td>۱.۰۴</td>
<td>۰.۵۸</td>
<td>۰.۷۵</td>
</tr>
<tr>
<td>جنگل</td>
<td>۰.۳۷۳</td>
<td>۰.۷۴</td>
<td>۰.۵۳</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>جنگل</td>
<td>۰.۴۴۳</td>
<td>۰.۸۲</td>
<td>۰.۵۸</td>
<td>۰.۷۸</td>
</tr>
<tr>
<td>جنگل</td>
<td>۰.۳۳۳</td>
<td>۰.۸۲</td>
<td>۰.۵۸</td>
<td>۰.۷۸</td>
</tr>
<tr>
<td>جنگل</td>
<td>۰.۳۳۳</td>
<td>۰.۸۱</td>
<td>۰.۵۸</td>
<td>۰.۷۸</td>
</tr>
<tr>
<td>جنگل</td>
<td>۰.۵۵۴</td>
<td>۱۳.۲۱</td>
<td>۰.۸۷</td>
<td>۰.۹۵</td>
</tr>
</tbody>
</table>

- مقایسه میانگین‌ها در سطح پِنگ درصد بر اساس آزمون دانکن انجام گرفته است.

لیر) توانسته است میزان تتراوزون از دست رفته را به خویی جریان کند. سایر محققین نیز گزارش کرده‌اند که آپاری با
فاضلاب سه شیره منجر به افزایش تشت زندر خاک گردیده
است (۱۱، ۱۹ و ۲۷).

بنابراین، تاثیر مختلف جذب خاک‌های آپاری شده با پساب فاضلاب در
مقاومت با خاک‌های آپاری شده با آب چاه افزایش یافته است.
اما این افزایش از لحاظ آماری معنی‌دار نمی‌باشد. با توجه به
قابلیت تحرک پانسیم در خاک، این عناصر به راحتی می‌توانند
همراه با آب‌های محلول در خاک‌های بافت شبکه مانند
بافت خاک محل آزمایش (لوم شی) جا به جا شود. اما در
خاک‌های رسی این بیان در بین لایه‌های رس خاک تیت‌بست
می‌گردد (۱۰).

نتایج حاصل از آزمایش (جدول ۷) نشان می‌دهد پساب
تشفیه شده توانسته میزان تجمع فسفر در خاک را افزایش دهد.
رونق تغییرات میزان فسفر میان جذب تجمع بافت در خاک در
弱势 افزایش معروف پساب تشفیه شده در تیمارهای T۱ و T۰
افزاری بوده، اما اختلاف بین تیمارها از لحاظ آماری معنی‌دار
نوبه است. با توجه به تحرک بیماری کم فسفر در خاک، تجمع
فسفر در لایه‌های سطحی خاک اثر استفاده طولانی مدت
فاضلاب پایدار مورد توجه قرار گرفت. عوامل و همکاران (۱۱)
نیز به تایید مشاهده دست‌یافتن با، طوری که در این آزمایش
فاضلاب پایدار درصد تشت زندر خاک را به خویی
جبران کند. میزان تتراوزون نتیجه‌ای فاضلاب ۱۳/۲ میلی‌گرم در

حسن‌آقی و همکاران (۴) نیزگزارش کرده‌اند که میزان مورد آنی
خاک در تیمار آپاری با فاضلاب خانکی به طور معنی‌دار
افزاری بهبود و بهبود ساختن خاک گردیده است.

نتایج نشان داد (جدول ۷) که درصد تتراوزون کل خاک تیز
در تیمارهای T۱ و T۰ نسبت به شاهد به میزان ۴۸ و
now ۴ درصد افزایش یافته است (در سطح پِنگ درصد) بنا براین
میزان تتراوزون نتیجه‌ای فاضلاب (۱۳/۲ میلی‌گرم در لیر)
توانسته است میزان تتراوزون از دست رفته خاک را به خویی
جبران کند. میزان تتراوزون نتیجه‌ای فاضلاب ۱۳/۲ میلی‌گرم در
جدول 7 میانگین و چاپ که منجر به شیمیایی خاک (30- ساله مت) پیش و پس از آزمایش

<table>
<thead>
<tr>
<th>%CV</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>EC(dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.67<sup>a</sup></td>
<td>0.57<sup>ab</sup></td>
<td>0.52<sup>c</sup></td>
<td>0.37<sup>c</sup></td>
<td>0.32<sup>c</sup></td>
<td>0.32<sup>c</sup></td>
<td>KCL (میلی‌گرم در لیتر)</td>
</tr>
<tr>
<td>12/25</td>
<td>0.67<sup>a</sup></td>
<td>0.67<sup>a</sup></td>
<td>0.57<sup>ab</sup></td>
<td>0.37<sup>c</sup></td>
<td>0.32<sup>c</sup></td>
<td>0.32<sup>c</sup></td>
<td>(میلی‌گرم در لیتر)</td>
</tr>
<tr>
<td>19/4</td>
<td>0.67<sup>a</sup></td>
<td>0.67<sup>a</sup></td>
<td>0.57<sup>ab</sup></td>
<td>0.37<sup>c</sup></td>
<td>0.32<sup>c</sup></td>
<td>0.32<sup>c</sup></td>
<td>(میلی‌گرم در لیتر)</td>
</tr>
</tbody>
</table>

 Lorentz (درصد) | نتیجه‌گیری

 مقایسه میانگین‌ها در سطح پنج درصد بر اساس آزمون دانکن انجام کرده است.

نتایج نشان می‌دهد (جدول 7) آب‌ایری با فاضلاب زابل باعث افزایش معنی‌داری T₂، T₃ و T₄ در SAR می‌شود. به طوری که آب‌ایری با فاضلاب در میزان SAR کنار خاک با تأثیر T₅ در SAR کنار خاک را از 1/2^b و میزان اصلی خاک را از 1/2^b درصد معنی‌داری داشت. در حالی که آب‌ایری با پاسب تصفیه شده تأثیر معنی‌داری روز تغییرات EC_e و تغییرات SAR بین دو روش نوعی ترکیبی است. از آنجا که این شورای آب آب‌ایری (EC_e) و هم‌اکنون آب آب‌ایری بر پایداری خاکانه تأثیر دارد. هنگامی که SAR تأثیر احتمالی چسب آب را کاهش نمی‌دهد در خاک بررسی می‌شود. به هم اینکه در نظر گرفته شود (4-10). نتایج این‌ها بنا به آن این تأثیر فقدان مقدار سدیم

تبلیغات باشد به درصد سدیم تبادلی (ESP) است. گام 2

میزان فسفر 13.5 میلی‌گرم در لیتر موجود در پساب فاضلاب شهری منجر به افزایش نسبت 30- ساله مت خاک شد.

نتایج نشان داده آب‌ایری با پاسب نشان داده شده است. تأثیر بر آب‌ایری با تجربه عناصر سنگین در خاک (استخراج بنا ندایشTEA) با پاسب بیشتر که در مورد DTPA با پاسب نتیجه که در مورد SAR با پاسب باعث شده، تجربه عناصر سنگین در ترکیب خاک نیاز با فضای افزایش معنی‌داری خاک دار تمرکز تأثیر در پساب فاضلاب انجام شده است. تجربه عناصر سنگین در خاک طی آب‌ایری با فاضلاب به عوامل مختلفی از جمله غلظت این عناصر در فاضلاب، مدت آب‌ایری با فاضلاب، بافت خاک، استندی و درصد مواد آلی خاک بستگی دارد.
اث آبیاری با پساب فاصلاب تصفیه، دهد شهري روی عملکرد و کیفیت گندم و...

کاهش درصد آبیاری، شوری افزایش یافته است. تناجر این آزمایش نیز نشان می‌دهد بهتر که تیمار T4 در مراحل رویش رشد (سیز، سنده، پنجه نزدیک ته زنده و خوشه‌های) تحت تأثیر آبیاری با آب و غذای فقط در مراحل زایشی رشد گندم (کلهدی، گردان انثیا و پرندن) است. تحت تأثیر آبیاری با SAR افزایش معناداری در فاصلاب بوده است. این نتایج به نظر می‌رسد که بر اساس هر یک از عوامل از طرف دیگر با توجه به فاصلاب محل آزمایش و این که شوری پساب فاصلاب و عصاره‌اشیاب خاک بیشتر از طرفportalیه در مقدار مشخصی از خاکهای رسی برای گیاهان غیر متحول به شرایط سدیمی، برنج است. (4) پساب تیمار ESP/ کاهش عملکرد آزمایش ۱/۴ می‌باشد

۴۰ استاد از SAR محل خاک در این آزمایش کمتر از استانهای کاهش عملکرد بیان می‌باشند و از طرف دیگر با توجه به فاصلاب محل آزمایش با استاد ۲۹/۳۰ می‌باشد تخریب ساخته شده و مشکل نفوذ‌کننده را به دنبال نخواهد داشت. (۴) لازم به ذکر است در تیمار T4 چند آبیاری با پساب فاصلاب تصفیه شده در تمام راه‌حل شرایط افزایش‌نشان خاک شده است (جدول۲). اما تیمار بیست و یکی مصرف‌کننده را نیز داشته است (جدول۱). پساب مشخص یک نظر به شوری پساب فاصلاب که تقریباً زیر مرز استانهای کاهش عملکرد برای گیاهان۳/۶ دست زیمنس بر متر به قرار دارد. شوری پساب، دست کم در طول یک سال زراعی تأثیر سوخت روی عملکرد داخلی در این گردیده در فاصلاب گیاه باعث افزایش عملکرد گندم شده است. با توجه به شوری پساب فاصلاب که تقریباً صبح در آبیاری با پساب این تصفیه شده و جلوگیری از شوری گیاه توان افزایش عملکرد محصولاتی مانند گندم را در سالمهای بعد نیز انجام داشت.

علت آبیاری شوری خاک وا می‌توان علایق به شوری پساب فاصلاب تصفیه، دهد شهري روی عملکرد و کیفیت گندم و...

نتیجه‌گیری

1- بر اساس نتایج حاصل از این آزمایش، آبیاری بی پساب تصفیه شده شاهد شهري در این آزمایش دانه و عملکرد بیولوژیکی از این آزمایش درصد تیمر نیروز و پروتئین داده است. همچنین عناصر بر مصرف (پتانس و فسفر) و عناصر گیاه‌خوار مصرف (کلسیم، مینرال‌ها، آهن، مس، و رور) در دانه گندم هیچ گونه فاصلاب معنی‌داری نشان نداده است.

2- آبیاری با پساب فاصلاب تصفیه شده در مراحل رشد رویش گیاه باعث افزایش عملکرد و اجرا عملکرد می‌گردد اما در مراحل رشد زایشی تأثیر بر افزایش عملکرد ندارد.

3- آبیاری با پساب فاصلاب تصفیه شده باعث افزایش معنی‌دار SAR و ECE در دانه گندم و مواد آئی در خاک شده است. همچنین با توجه به روند افزایش فسفر خاک، و گروه فسفر در لایه سطحی خاک در اثر استفاده دراز مدت از پساب فاصلاب
سپاسگزاری

پیشنهاد می‌گردد:
1. اعمال آبشار نوبیل (آبیاری با پساب فاضلاب در مراحل رشد رویشی گیاه و آبشار با آب چاه و یا سایر منابع آب غیر شور در مراحل رشد زایشی همه‌ها از طریق تغذیه مناسب گیاه باعث افزایش عملکرد گندم می‌گردد که از شور سدیمی شدن خاک در دراز مدت نیز جلوگیری می‌کند.

منابع
1. منیری، م. م.، رجبی پور و ف. نور بهنگ. (۱۳۸۷). خاک‌های شهر سدیمی و اصلاح آن‌ها. انتشارات ارکان، اصفهان.
2. بارقی، م. (۱۳۸۰). تأثیر آبیاری با فاضلاب تصفیه شده شری و میسته‌های آبیاری روی وزیگی‌های فیزیکی و شیمیایی خاک و آلوگذاری خاک در جنگ محسوس زراعی. پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه صنعتی اصفهان.
4. برزگر، ع. (۱۳۷۹). خاک‌های شهر سدیمی. نشرخانه و به‌همراهی. انتشارات دانشگاه شهید چمران، اهواز.
5. بهمنی، م. ر. و. ف. نور بهنگ. (۱۳۸۱). اثرات فاضلاب بر برخی وزیگی‌های فیزیکی خاک. علوم و فناوری کشاورزی و منابع طبیعی ۳(۴): ۱۰۱-۱۰۸.
6. حسن‌افلکی، ع. و. بیانک زاده. (۱۳۸۱). تغییرات مواد آلی خاک در تپه‌های آبیاری با فاضلاب خانگی و خودپالایی آن. آب و فاضلاب ۲۳-۱۰-۱۰۸.
7. صفری سنگانی، ع. (۱۳۷۹). پایان‌نامه آبیاری با پساب بر برخی وزیگی‌های شیمیایی خاک تهیه بر خواهر اصفهان و انتشارگذاری برخی عنصر در گیاه. پایان نامه کارشناسی ارشد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
8. سازمان حفاظت محیط زیست ایران. (۱۳۷۸). ضوابط و استانداردهای زیست‌محیطی. انتشارات سازمان حفاظت محیط زیست ایران. تهران.
9. شیبانی بروجی، ح. (۱۳۸۱). بررسی تأثیر پساب و لجن فاضلاب کارخانه پل اکریل بر رشد و گل‌گی رعایت گیاه‌ها در جنگ. نمونه از گیاهان فلاور سی و گندم. پایان نامه کارشناسی ارشد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
10. علی‌رضا، ز. (۱۳۷۸). راه‌های آب و فاضلاب کهی. انتشارات دانشگاه امام رضا (ع).
11. عرفانی، ع. و. غ لحیالی، ع. علی‌رضا. (۱۳۸۱). تأثیر آبیاری با فاضلاب بر عملکرد و کیفیت کاهو و برخی وزیگی‌های خاک. علوم و فناوری کشاورزی و منابع طبیعی ۳(۴) ۹۰-۹۷.
12. علی‌رضا، م. و. ج. محمودی، ب. (۱۳۸۱). تأثیر آبیاری زمینه اب و سطحی می‌با سیاب تصفیه شده بر شرایط، آب و فاضلاب ۲-۱۰-۱۱.