امیر آبیاری با پسب فاضلاب تصفیه شده شهری روز عملکرد و کیفیت گندم و برخی ویرگیهای خاک در منطقه سیستان

احمد قنبری، جهانگیر عابدی کویابی و جواد طالبی سمیرمی

چکیده
تحقیق حاضر به منظور بررسی تأثیر آبیاری با فاضلاب روز عملکرد، کیفیت گندم و برخی ویرگیهای خاک انجام گرفته است. همچنین، با توجه به SAR و شوری فاضلاب، سه درصد آبیاری با فاضلاب و نسبت به صورت نویزی در مراحل مختلف دندان گیاه بررسی شود و در هنگام روش ارائه نیز تا علاوه بر حصول عملکرد مطلوب، از شور و سدیمی شدن خاک جلوگیری شود. این آزمایشات در سال زراعت 1382-1383 در مرکز تحقیقات کشاورزی زابل در خاکی با بالاترین طبقه ایران گردید. که محدودیتی از نظر زمین نداشت.

آزمایش در قالب طرح بلوک‌های کامل تصادفی و در چهار تکرار اجرای گردید. تیمار‌ها عبارت بودند از: آبیاری با آب چاه در تمام مراحل سافته و آبیاری با فاضلاب از زبان ظهور سافته تا بعد ماراها یکم، آبیاری با آب چاه در تمام مراحل شرود، آبیاری با فاضلاب در تمام مراحل رشد زمان گشت (T1)، آبیاری با آب چاه در تمام مراحل فضایی و یکی مراحل آبیاری با فاضلاب (T2)، آبیاری تدریجی از زمان شروع رشد دندان تا بعد ماراها نیست (T3). تأثیر نتیجه شیمیایی آب چاه شنا نشان داد آب چاه محدودیت خاصی برای برای آبیاری می‌باشد. براساس SAR نسبت جذبی سدیم فاضلاب بیش از حد مجاز تعیین شده توسط FAO برای آبیاری می‌باشد. ترتیب آزمایش عملکرد، اجزای عملکرد و کارایی صرف آب در تیمارها T1 و T2 و افزایش معنی‌داری نسبت به شاهد نشان داد همچنین درصد پروتئین دانه در تیمار T1 فضایی معنی‌داری نسبت به شاهد نشان داد. بین تیمارهای مختلفی از نظر تجمع عناصر سنگین در دانه گندم و در خاک تفاوت معنی‌داری نشان داد. ترتیب حصول از نظر سیستمی که دانه داد درصد مواد آلی خاک، درصد نتیجه در حالی شده تبریزی معنی‌داری نشان داد. در صورت SAR نتیجه توزان کلی و فضایی شوری نشان داد، توزان کلی شوری نشان داد. درصد نتیجه شوری با طور می‌داری فضایی پایه است. به طور کلی این افتاده یادانده از نیاز فاضلاب شهر زابل، باعث مراحل روش رشد گندم با پساب فاضلاب آبیاری کرد و سایر مراحل رشد گندم با آب غیر شور (آب چاه) آبیاری کرد تا علاوه بر حصول عملکرد مطلوب از شور و سدیمی شدن خاک نیز جلوگیری گرد.

واژه‌های کلیدی: آبیاری، تجمع عناصر سنگین، خصوصیات شیمیایی خاک، عملکرد، کیفیت دانه گندم، فاضلاب

1. استادیار آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار آبیاری، دانشکده کشاورزی، دانشگاه زابل

59
مردمه

یکی از عموم‌ترین تمایلات انسانی است که حفظ و توصیه احساسات، تجربیات و رفتارها را در واکنش خود منجر به می‌کند. کموند آل، این رفتار را که در اینجا با نام تبادل نامیده شده است، در یک ساختار سیستمیکی عضلانی می‌باشد که در تغییرات و تغییرات مختلفی در سلامتی و درمان به کار می‌رود.

تدریجی یا تبادل نام‌یافته این احساسات و رفتارها را به‌صورت مستقیم یا غیرمستقیم به سایر افراد منتقل می‌کند. این اثرات بسیار مهمی در تغییرات سیستمیکی و تغییرات در عضلانی به‌صورت مستقیم یا غیرمستقیم در سلامتی و درمان به کار می‌رود.

۶۳
فاصله و آب غیر شور از ایرانی و ارایه شود تا علاوه بر
دستیابی به عملکرد مطلوب، تجمع آندورگی‌های ناشی از
کاربرد فاصله در خاک را تیز به حداکثر رسانده و منجر به
استفاده بی‌پایان از این منبع آب در کشاورزی گردید.

مواد و روش‌ها
این آزمایش در استان تحقیقات کشاورزی زهک اجرا گردیده.
این ایستگاه با طول جغرافیایی ۶۱ درجه و ۲۴ دقیقه شرقی و
عرض جغرافیایی ۳۰ درجه و ۵۴ دقیقه شمالی، در ارتفاع
۴۸۳ متری از سطح دریا قرار دارد. منطقه بارش سالانه کمتر از
۷۰ میلی‌متر و بیش از سالانه بیش از ۴۴ میلی‌متری جمع
شکن کشور معقول می‌شود. حداکثر درجه حرارت مطلق
آن در دما برابر می‌باشد. حداکثر دما برابر می‌باشد.
آب و هوای این منطقه در فصل‌های مختلف بسیار متفاوت است. خاک
محیط آزمایش در داخل ۱۲۰۰ متری از محل آزمایش در حالی است.
زیست وسایل در داخل به صورت طراحی طرح در حالی است.

کامک‌گیری به وسیله کره‌ای که تحقیقات مطابق در کوه‌های
به ابعاد ۱/۵۰ متری و با فاصله دو فوت ۱۲ ساعتی متر
صوتی که به دنبال بررسی تأثیر ناخالصی موجود در
فاصله، کود شیمیایی معروف تندی که رضا زراعی مورد
کامک‌گیری و زمان کامک‌گیری، ۶۰ ادر ۱۳۸۲ بود.

آزمایش در قالب طرح بلوک‌های کامک‌گیری طرحی دریافتی در چهار
تکرار و نیم تیم کار گردید. تیم‌های آن شامل:
۱) بی‌آبی با آب
چاه در تمام مراحل، ۲) بی‌آبی با آب‌چاه طبیعی کل دوره،
۳) بی‌آبی با فاصله از زمان کل دوره، ۴) بی‌آبی با فاصله از
زمان دوره طبیعی کل دوره، ۵) بی‌آبی با آب‌چاه در
مرحله پایین زنی و بقیه مراحل بی‌آبی با فاصله، ۶) بی‌آبی
با فاصله، ۷) بی‌آبی با آب‌چاه در مرحله سطح زیر
ور و ۸) بی‌آبی با آب‌چاه در مرحله سطح زیر.
جدول 1. ویژگی‌های فیزیکی خاک محل آزمایش

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.2</td>
</tr>
<tr>
<td>EC_c (dS/m)</td>
<td>4615</td>
</tr>
<tr>
<td>N %</td>
<td>20.33</td>
</tr>
<tr>
<td>P (mg/kg)</td>
<td>26</td>
</tr>
<tr>
<td>K' (mg/kg)</td>
<td>175</td>
</tr>
<tr>
<td>O.C.%</td>
<td>0.3</td>
</tr>
<tr>
<td>HCO3^2 (mg/kg)</td>
<td>7.44</td>
</tr>
<tr>
<td>Mg^2+ (mg/kg)</td>
<td>0.27</td>
</tr>
<tr>
<td>Ca^2+ (mg/lit)</td>
<td>9.6</td>
</tr>
<tr>
<td>Fe^2+ (mg/lit)</td>
<td>4.12</td>
</tr>
<tr>
<td>Cu^2+ (mg/lit)</td>
<td>0.26</td>
</tr>
<tr>
<td>Mn^2+ (mg/lit)</td>
<td>0.31</td>
</tr>
<tr>
<td>Zn^2+ (mg/kg)</td>
<td>0.02</td>
</tr>
<tr>
<td>SAR</td>
<td>87</td>
</tr>
<tr>
<td>CEC (cmol/kg)</td>
<td>3/8</td>
</tr>
</tbody>
</table>

جدول 2. ویژگی‌های شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.8</td>
</tr>
<tr>
<td>تغییر pH</td>
<td>0.2</td>
</tr>
</tbody>
</table>

چگالی ظرفی خاک (g/cm^3)

درصد تخلخل

درصد رطوبت نرم (FC)

نفوذپذیری نهایی خاک (mm/h)

هیدرات هیدروژنی (mm/h)

درصد سیلت

درصد سنگ

بافت خاک

لوم - شن

با فاصله در تمام مراحل رسید گیاه‌پروری آب مورد نیاز کیا‌گزاری از چهار مورد به‌طور مختلف و در همان روز آب‌باری از تصفیه‌خانه زابل به محل آزمایش حمل و در یک مخزن موقتی در بلوار مزرعه ذخیره شده و به مقدار محاسبه شده برای هر کدام از پایه‌ها مورد استفاده قرار گرفت.

میزان آب آب‌باری مورد نیاز، با ادامگیری درصد رطوبت وزنی خاک قبل از آب‌باری محاسبه گردیده (10). دور آب‌باری نیز بر اساس مراحل فنولولوژیکی رشد و نمو گندم در مراحل کاشت، آغاز و پایانی ساله‌هایی، ظهور سنبله، گل‌دهی و پرندن دانه تعیین و روش آب‌باری مطلق با عدد منطقه به روش غربایی انجام گردید.

روش تصفیه در تحقیقات خانه زابل از نوع بیرنگ تربیت دیده و فاصله مورد استفاده برای آزمایش‌ها در آزمایش‌‌های از آخرین مرحله تحقیق برداشت شد. ویژگی‌های شیمیایی آب و بسیار در طی فصل رسید روش صورت مانده استادگیری شده‌اند (جدول 2).

برای آگاهی از وضعیت بهداشتی (میانگین کلیفیر هما میکروبی کل) پیش‌بینی در هر نوبت از آب‌باری آزمایش‌های میکروبی انجام گردید. تجویزهای دانه کننده در آزمایش‌‌ها به آسانی تومر و آسیتروپ شسته و پس از خشک شدن باید با آسید بودر شده و غلظت عناصر مختلف در آن ادامه‌گیری شد. برای یک برای 30 سانتی‌متری با اکثر فولادی انگشتر گرفته، به‌وسیله pH نیز تعیین ویژگی‌های شیمیایی خاک تنظیم داده‌ای از عمق تا 0.3" سانتی‌متری با اکثر فولادی انگشتر گرفته.
جدول ۳: میانگین کیفیت آب چاه و پساب فاضلاب تعیین شده زایل برای آب‌های آب‌گیر (۱۳۸۹-۱۳۸۴) و مقایسه با استانداردهای توصیه شده

<table>
<thead>
<tr>
<th>درجه بهره‌برداری برای آب‌های آب‌گیر</th>
<th>پساب مورد آزمایش</th>
<th>واحدها</th>
<th>معیارهای کیفیت آب</th>
<th>انف (دهیت الکتریکی)</th>
<th>(dS/m)</th>
<th>SAR</th>
<th>مقدار SAR</th>
<th>مقدار SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>بد</td>
<td>۲/۸</td>
<td>ds/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۵/۵-۱۳</td>
<td>۱۲-۲۰</td>
</tr>
<tr>
<td>متوسط</td>
<td>۱/۷</td>
<td>ds/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲/۰-۷</td>
<td>۱۰-۱۳</td>
</tr>
<tr>
<td>خوب</td>
<td>۰/۰</td>
<td>ds/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰-۲/۰</td>
<td>۰-۱۰</td>
</tr>
</tbody>
</table>

پ) تغییر pH

<table>
<thead>
<tr>
<th>هوا</th>
<th>محدوده نرمال بین ۵-۸/۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاپاول (NH₄)NO₃</td>
<td>mg/l</td>
</tr>
<tr>
<td>سدیم (Na)</td>
<td>SAR</td>
</tr>
<tr>
<td>کلرید (Cl)</td>
<td>meq/l</td>
</tr>
<tr>
<td>یون (B)</td>
<td>mg/l</td>
</tr>
<tr>
<td>آهن (Fe)</td>
<td>mg/l</td>
</tr>
<tr>
<td>مس (Cu)</td>
<td>mg/l</td>
</tr>
<tr>
<td>مگنزیوم (Mn)</td>
<td>mg/l</td>
</tr>
<tr>
<td>روی (Zn)</td>
<td>mg/l</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

نتایج و بحث

الف) کیفیت آب چاه و فاضلاب

به منظور ارزیابی کیفیت آب چاه پساب فاضلاب تعیین شده یا باز آب‌های آب‌گیری از استانداردهای سازمان خوار و پساب جهانی (ISO 30) استفاده گردید. بر اساس این استانداردها آب چاه محدودیت یا بار آب‌های ندارد، اما کیفیت پساب تعیین شده نشان می‌دهد هدیت الکتریکی (EC) اندکی بیش از حد مجاز می‌باشد که می‌تواند بر روی تنظیم شوری و میکروسکوپی گیاهان حساس به شوری را در داشته باشد. در مورد گندم حد اسنانه شوری مجاز برای حصول حداکثر پاسخ عملکرد
جدول 4: میانگین کیلیت آب چای و پساب فاضلاب تصفیه‌شده شهد زابل (1382-9) و ارزیابی آلودگی آنها در مقایسه با استانداردهای گفته‌شده.

<table>
<thead>
<tr>
<th>مصرف کشاورزی</th>
<th>سطح</th>
<th>پساب مورد آزمایش</th>
<th>آب چای</th>
<th>معیار اندازه‌گیری شده</th>
<th>pH</th>
<th>کلریم</th>
<th>مینیم اکسیداز</th>
<th>کلراید</th>
<th>سولفات</th>
<th>نیترات</th>
<th>فسفر فسفات</th>
<th>تیر</th>
<th>باتریوم</th>
<th>مس</th>
<th>مکنز</th>
<th>روی</th>
<th>اهن</th>
<th>ABS (دترجنت)</th>
<th>کلر مک (MPN/100ml)</th>
<th>BOD</th>
<th>جلولگری کردن</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>مزرعه استاندارد آموزه‌های در پساب پرای</td>
<td>6-8/5</td>
<td>7/4</td>
<td>14/0</td>
<td>9/0</td>
<td>100</td>
<td>100</td>
<td>85/2</td>
<td>99/7</td>
<td>37/9/2</td>
<td>132/0</td>
<td>3/3</td>
<td>126/7</td>
<td>2/0</td>
<td>0/5</td>
<td>5/1</td>
<td>0/6</td>
<td>1/2</td>
<td>1/0</td>
<td>3/0</td>
<td>5/0</td>
<td>1/100</td>
<td>3/0</td>
</tr>
<tr>
<td>مزرعه استاندارد آموزه‌های در پساب پرای</td>
<td>6-8/5</td>
<td>7/4</td>
<td>14/0</td>
<td>9/0</td>
<td>100</td>
<td>100</td>
<td>85/2</td>
<td>99/7</td>
<td>37/9/2</td>
<td>132/0</td>
<td>3/3</td>
<td>126/7</td>
<td>2/0</td>
<td>0/5</td>
<td>5/1</td>
<td>0/6</td>
<td>1/2</td>
<td>1/0</td>
<td>3/0</td>
<td>5/0</td>
<td>1/100</td>
<td>3/0</td>
</tr>
</tbody>
</table>

ایجاد می‌کند باعث کاهش عملکرد می‌گردد، در حالی که غلاتی مانند گندم، جو و سورکم به غلظت‌های بالایی این بروز در شرایط آبزاری سطحی مقاومت خوبی نشان داده‌اند(4). حذف آبزارهای مصارف برای حصول حداکثر عملکرد برای بروز ترش شوری روی این گیاه، کاهش عملکرد و شور شدن خاک جلوگیری کردن(4).

غلظت کلریم (1) نیز بیش از مزرعه استاندارد می‌باشد. این نیاز به انتقال پساب فاضلاب تصفیه‌شده شهد زابل (1382-9) و ارزیابی آلودگی آنها در مقایسه با استانداردهای گفته‌شده.

مسير متابولیسم و انتقال برخی هیدرات‌های کریستین در گیاه...
ار ایفیلی با پساب فاضلاب تصفیه شده شیری روي عملکرد و کیفیت گندم و...

آزمایش دبدو نت. غلظت یون سدیم موجود در فاضلاب (میکروآملاژ) (تیز مکانی است) در مورد مهار کننده باعث بروز مسومیت گردید. در حالی که غلظت ممانند گندم، جو و سورگوم بغلظت‌های بالایی این پون در شرایط آپاری سطحی مقاومت خویی نشان داده اند. (2) از ارزیابی کیفی آپاری این اندازه از راوی آپاری (SAR) که در محلول خاک در برابر تکلیف با این آپاری وجود خواهد آمد، محاسبه می‌گردد و سپاس از روی مقاومت گیاهان به سدیم تعیین زده می‌شود. (20) گیاهان نظر گندم، جو، پنبه، پنجه جزو گیاه‌های مقاوم به مقدار بالایی می‌باشد که می‌توانند سینیار مقدار مقاوم به سدیم مقاوم 20 را به خوبی تحلیل کنند. (1) نظر به این که میزان ESP در این آزمایش 14/1 می‌باشد، کاشت محصولات مقاوم و نمی‌مقاوم بدون هیچ گونه مشکالی امکان پذیر می‌باشد.

برای تعیین میزان تاثیر یون سدیم موجود در فاضلاب روی فیزیولوژی و ساختمان خاک، نسبت جذبی سدیم فاضلاب تربیت و نسبت جذبی سدیم در آپاری (یا آپاری خاک) در محدوده 20–12/1 باشد. احتمال تخریب ساختن خاک و بررسی دشواری تقوی در خاک وجود ندارد (20).

درجدول 2 میزان آلودگی آپاری جاه و پساب فاضلاب با توجه به استاندارد یون فیزیولوژی سازمان حفاظت محیط زیست ایران (8) ارزیابی شده است. بر اساس استانداردهای آپاری، محصولاتی که توانایی آپاری نداشتند و ارزیابی میزان آلودگی کن‌دیور، BOD، COD، و SOFA کاهش نشان داد می‌باشند فاضلاب دلیل شدن داد می‌باشند. عامل‌ها و سوادی که نشان داده‌گی مقدار بوده است، سطح فتوسنتز گیاهی، دوام سطح و تحلیل کاروپتی برگ‌ها تحت تأثیر عناصر غذایی موجود در فاضلاب افزایش می‌یابد (38، 19) و نتایج تحقیق شبانه (9) نشان می‌دهد غلظت کاروپتل در گیاهان جنین و قرنفل که تحت تأثیر آبایی با پساب کارخانه ای میکروبی استفاده گردید که بر اساس جدول 4 میانگین کلیف‌رس می‌باشد.
جدول ۵ اثر تیمارهای فاضلاب بر رشد، عملکرد و اجزای عملکرد گندم

<table>
<thead>
<tr>
<th>CV</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/12</td>
<td>0/7</td>
<td>0/8</td>
<td>0/9</td>
<td>0/10</td>
<td>0/11</td>
</tr>
<tr>
<td>12/2</td>
<td>12/2</td>
<td>12/2</td>
<td>12/2</td>
<td>12/2</td>
<td>12/2</td>
</tr>
<tr>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
<td>12/3</td>
</tr>
<tr>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>12/5</td>
<td>12/5</td>
<td>12/5</td>
<td>12/5</td>
<td>12/5</td>
<td>12/5</td>
</tr>
<tr>
<td>12/6</td>
<td>12/6</td>
<td>12/6</td>
<td>12/6</td>
<td>12/6</td>
<td>12/6</td>
</tr>
</tbody>
</table>

معنی‌گذاری منگانیها در سطح دنیای تیمار CV برحسب میانگین درصد بزرگتر از آزمون دانه‌ای نشان داده است.

پیلی آکیل قرار داشتن، به طور معنی‌داری نسبت به شاهد انواع بخش داشته است. ۱۱۲ درصد نسبت به شاهد در افزایش تیمارهای T₁ و T₀ به ترتیب برابر ۸/۶، ۱۲/۵ و ۱۶/۵ کمال به خوبی می‌باشد و همکاران نیز می‌توانند مقدار میانگین تیمارها در تیمارهای که در تمرین مراحل یا فاضلاب آبیاری شده بود نسبت به تیمارهای که در تمرین مراحل با آب چپ آبیاری شده بود به طور معنی‌داری افزایش یافته است. احتمالاً مقادیر زیادی نیتروژن نیتراتی موجود در فاضلاب تصفیه شده خانگی است که باعث افزایش عملکرد گیاهی می‌شود (۳۸). نتایج یک‌و به تیمارهای فاضلاب تصفیه شده را نسبت به کود شیمیایی ده‌باره جذب عناصر غذایی مورز گیاه نشان می‌دهد. کلاب و همکاران (۴۲) در مطالعه خود در مورد تیمار‌های فاضلاب روی عملکرد درخت و جنگل کیفی علفی‌های دیگر به این نتیجه رسیدند که تأثیر بسیار بی‌کاری کود شیمیایی به صورت نیترات آمونیم از نظر تأمین نیاز
تأثیر آبیاری با فاضلاب تصفیه شده شری‌روی و عملکرد کیفیت گندم

شکل ۱. تأثیر تیمارهای آبیاری بر عملکرد نیتروژن، فسفر و پتاسیم در دانه گندم. ستون‌هایی که با یک حرف مشخص شده‌اند طبق آزمون دالنک در سطح ۱۰٪ فاصله معنی‌داری با یا به‌زیادی (۴.۴، CV: نیتروژن دانه، ۵.۶، CV: فسفردانه و ۱۱، CV: پتاسیم).

نتایج تیمارهای T۲ و T۳ که به مقدار بیشتری تحت تأثیر آبیاری با فاضلاب بودند، نسبت به تیمار T۱ اختلاف معنی‌داری داشتند. مقادیر زیادی نیتروژن تیمار T۱ موجب افزایش کارایی مصرف آب در گیاه شده شد. به طوری که نتایج خواص‌پذیری دیگر نشان داده است تیمار که به طوری که نتایج تحقیقات دیگر نشان داده است مصرف کودهای نیتروژن باعث افزایش کارایی مصرف آب می‌شود (۱۸). در یکی از تیمارهای کارایی مصرف آب می‌گذارد آب شده است (۴۶). بیان

تأثیر آبیاری با فاضلاب بر کیفیت دانه گندم

مقایسه میانگین تجیری شیمیایی دانه گندم (شکل ۲) نشان داد که با فاضلاب سفیر و پتاسیم در دانه گندم در تیمار T۱ که در تمام مراحل با فاضلاب آبیاری شده بود که سایر تیمارها افزایش یافتند. اما این تفاوت معنی‌دار نبود. در حالی که T۲ و T۳ که به مقدار بیشتری تحت تأثیر T۱ بودند، نسبت به نیتروژن تیمار T۱ مصرف آب می‌گذارد (در سطح پنج درصد) نشان داد. مقادیر نیتروژن در این تیمار نسبت به شاهد ۵/۰ درصد فاصله پایه است. نتایج

گیاه کاملاً قابل مقایسه است. با توجه به این که تیمار T۲ و T۳ تیمارهایی بودند که به مقدار بیشتری تحت تأثیر آبیاری با فاضلاب بودند، نسبت به شاهد تفاوت معنی‌داری نشان نداده، می‌توان گفت آبیاری با فاضلاب در مراحل رشد زاینش تأثیر قابل توجهی روی عملکرد نداشته است. آبیاری با فاضلاب در مراحل رشد رویتی گیاه موجب افزایش تعداد بیشتر سطح برگ پرچم و ارتفاع گیاه و از مرحله گل دهی به بعد تأثیری روی تعداد پنجه‌ها سطح برگ پرچم و ارتفاع گیاه نداشت. است. به نظر می‌رسد تأثیر عناصر فلزی مورد تیاز گیاه در اواخر مراحل رشد در تیمارهایی که در این مراحل تحت تأثیر آبیاری با فاضلاب بودند، باعث افزایش رشد گیاه و در نتیجه عملکرد گیاه شده است. در این تیمارها افزایش درهی تکان در تیمارهای تیمارهایی به نسبت افزایش عملکرد دانه در تیمارهای مختلف باشد. براساس جدول ۵، میانگین کارایی مصرف آب (WUE) در تیمارهای T۲ و T۳ با تیمار T۱ نسبت به شاهد به‌طور معنی‌داری در سطح پنج درصد افزایش یافته است (په ترتیب به میزان ۲۳٪ و ۲۵٪ درصد)است. بر اساس این
شکل ۳: اثر تیمارهای آبیاری بر غلظت عناصر سنگین در دانه
گندم. مقایسه میانگین بر أساس آزمون دانک در سطح انجام گرفته است. (و. م. س. CV=1۲. روزی، CV=6.7، مانگنز و ۱۱.۸، آهن).

با فاضلاب آبیاری شده بود نسبت به سایر تیمارها تفاوت معنی داری نشان داد(۱۹). عدم وجود تفاوت معنی دار برای عناصر سنگین میانگین تیمارهای مختلف(شکل ۳) می تواند به علت تاجیز بودن غلظت این عناصر در فاضلاب باشد(جدول۳). البته عوامل مؤثر در قابلیت ژنده این عناصر توسط گیاه از جمله pH خاک، رطوبت در دسترس خاک، درصد آبک، مواد آلی و نوع گیاه نیز می تواند در انتخابی گیاه عناصر در گیاه موثر باشد (۱۵، ۲۶ و ۳۳).

عفافیت و همکاران(۱۱) نیز نشان دادند غلظت عناصر سرب، کلسیم و مولیبدن در اندامه‌های کاهو که تحت تاثیر تیمار آبیاری با فاضلاب بودند، ناپیوسته، همچنین غلظت عناصر کمیاب در اندامه‌های کاهو کمتر از آستانه سنتی بوده و استفاده از فاضلاب صنعتی شده خاکی دست کم در پیک درجه کاهش آزمایش، اثر سویی بر گیاه مورد آزمایش نشانه است. فیضی (۳۱) در پژوهشی در زمینه بررسی تجمع عناصر سنگین در خاک و گیاه در مزارع که به مدت ۸ سال تحت تاثیر آبیاری با دارد.

قابل توجه این که در حالت که تیمارهای ۳، ۶، ۱۰ و ۲۵ تیمار برگ‌های تیره یا نازک و عملکرد نسبتاً مطلوب تر و دوام بیشتر برگ کمتر بودند، علاوه کمی بیشتر نیتروژن در تیمارهای T۲ و T۳ نمایان شده بود. برخی محفسان(۱۹ و ۲۷) گزارش کرده اند غلظت عناصر برمصرف در گیاهانی که توسط فاضلاب خانگی آبیاری شده، نسبت به گیاهانی که با آب معمولی آبیاری شدهاند، بیشتر بوده است. با افزایش مقدار نیتروژن دانه، درصد پروتئین دانه افزایش می یابد که در نتیجه آن کیفیت نان و نان‌آرد بهبود می یابد. افزایش درصد پروتئین دانه نیز فقط در تیمار T۶ نسبت به شاهد تفاوت معنی داری نشان داد (در سطح پنج درصد) (شکل ۲). پروتئین دانه در تیمارهای که در تمام مراحل با فاضلاب آبیاری شده بود نسبت به تیمار شاهد ۵۸ درصد افزایش نشان داده است. دای و همکاران(۲۸) در آزمایشی در مورد تاثیر آبیاری با فاضلاب روی کیفیت دانه گندم در آزمایش دای و نکر(۷) در مورد تاثیر آبیاری با فاضلاب روی کیفیت دانه سورگوم به نتایج مشابهی دست یافتند. علی‌ارد و همکاران گزارش کردن درصد پروتئین دانه در تیمارهای که
جدول 4: میانگین خلفی عناصر سنگین (استخراج با DTPA) در خاک (۲۰۰–۳۰۰‌سانتیمتر)، پیش از آزمایش و پس از آزمایش

<table>
<thead>
<tr>
<th>شاخص اندازه‌گیری شده</th>
<th>روی (mg/kg)</th>
<th>مس (mg/kg)</th>
<th>آهن (mg/kg)</th>
<th>مگنزیوم (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک پیش از کاشت</td>
<td>۳۲۵/۳۰۰ a</td>
<td>۹/۶۶ ۲/۱۲</td>
<td>۹/۶۶ ۲/۱۲</td>
<td>۸/۷۱ ۱/۷۱ a</td>
</tr>
<tr>
<td>خاک پس از کاشت</td>
<td>۳۲۵/۳۰۰ a</td>
<td>۹/۶۶ ۲/۱۲</td>
<td>۹/۶۶ ۲/۱۲</td>
<td>۸/۷۱ ۱/۷۱ a</td>
</tr>
<tr>
<td>T۱</td>
<td>T۲</td>
<td>T۳</td>
<td>T۴</td>
<td></td>
</tr>
</tbody>
</table>

۱. مقایسه میانگین‌ها در سطح پیچ درصد بر اساس آزمون دانکن انجام گرفته است.

تجزیه شیمیایی خاک

نتایج (جدول ۷): نشان می‌دهد که درصد ماده آلی خاک در تیمارهای T۲ و T۱ و T۳ در میزان ۴۷/۳۵ درصد نسبت به شاهد افزایش یافته است. حدود نسبی از مواد موجود در خاک، مواد آلی موجود. عملیات انباشتی، در این مطالعه را با نیازی به خاک وابسته به این مواد افزایش یافته است که قادر است بخش بزرگی از مواد آلی قابل تجزیه را به صورت محلول و معلق در فاضلاب و پیام وجود دارد. از آنجا که این مقدار از انباشتی نیز از جمله همکاران (۶) نیز در مطالعات کردند که در مورد آلیتی خاک در نتیجه آپارهای دیگر با استفاده بیشتری به طور معنی‌داری افزایش بهه‌مندی باد. از جمله باعث دانستن خاک گردیده است.

۱. حس‌القلی و همکاران (۶) نیز در مطالعات کردند که در مورد آلیتی خاک در نتیجه آپارهای دیگر با استفاده بیشتری به طور معنی‌داری افزایش بهه‌مندی باد. از جمله باعث دانستن خاک گردیده است.

۲. نشان می‌دهد (جدول ۷) که درصد تیترژون در خاک تنیز در تیمارهای T۱ و T۳ نسبت به شاهد در تیمارهای (۷) و T۲ و T۱ و T۳ در میزان ۴۷/۳۵ درصد نسبت به شاهد افزایش یافته است. با توجه به کربندی کم‌سیستمی فسفر در خاک اثر مصرف سیستمی پیش‌نیاز خاک در اثر استفاده از ماده مسدود (۱۱) فاشل غیر راه‌رزنده توجه قرار گرفت. عضویت و همکاران (۱۱) نیز به تایید مشاهده دست‌یافتن، به طوری که در این آزمایش

۶۹
جدول 7. میانگین و ویژگی‌های شیمیایی خاک (30- سانتی‌متر) پیش و پس از آزمایش

<table>
<thead>
<tr>
<th>%CV</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>قبل از آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>6/27a</td>
<td>5/87b</td>
<td>5/22c</td>
<td>4/27c</td>
<td>4/32c</td>
<td>4/6</td>
<td>EC(dS/m)</td>
</tr>
<tr>
<td>17/25</td>
<td>9/82a</td>
<td>9/75a</td>
<td>9/82c</td>
<td>9/75a</td>
<td>9/82c</td>
<td>9/82c</td>
<td>(میلی‌گرم در لیتر) (کلرید)</td>
</tr>
<tr>
<td>23/45</td>
<td>9/45a</td>
<td>8/13a</td>
<td>8/6a</td>
<td>8/4a</td>
<td>7/2a</td>
<td>7/4a</td>
<td>(میلی‌گرم در لیتر) (پی کربنات)</td>
</tr>
<tr>
<td>19/9</td>
<td>14/9a</td>
<td>14/9a</td>
<td>14/9a</td>
<td>14/9a</td>
<td>14/9a</td>
<td>14/9a</td>
<td>(میلی‌گرم در لیتر) (سولفات)</td>
</tr>
<tr>
<td>8</td>
<td>0/04a</td>
<td>0/04a</td>
<td>0/04a</td>
<td>0/04a</td>
<td>0/04a</td>
<td>0/04a</td>
<td>نیتروژنیکل (درصد)</td>
</tr>
<tr>
<td>15/22</td>
<td><3/1a</td>
<td><3/1a</td>
<td><3/1a</td>
<td><3/1a</td>
<td><3/1a</td>
<td><3/1a</td>
<td>فسفر (نیتروژنیکل) (درصد)</td>
</tr>
<tr>
<td>7</td>
<td><7/3a</td>
<td><7/3a</td>
<td><7/3a</td>
<td><7/3a</td>
<td><7/3a</td>
<td><7/3a</td>
<td>فسفر (نیتروژنیکل) (درصد)</td>
</tr>
<tr>
<td>15/2</td>
<td>>15/0a</td>
<td>>15/0a</td>
<td>>15/0a</td>
<td>>15/0a</td>
<td>>15/0a</td>
<td>>15/0a</td>
<td>کلیمیت (درصد)</td>
</tr>
<tr>
<td>14/3</td>
<td>>14/3a</td>
<td>>14/3a</td>
<td>>14/3a</td>
<td>>14/3a</td>
<td>>14/3a</td>
<td>>14/3a</td>
<td>کلیمیت (درصد)</td>
</tr>
<tr>
<td>10/5</td>
<td>>10/5a</td>
<td>>10/5a</td>
<td>>10/5a</td>
<td>>10/5a</td>
<td>>10/5a</td>
<td>>10/5a</td>
<td>کلیمیت (درصد)</td>
</tr>
<tr>
<td>8/1</td>
<td>>8/1a</td>
<td>>8/1a</td>
<td>>8/1a</td>
<td>>8/1a</td>
<td>>8/1a</td>
<td>>8/1a</td>
<td>کلیمیت (درصد)</td>
</tr>
<tr>
<td>1/9</td>
<td>>1/9a</td>
<td>>1/9a</td>
<td>>1/9a</td>
<td>>1/9a</td>
<td>>1/9a</td>
<td>>1/9a</td>
<td>کلیمیت (درصد)</td>
</tr>
<tr>
<td>4/43a</td>
<td>>4/43a</td>
<td>>4/43a</td>
<td>>4/43a</td>
<td>>4/43a</td>
<td>>4/43a</td>
<td>>4/43a</td>
<td>کلیمیت (درصد)</td>
</tr>
</tbody>
</table>

- مقایسه میانگین‌ها در سطح پنج درصد با استاندارد آزمون دانکن انجام گرفته است.

نتایج نشان می‌دهد (جدول 7) آبادانی با فاضلاب زابل باعث افزایش معنی‌داری در میزان (SAR) محلول خاک و میزان شوری خاک (ECe) شده است. میزان سل (SAR) محلول خاک را از 0/18 تا 0/49 کاهش داده است و میزان شوری خاک را از 4/62 تا 2/40 کاهش داده است.

در حالی که آبادانی با پساب تغییر ضعیفی در میزان (ECe) تأثیر معنی‌داری روی تغییرات SAR بین تیمارهای (ECw) و همین تکرده است. از انجا که هم شوری آب آبادانی (ECw) و هم شوری آب ایجاد آب ایجاد هنگامی که SAR تأثیر احتمالی کیفیت آب را به کاهش منتقل آب در خاک تicer می‌شود، درصد معنی‌دار دانکن گرفته شده است (10 و 100). تا میزان فسفر (3/5 میلی‌گرم در لیتر موجود در پساب فاضلاب شهری تجربه به آبادانی فسفر در عمق 0-30 سانتی‌متری خاک شده است.

نتایج نشان می‌دهد سل (SAR) در خاک با تأثیر تیمار باعث افزایش معنی‌داری SAR در خاک (SAR) در خاک (SAR) است. با توجه به آبادانی در پساب فاضلاب، تأثیر احتمالی کیفیت آب را به کاهش تأثیر می‌شود و بنابراین با توجه به نتایج تیمار باعث افزایش معنی‌داری SAR در بین تیمارهای (ECw) و همین تکرده است. از انجا که هم شوری آب آبادانی (ECw) و هم شوری آب ایجاد آب ایجاد هنگامی که SAR تأثیر احتمالی کیفیت آب را به کاهش منتقل آب در خاک تicer می‌شود، درصد معنی‌دار دانکن گرفته شده است (10 و 100). تا میزان فسفر (3/5 میلی‌گرم در لیتر موجود در پساب فاضلاب شهری تجربه به آبادانی فسفر در عمق 0-30 سانتی‌متری خاک شده است.

نتایج نشان می‌دهد سل (SAR) در خاک با تأثیر تیمار باعث افزایش معنی‌داری SAR در خاک (SAR) است. با توجه به آبادانی در پساب فاضلاب، تأثیر احتمالی کیفیت آب را به کاهش تأثیر می‌شود و بنابراین با توجه به نتایج تیمار باعث افزایش معنی‌داری SAR در بین تیمارهای (ECw) و همین تکرده است. از انجا که هم شوری آب آبادانی (ECw) و هم شوری آب ایجاد آب ایجاد هنگامی که SAR تأثیر احتمالی کیفیت آب را به کاهش منتقل آب در خاک تicer می‌شود، درصد معنی‌دار دانکن گرفته شده است (10 و 100). تا میزان فسفر (3/5 میلی‌گرم در لیتر موجود در پساب فاضلاب شهری تجربه به آبادانی فسفر در عمق 0-30 سانتی‌متری خاک شده است.
کاهش درصد آب‌سوزی، شوری افزایش یافته است. نتایج این آزمایش نشان می‌دهد که تعداد Tn در مراحل رویش رشد و کاهش دارد. نمودار هزینه توزیع‌شده افزایش شده است. تحت تأثیر آب‌سوزی با آلوده به فلز و خودکاری رشد گندم (کلده و گرده افشانی و پرندان دانه) تحت تأثیر آب‌سوزی با افزایش معنی‌داری شده است. معنی‌داریت معنی‌داری خاک‌های رسی برای گیاهان غیر مناسب به شرایط سدیمی بیشتر است (4). در این آزمایش ESP خاک محل آزمایش 1/4 می‌باشد و گندم جی‌گیاهی است که آستانه کاهش عملکرد آن نسبت به ESP (50% است). با افزایش SAR محلول خاک در این آزمایش کمتر از آستانه کاهش عملکرد برای گیاه گندم می‌باشد و از طرف دیگر با توجه به فناوری محصول خاک محل آزمایش و یک فناوری پساب فاضلاب و عصاره اشیاع خاک بیشتر از نفوذ‌پذیری را به دنبال خواهد داشت (9). لازم به ذکر است در تیمار Tn هر چند آب‌سوزی با پساب فاضلاب نصفشده شده، اما عملکرد بیشتر از محصولات محلولی و نسبت مصرف کاهش یافته است (جدول 5). این نتایج احتمالاً به دلیل زیر می‌باشد: کاهش عملکرد‌ها در گیاهان اکثریت‌تهای پساب فاضلاب به شوری برد. ضمن این که در تیمار Tn در جدول 2 در حالی که جدول 2 در حالی که محصولات محلولی با پساب فاضلاب به شوری برد این نتایج می‌باشد. اضافه یکی از بخش‌هایی که نشان می‌دهد که اعمال مدیریت صحیح در آب‌سوزی با پساب این تغییر خانه و در حالی که کاهش عملکرد محصولاتی صورت گرفته است. گندم را در سال‌های بعد نیز اندازه داشت. علت افزایش شوری خاک با پساب عامل سه در بالا است. پساب این فعالیت سالانه منطقه ای بیش از 450 می‌تواند در بالا باشد نسبت داد. در حالی که میزان تغییر سالانه این نتایج می‌باشد (25/01% ممکن می‌باشد). اما یادآوری می‌باشد که نتایج در نظر گرفتن شرایط اقلیمی منطقه و بافت خاک، این نتایج را افزایش داده (10) در نظر گرفتن تغییر مشکل شوری خاک نیز حل می‌گردد. به طوری که نتایج پژوهش پوری (10) حاکم است. نتایج با پساب این شکل می‌گردد. در پساب دو روش از آب‌سوزی با پساب فعالیت برای خاک مورد شش سال نشان داد که در سال اول به علت بالا یابد درصد آب‌سوزی، شوری خاک کاهش و در نهایت
سپاسگزاری

این تحقیق با همکاری مرکز تحقیقات کشاورزی و منابع طبیعی و روابط ارتباطی انجام شده است.

منابع مورد استفاده

1- آقونی، م.، مجدی پور و ف.، نور بهشت. (1376)، خاک‌های شرک‌سازی و اصلاح آنها. انتشارات اردکان، اصفهان.
2- بالری، م.، 1380، اثرات ایستادگی بر خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
3- بالبرکم، م.، 1378، دانشگاه اردکان، اصفهان.
4- برگر، ع.، خاک‌های شرک‌سازی و اصلاح آنها. انتشارات اردکان، اصفهان.
5- به‌همه‌مد، م.، م.، اکبری، م.، حادی، ع.، جاواز، م.، پژوهش، نور بهشت. (1381)، اثرات ایستادگی بر خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
6- حسن‌قلی‌خانم، ع.، خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
7- صفری سنجانی، ع.، 1376، پیام‌های ایستادگی بر خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
8- سازمان حفاظت محیط زیست ایران. 1383، ایستادگی انسان‌ها در زیست محیطی، انتشارات سازمان حفاظت محیط زیست ایران.
9- شیبانی، ع.، خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
10- علی‌رضا، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
11- عراقی، ع.، خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
12- علی‌رضا، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
13- علی‌رضا، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
14- علی‌رضا، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.

پیشنهادی می‌گردد:

1- اعمال ایستادگی بر خاک‌های مهیج و کلاژن، دانشگاه اردکان، اصفهان.
2- کلاژن بر خاک‌های مهیج و کلاژن. دانشگاه اردکان، اصفهان.
3- شیبانی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
4- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
5- علی‌رضا، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
6- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
7- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
8- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
9- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
10- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
11- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
12- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
13- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.
14- عراقی، ع.، خاک‌های مهیج و کلاژن، انتشارات دانشگاه اردکان، اصفهان.

