مقدمه

اعناصر سنگین از جمله کادمیوم و سرب از مسیرهای مختلف و عمدها تحت تأثیر فعالیت‌های انسان وارد زمین‌های کشاورزی شده و به دلیل تحرک کم در طول زمان در خاک انتقال می‌شوند. این انتقال را می‌توان با وجود تعداد زیادی وجود آنها در جو به دلیل تهدید سلامت و سایر حیوانات می‌شنود. بنابراین بررسی این انتقال اعناصر سنگین برای پیشگیری از آلودگی خاک و حفظ کیفیت محیط زیست ضروری بوده و باید مد نظر محققین و برنامه‌ریزان در سطوح مختلف مدیریت قرار گیرد. این مطالعه به منظور مدلسازی روند انتقال کادمیوم و سرب در زمین‌های زراعی شهرستان‌های اصفهان، برخورداری، خمین شهر، لنگان، فلاورجان، مبارکه و نجف آباد صورت گرفت. روند انتقال اعناصر در زمین‌های زراعی منطقه به کمک روش تصادفی میتی بر توانا جرمی و با استفاده از ترکیب روش لاتین هایبر کیوب و شبیه‌سازی مونت کارلو محاسبه گردید. به این منظور از اطلاعات زراعی (نوع، سطح زمین کشت، و علل کشت و محصولات) اطلاعات مرتبط با استحکام (نوع و تعداد) و آمار مربوط به میزان مصرف کوه‌های شیمیایی، کمیوستو و لجن فاضلاب و همینطور اطلاعات مرتبط با غلظت عناصر در گیاهان و مواد اصلی انتقال خاک استفاده شد. نتایج حاکی از انتقال مقادیر قابل توجهی از اعناصر کادمیوم و سرب در زمین‌های کشاورزی شهرستان‌های مورد مطالعه می‌باشد. بیشترین تراکم این اعناصر کادمیوم و سرب به ترتیب، 200 گ ها۱/ی‌ر (18 گ ها۱/ی‌ر) در شهرستان لنگان و مبارکه دیده شد. در صورتی که در مورد سرب کوه‌های خوبی را در شهرستان‌های مورد مطالعه به چسب اضافه می‌دانند. و در صورتی که در طبق کوه‌های خوبی به طور عمده‌ای از ریزش جوی سرب روزگاه سطح گیاهان انتقال آن به زیستگاه غذا خورانند. در شهرستان اصفهان کمیوستو مهم‌ترین سرب و رود سرب به زمین‌های کشاورزی است زیرا بر پیشین مقدار کمیوستو در این شهرستان استفاده می‌شود.

واژه‌های کلیدی: توانایی، مدلسازی تصادفی، روند انتقال، سرب، کادمیوم

استفاده از کوه‌های شیمیایی و حیوانی، کمیوستو، لجن فاضلاب

مقدمه

عناصر سنگین از مسیرهای مختلف مانند ریزش‌های جوی، رودخانه‌ها و به ترتیب دانشجوی سایر دکتری و دانشیاران خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۷۷
ب) پس از کشش شدن مسیرهای ورود عناصر به سیستم می‌توان با اتخاذ تکریمکننده‌های مناسب فیبر میزان ورود آنها به اکسپوسترا را کاهش داد. این روش برای ازیبایی توزیع عناصر سنگین و همینطور فسفر در میزان ورود (وکرکت از 10 متر مربع) 5 و در میزان منطقه‌ای (مزگرکت از 10 متر مربع) و آنلی 5 به کار گرفته شده است. میزان مناسب برای مدل‌سازی روند انبارش عناصر با استفاده از جرمی معمول هم‌اکنون بطوری که خدمت اجتماعی و اقتصادی جامعه مدل‌سازی که در میدانهای کوچکتر (مزجه) مدل‌سازی کننده‌ای نه نشانده سیستمی بیشتر هم می‌باشد. این میزان معمول‌های هم‌اکنون بطوری که اکسپوسترا را کاهش داده است. میزان مناسب برای مدل‌سازی روند انبارش عناصر با استفاده از جرمی معمول میزان هم‌اکنون بطوری که نشانده سیستمی بیشتر برای روند زمانی روند کاهش عناصر در اثر آن پس از دها سال نشان نشسته است. ونی دیلی این که فاول انتزاع عناصر تقریباً یک فراگشت نابغه است در درازمدت موجب کاهش زمانی در ورود آنها به خاک می‌باشد.

در مدل‌سازی آزم امت اطلاعات با مکان نامشخص نظر اطلاعات زراعی مانند نوع محصولات، سطح زیر کشت و عملکرد آنها. تعداد و انتخاب باور و مداریت کوچک‌تر با اطلاعات با مکان مشخص (خصوصیات خاک) می‌باشد. چنان‌که هم‌اکنون نمودن اطلاعات به سادگی امکان‌پذیر نمی‌باشد. به همین دلیل درک از مدل‌های پیشنهادی شده در این زمینه میانگین اطلاعات زراعی در فاصله مدل‌سازی مورد استفاده قرار می‌گیرد. (فیشینگ و اورپسینت 21 مدالی با نام برای بررسی توزیع جرمی فسفر، کمپوست، روتی PROTERRA مس و سرب در میزان منطقه‌ای اثر نمودن. این مدل سیستم TOST کار و همکاران 6) یار داده شد (PROTERRA-S) توسط کار و خریداران تحت‌که توانایی به صورت تصادفی ترکیب‌های مختلف اطلاعات زراعی و خصوصیات خاک را در نظر گرفت. در مطالعه حاضر این مدل به اعمال تغییرات برای شرایط مدیریت منطقه بازنویسی و مورد استفاده قرار گرفت.

منطقه اسناده به احاطه شرایط اقیمتی و وجود رودخانه زاینده‌رود در این شرایط مناسبی را برای کشاورزی داگ می‌باشد. با توجه به کشت و کار متمرکز، وجود صنایع آلایندن، تولید گیاهان و آب‌وهوای عناصر از منطقه ریشه میزان توزیع آنها از سیستم را تعیین می‌نماید. صرف نظر از ریشه‌های جوی، میزان ورود عناصر به زمین کشاورزی به مدیریت زراعی وابسته است. در صورتی که توزیع عناصر از اکسپوسترا بیشتر است، خصوصیات خاک کنترل می‌شود.

علی رغم تفاوت‌هایی که در رفتار عناصر سنگین از لحاظ تحرک و قابلیت جذب آنها در خاک وجود دارد، در اغلب موارد میزان توزیع آنها از طریق آب‌وهوای و یا جذب به وسیله گیاهان نسبت به میزان ورود آنها به خاک بیشتر است. (7)

این امر مطرح به این‌نیتیت شده تدریجی عناصر در خاک می‌شود.

روند تاریخی عناصر سنگین در خط از بیان کننده بوده و اثرات آن پس از دها سال قابل تشخیص است. ولی به دلیل این که فاراونان استخوان شناسی یک فراگشت نابغه است در درازمدت موجب کاهش زمانی در ورود آنها به خاک می‌باشد.

زاویه‌های کشاورزی می‌شود. به عنوان مثال، انتظار بیش از حد عناصر در خاک باعث بروز سیستم برای گیاهان، احتمالاً در فعالیت‌های میکروبی در خاک و انتقال عناصر به زنجبیر غذایی انسان از طریق جذب زیاد توزیع گیاهان و یا حتی بحث خاک توسط احتمال می‌باشد. (10) ورود عناصر سنگین به‌خصوص کادمیوم و سرب به زنجبیر غذایی مطرح به بروز مشکلات جدی برای سلامت انسان می‌شود. بنابراین نشان داده روش برای جلوگیری از انتقال عناصر سنگین در زمان‌های کشاورزی کاهش میزان ورود آنها به خاک می‌باشد. (3)
عناصر سنگین در نظر گرفت شرایط فعال‌سازی کشاورزی مانند استفاده از کودهای سمی‌دار و حیوانی، لجن‌افاضل، کامپوست و آفت‌کش‌های خودخور عناصر سنگین در این مدل شامل پرداخت‌های ورودی از طریق آب‌شویی می‌باشند. با توجه به میزان‌ها و مقدار مدل‌های داده‌های زیادی، برای محاسبه توزان جرمی عناصر نیاز دارد. این مدل تغییر در میزان کبد عناصر سنگین در طول دوره زمانی در لایه شبه زمین‌های زراعی و در هر واحد مدیریتی به صورت زیر می‌باشد:

\[
\frac{\Delta M_i}{\Delta t} = (I_{\text{Atm}} + I_{\text{Agri}} - O_L)
\]

در این معادله (\(I_{\text{Atm}}\) و \(I_{\text{Agri}}\) و \(O_L\) بر حسب 1 g ha\(^{-1}\) yr\(^{-1}\) ترتیب میزان ورود ورود عناصر از طریق ریزش‌های اتمسفری در سطح منطقه، میزان ورود عناصر توسط فعال‌سازی کشاورزی و میزان خروج عناصر از طریق آب‌شویی می‌باشد.

میزان ورود بک‌عنصر سنگین در کشاورزی برای تولید محصول در هر LUS (LUS\(_i\)) تعیین نمود:

\[
I_{\text{Agri}} = I_{\text{MAN}_i} + I_{\text{MIN}_i} + I_{\text{Se}_i} + I_{\text{Pes}_i} + I_{\text{Comp}_i} - O_{\text{Crop}_i}
\]

در این معادله \(I_{\text{MAN}_i}\) و \(I_{\text{MIN}_i}\) و \(I_{\text{Se}_i}\) و \(I_{\text{Pes}_i}\) و \(I_{\text{Comp}_i}\) و \(O_{\text{Crop}_i}\) میزان خروج عناصر از طریق پرداخت‌های ورودی و خارج‌نمودن آن از مزرعه است. تمام جزئیات فوق بر حسب گرم بر هکتار بر سال می‌باشد.

ساختار مدل PROTERRA-S

مدل مورد استفاده در این مطالعه بر اساس مدل طراحی شده است. این مدل بر اساس متغیرهای تصادفی (Random variable) با توزیع مشخص پایه‌ریزی شده است. به منظور در نظر گرفت جداول احتمالات محتمل در ترکیب متغیرهای مختلف در مدل از روش نمونه‌برداری لاتین (Latin hypercube sampling) استفاده شد. ساختار های تصادفی (Random variable) مدل فرضیات آن در مراجع شماره 6 و 7 شرکت شده است. بنابراین در ادامه به طور مختصر این مدل ارائه خواهد شد.

مسیرهای کم‌این مدل در مقياس منطقه‌ای برای ورود مولکول‌های شرایط مورد استفاده اطلاعات زراعی مورد نیاز شامل نوع محصول، سطح زیر کشت تخم‌زنی داده‌های مورد استفاده

حجم زیادی کمپوست و لجن فاصله‌ای در این منطقه انظار می‌روند. سالانه مقدار زیادی از عناصر سنگین به زمین‌های کشاورزی وارد می‌شود. با این وجود چگونه مطالعه‌های ارتباط با میزان انتقال عناصر، مهم‌ترین متغیرهای ورود و خروج عناصر در زمین‌های کشاورزی صورت نگرفته است. مطالعه با منظور تعیین روند انتقال عنصر سنگین در مقياس منطقه، کمی نمودن ورود و خروج عنصر از متغیرهای مختلف مربوط با فعال‌سازی کشاورزی و تعیین مهم‌ترین عوامل مؤثر در انتقال عنصر در زمین‌های زراعی شهرستان‌های اصفهان، برخی مورد نظر می‌شود، لنگر، فلورجان، مبارکه و نجف‌آباد سرته گرفته.

مواد و روش‌ها

معرک منطقه مطالعاتی

این مطالعه در زمین‌های زراعی شهرستان‌های اصفهان، برخی و مبارکه، خمینی شهر، لنگر، فلورجان و مبارکه در استان اصفهان صورت گرفت. در این شهرستان‌های مورد مطالعه از نظر زمین‌های کشاورزی، شهرستان‌های مبارکه، بیشترین و شهرستان لنگر کمترین وسعت را دارند. محدودات غالب منطقه شامل کندسه، جو، بونجه، دره علوفه، بیرنج، شبدر، سیب زمینی و نیز می‌باشد.
علم و فنون کشاورزی و منابع طبیعی / سال دهم / شماره چهارم (الف) / رشت 1385

(5 نمونه) و چغندر قند (4 نمونه) به طور تصادفی جمع آوری گردید. نمونه برداری در مرحله برداشت و بر اساس نوع گیاه از بخش‌هایی که طی مرحله برداشت از مزرعه خارج می‌شود صورت گرفت. نمونه‌های گیاهی که روش‌های مختلفی بر اساس شکست می‌شود که بر اساس سطح کشت گندم، جو، برنج، زیر علوفه یا، باینجه، شیب، بیپ زمین و پایی زمین می‌باشد.

با توجه به دسترسی بودن اطلاعات برای سطح زیر کشت و حمکرد، توزیع نرمال از میانگین و انحراف معیار مشخص برای آن‌ها در نظر گرفته شد. لیست کامل داده‌های مورد استفاده در مراجع شماره 1 آراسته شده است.

داده‌های این مقاله در مورد نوع و تعداد احتیاط در گردید شاخص کشتی یک ساله از آمار مورد سازمان جهاد کشاورزی تهیه گردید. احتمال محل نظر عمده‌نگار از کار و کمبود، کوپنال، کیزی و طیور اطلاعات مورد نیاز در مورد کوه‌های شیمیایی بر اساس آمار‌های موجود در آمار‌ها کشتی‌گذاری بدون آماده است. علی‌رغم تغییرات بسیار زیاد در نحوه مصرف کوه‌های فسفر به هر هزارتن در این مطالعه، شرایط نیازمند شناخت محیطی و مطالعه بر اساس که کلی داده‌های فسفری و رودی به هر هزارتن مشخص می‌باشد.

در مورد میزان جنگ فضایی میان باقی‌مانده، پیوسته و همیشه اکنون به شاهین و شمار جنگ احتمال استفاده شده است. قسمت عمده کمیابی تولید به کار خانه کمیابی اصلی (سالانه حداکثر 50 هزار تن) در شرایط اصلی مرور می‌شود و بخش تاحیدی از آن (حداکثر 40 هزار تن) سالانه در شرایط مختلفی از داده‌های ترکیبی شده در این بخش نیازمندی‌ها برای تغییر غلظت عناصر در گیاهان، تعیین نموده و محصولات غلبانی طبیعی مدل (12 نمونه) جو (12 نمونه)، باینجه (12 نمونه)، علوفه و گندم (12 نمونه)، یا (12 نمونه)، باینجه (12 نمونه)، علوفه و گندم (12 نمونه) می‌باشد.

(12 نمونه)، باینجه (12 نمونه)، علوفه و گندم (12 نمونه) می‌باشد.

2500 ترکیب مختلف از داده‌ها در نظر گرفته شد.
جدول ۱. میانگین (انحراف استاندارد) ورودی، خروج و نرخ انباشت کادمیوم از میرمای که تهیه شده در شهرستان

<table>
<thead>
<tr>
<th>شهروند</th>
<th>ورودی کادمیوم (g ha⁻³ yr⁻¹)</th>
<th>خروجی کادمیوم (g ha⁻³ yr⁻¹)</th>
<th>نرخ انباشت (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مبارکه</td>
<td>3/18 (1/88)</td>
<td>-</td>
<td>0/166</td>
</tr>
<tr>
<td>فلاورجان</td>
<td>2/95 (1/10)</td>
<td>-</td>
<td>0/156</td>
</tr>
<tr>
<td>تنجیف آباد</td>
<td>2/8 (0/8)</td>
<td>-</td>
<td>0/156</td>
</tr>
<tr>
<td>لنجان</td>
<td>3/7 (1/08)</td>
<td>-</td>
<td>0/156</td>
</tr>
<tr>
<td>اصفهان</td>
<td>3/17 (1/01)</td>
<td>-</td>
<td>0/200</td>
</tr>
<tr>
<td>برخوار</td>
<td>0/4 (1/16)</td>
<td>-</td>
<td>0/200</td>
</tr>
</tbody>
</table>

1. این میزان خروج توسط برداشت گیاه.

* : نرخ انباشت بر اساس اختلاف میزان ورودی و میزان خروجی است. اعداد داخل پرانتز میزان احتمال شکسته شدن.

نتایج و بحث

مقیاس شهرستان کادمیوم

الف) کادمیوم

نتایج حاصل از مدل‌سازی نرخ انباشت کادمیوم به تهیه شده در جدول ۱ تا ۳، نشان می‌دهد که شهرستان مبارکه با نرخ کادمیوم حدود ۱.۸ g ha⁻³ yr⁻¹ در بالاترین نسبت می‌باشد. در اثر فعالیت‌های کشاورزی در این شهرستان می‌باشد. سابع شهرستان دیگر میانگین نرخ انباشت کادمیوم حد واسطه می‌باشد و در این شهرستان می‌باشد. میزان انباشت کادمیوم در جدول ۱ در بالای میانگین برخوردار شده است. میزان انباشت کادمیوم در لند مبارکه که این شهرستان به نظر رفت.
ثبت ارقام‌گذاری همه معادلات در توابع و روابط ریاضی
و روود کادمیوم به زمین‌های کشاورزی در منطقه مورد مطالعه می‌باشد. سهم ورود کادمیوم از طریق کاربرد کودهای حیوانی از حدود 6 تا 55 درصد و در مورد کودهای سمی از 31 تا 75 درصد متفاوت است. سهم ورود کادمیوم از طریق کمپستر و لجن فاضلاب در مقياس شهرستان نسبت به سایر ورودی‌ها ناجی است. لازم به ذکر است که این نتیجه‌گیری به معنی پی‌هایمیت بودن وروود کادمیوم از طریق کمپستر و لجن فاضلاب نیست. بلکه به این مفهوم است که در مقياس شهرستان این ورودی‌ها نسبت به سایر ورودی‌ها اهمیت کمتری دارند ویلی در مقیاس‌های کودک‌تر مانند مقیاس مزرعه می‌توانند از اهمیت بیشتری برخوردار باشند. علاوه بر آن بايد این نتیجه در نظر گرفته شود که کمپستر و لجن فاضلاب وارد شهر به هم شرطان تنا در بخشی از زمین‌های کشاورزی مورد استفاده قرار می‌گیرد. تاثیر توزیع غیرکننده لجن فاضلاب و کمپستر را می‌توان بر حسب درصدی از زمین‌های کشاورزی که در هر شهرستان کمپستر و لجن فاضلاب دربافت نموده شیب‌سازی نمود. در این مطالعه 10 مناریو در مورد توزیع کمپستر و لجن فاضلاب در شهرستان اصفهان شیب‌سازی.
جدول 2. ورود کادمیوم از مسیرهای مختلف نسبت به كل ورود کادمیوم

<table>
<thead>
<tr>
<th>لجن فاصلاب</th>
<th>کمپوست</th>
<th>کودهای فسفری</th>
<th>احتام</th>
<th>شهرستان</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت ورود از هر مسیر به كل ورود کادمیوم (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/04</td>
<td>0/01</td>
<td>76/47</td>
<td>0/24</td>
<td></td>
</tr>
<tr>
<td>0/01</td>
<td>0/01</td>
<td>75/67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/01</td>
<td>0/01</td>
<td>58/05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/01</td>
<td>0/01</td>
<td>55/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/02</td>
<td>0/01</td>
<td>65/23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/02</td>
<td>0/01</td>
<td>57/23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/02</td>
<td>0/01</td>
<td>65/36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/01</td>
<td>0/01</td>
<td>58/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/00</td>
<td>0/00</td>
<td>55/09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمودار از زگهای کشیوانی (g ha⁻¹ year⁻¹) در نرخ انتقال کادمیوم در شهرستان اصفهان

شکل 2. تأثیر توزیع لجن فاصلاب و کمپوست در نرخ انتقال کادمیوم در زمین‌های کشاورزی شهرستان اصفهان

گردید. در این سناریوها فرض شد که تمام کمپوست و لجن فاصلاب وارد شده به شهرستان اصفهان به ترتیب در 2000 و 3000 درصد از زمین‌های کشاورزی شهرستان مورد استفاده قرار گرفته است. نرخ انتقال کادمیوم محاسبه شده برای این سناریوها در شکل 2 نشان داده شده است.

همان‌گونه که ملاحظه می‌شود تأثیر کمپوست و لجن فاصلاب در مقایسه کوچکتر (کمتر از 40 درصد زمین‌ها) به مراتب بیشتر از سایر ورودی‌ها است. علاوه بر کمپوست و لجن فاصلاب توزیع ناهمگن در مورد سایر ورودی‌ها مانند کوده‌های

84
جدول 3. میانگین (انحراف استاندارد) نرخ ابیات سروب در شهروستان‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شهروستان</th>
<th>کمبودش</th>
<th>کم‌فشار</th>
<th>لجن فاضلاب</th>
<th>احتمال 10-7</th>
<th>مبارکه</th>
<th>گل‌ریزی</th>
<th>نجف‌آباد</th>
<th>لنجان</th>
<th>خمینی شهر</th>
<th>اصفهان</th>
<th>بخورا</th>
</tr>
</thead>
<tbody>
<tr>
<td>گیلان</td>
<td>0/0000</td>
<td>2/0000</td>
</tr>
<tr>
<td>خراسان</td>
<td>0/0000</td>
<td>2/0000</td>
</tr>
</tbody>
</table>

*: نرخ ابیات برای اختلاف میزان ورودی و میزان خروجی است. اعداد تابع معکوس انحراف استاندارد می‌باشد.

۱: متوسط از گیاه میزان خروجی نرخ ابیات از طریق برداشت گیاه می‌باشد. ۲: متوسط از احتمال ورود عناصر از طریق استفاده از کودهای غیرنیکل.

بدون احتساب ریشه‌های جوی شهروستان‌های مورد مطالعه

از حدود 10 تا حدود 2700 (گیلی: 1/yr) می‌باشد. در بین

شهروستان‌های گیلان‌ریزه، مبارکه دارای کم‌فشار و اصفهان دارای پیش‌ترین

نرخ ابیات می‌باشند. ابیات سروب در زمین‌های کشاورزی

اسفهان با سبب شرایط‌های تفاوت بسیار زیادی دارد. علت این

امور ورود مقدار زیادی سروب از طریق کمبودش و لجن

فاضلاب می‌باشد. استفاده از کمبودش در اصفهان باعث ورود

حدود 180 گیلی: 1/yr می‌باشد. میزان گیلی: 1/yr

کشاورزی می‌باشد.

انحراف استاندارد محاسبه شده در مورد نرخ ابیات و با

میزان رود و یا خروج از سبای سوسیا لای از تغییرات زیاد

داده‌های مورد استفاده است. ضریب تغییرات نرخ ابیات در

شهروستان‌های 20 درصد در نوی‌نامه‌ها تا 60 درصد در لنجان

متغیر است. علت وجود تغییرات بستر در مورد نرخ ابیات

سروب در شهروستان لنجان ناشی از اختلاف متفاوت داده‌های

85
شکل ۳. توزیع نرخ ورود و خروج سرب از مسیرهای مختلف به شهرستان‌های اصفهان، خمینی شهر و لنگان

شکل ۴. نرخ انتقال سرب و کادمیوم در میکروسپه‌های مختلف
جدول ۲: سهم ورود سرب از مسیرهای مختلف نسبت به کل سرب ورودی در شهرستان‌های مختلف

<table>
<thead>
<tr>
<th>شهرستان‌های مختلف</th>
<th>کمیوست</th>
<th>اجازه</th>
<th>نسبت ورود از هر مسیر به کل سرب (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مبارکه</td>
<td>70/85</td>
<td>28/24</td>
<td></td>
</tr>
<tr>
<td>فلاورجان</td>
<td>72/37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نجف‌آباد</td>
<td>59/23</td>
<td>79/24</td>
<td></td>
</tr>
<tr>
<td>لنجان</td>
<td>42/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خمینی شهر</td>
<td>28/38</td>
<td>42/18</td>
<td></td>
</tr>
<tr>
<td>اصفهان</td>
<td>74/58</td>
<td>6/60</td>
<td></td>
</tr>
<tr>
<td>بخوراز</td>
<td>13/69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>یزد</td>
<td>46/81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منظر از احتمال ورود عنصر از طریق استفاده از کودهای نیکل در است. انباشت در این مطالعه: ریزه‌های چوبی حاوی لحاظ نشده و معنی‌دار با از نظر تغییرات این مطالعه که حدود ۱۰ نمونه سرب ورودی به زمین‌های شکاروزی در مقایسه با سایر زمین‌های جوی است (۶). لذا نمی‌توان نتیجه‌گیری نمود که نرخ انباشت واقعی از حد حاصلی کمتر است. علاوه بر این، نرخ انباشت حاصل از برای خاکی با نگلیس کم سیاه کم صادق است. واژه به این که نگلیس سرب در بخش‌هایی از ۲۰ میلی‌گرم کیلوگرم می‌رسد (۲) و (۳) لذا نرخ انباشت حاصل محاسبه‌شده (۱00) برای منطقه مطالعاتی زیاد می‌باشد.

بیاوردی نرخ خروج سرب از طریق برداشت کیاوه از حدود ۶ g ha⁻¹ yr⁻¹ برای شهرستان لنجان تا حدود ۱/۲5 g ha⁻¹ yr⁻¹ برای شهرستان اصفهان متغیر می‌باشد. تفاوت در نوع و سطح زیر کشت گیاهی موجب این تغییرات می‌شود. میزان ورود سرب به زمین‌های کاسوری از طریق استفاده از کودهای (g ha⁻¹ yr⁻¹) حاوی در شهرستان‌های مختلف میان ۳۰ تا ۶۰٪ متفاوت است. در این مورد شهرستان لنجان بیشترین میزان ورود از طریق کودهای حیوانی را دارا می‌باشد. این امر می‌تواند ناشی از تراکم بیشتر احتمال در این شهرستان نسبت به سایر شهرستان‌ها باشد. در ارتباط با کمیوست و لجن فاضلاب میزان ورود سرب به زمین‌های کاسوری از شهرستان‌های مختلف می‌باشد.
مقياس منطقه
نرخ ایجاد کاسپیوم و سرب در مقياس منطقه (کل شهرستان‌های مورد مطالعه) در شرایط 4، 10 و 30 گرم در هکتار در مقياس منطقه به ترتیب 35.18، 77.35 و 272 گرم در هکتار در سال می‌باشد. میانگین نرخ ایجاد کاسپیوم در مقياس منطقه از نرخ ایجاد کاسپیوم در مقياس کوچک‌تر است. در مود سرب میانگین نرخ ایجاد سرب در مقياس منطقه 45 گیگ اورگن/6 گیگ اورگن/6 می‌باشد. در مقياس منطقه 5 به ترتیب نرخ سرب و کاسپیوم در حال منطقه 374.6 و 475-483. In: J. Martinez (Ed.), Proceeding of the FAO Network on میانگین و انحراف استاندارد نرخ ایجاد کاسپیوم در مقياس منطقه به ترتیب 74.8 و 272 گرم در هکتار در سال می‌باشد.

نقشه گیری
در مود سرب کاسپیوم و سرب در مقياس اسکافهای 60 و 78 درصد کل کاسپیوم وارد یکدیه کاسپیوم را تشکیل می‌دهند. در مود سرب کاسپیوم و سرب به کاسپیوم کاسپیوم به طوری که مجموعاً به 70 درصد از کلی کاسپیوم وارد شده بیش از میزان کاسپیوم اصلی است. در شهرستان اسکافهای کاسپیوم و سرب در مقياس منطقه به زمین‌های کشاورزی استفاده از

منابع مورد استفاده
recycling agricultural, municipal and industrial residue in agriculture. FAO, Rome.