چکیده
در این پژوهش زرفای بهینه آب آبیاری برای گیاه زرت، در روش آبیاری بارانی، در منطقه پاسار، در شرایط مختلف حداکثر مصرف، محدودیت زمین و محدودیت آب تعیین گردیده است. تناوب پیانگرینه این است که در حداکثر مصرف، زرفای بهینه آب آبیاری برابر 27/77 سانتی متر، در شرایط محدودیت زمین، به علت کم بودن هزینه آب و حساسیت زیاد کیفیت زرت نسبت به آب، زرفای بهینه آب آبیاری برابر 27/64 سانتی متر، و در شرایط محدودیت آب، زرفای بهینه آب/آبیاری 27/63/4 سانتی متر به دست می‌آید. در شرایط محدودیت آب، برای پیشگیری از کاهش کیفیت زرت، فقط نیاز به مصرف آب در حداکثر مصرف می‌توان صرفه جویی نمود.

واژه‌های کلیدی: کم آبیاری، زرفای بهینه آب آبیاری، ذرت

مقدمه
زرفای بهینه آب آبیاری کمتر از زرفای آب آبیاری برای تولید حداکثر مصرف است (2). به همین علت، اگر مزرعه با زرفای بهینه آب آبیاری گردید شرایط کم آبیاری 2 به وجود می‌آید. در شرایط کم آبیاری، مقدار مصرف تولیدی در واحد سطح کشت از حداکثر تولید در واحد سطح می‌گردد. ولی سرانجام سود حاصلی افزایش می‌یابد (3). روش کم آبیاری در بسیاری از نقاط آمریکا، آفریقا و سایر نواحی کم آب دنیا رایج است (4).

1. به ترتیب مری آبیاری، استاند اقتصادی کشاورزی و استاند آبیاری، دانشکده کشاورزی دانشگاه شیراز
2. Deficit irrigation
3. Water use efficiency
یک‌شانه، مطابق این شکل در حداکثر P_m و W_m باید باشد. همگامی که زمین عامل محصول کشیده، این را به ترتیب با برای حداکثر w_m کمتر از m w_1 کمتر از m و w_1 و w_1 و m در حداکثر محصول فورد.

هدف اصلی کم آبیاری، افزایش بازده بهره‌برداری از آب می‌باشد. آغاز کلست که هرگاه مقدار آب به محدود به باشد، با بهره‌برداری از آب بهره‌برداری در برداشت به آب این مقدار w_1 کمتر از m و w_1 کمتر از m و w_1، به سه صورت زیر می‌باشد.

1. فورد تولید کاهش می‌باشد.
2. فورد زایده مصرف آب می‌باشد.
3. فورد رفتار یک آب افزایش می‌باشد.

برای شکل 1، با افزایش زرفای آب‌سازی، میزان محصول افزایش می‌باشد. ولی هرگاه زرفای آب آب‌سازی زایده شود، بهبود کم مصرف آب به‌ویژه زرفای آب‌سازی کم، و به‌ویژه مواد غذایی گیاهی (مثل نیترات)، افزایش یافته، این مقدار محصول به وجود می‌آید. در شکل 2 رابطه کنگ دست و سطح فورد زرفای آب آب‌سازی نشان داده شده است. هزینه‌ها شامل مواد مانند هزینه‌های تهیه زمین، کشاورزی و برداشت می‌باشد که به زرفای آب‌سازی وابسته تیستند، ولی پرداخت از هزینه‌ها در ارتباط با آب‌سازی به شکل.

بنابراین، کل هزینه‌ها (C) را می‌توان به صورت مماید به شرح زیر گرد:

$$C = a + (b \times w)$$

که در آن w زرفای آب‌سازی به هزینه‌های است که به مقدار آب‌سازی ارتباطی ندارند، و a هزینه‌های مرتبط به واحد زرفای آب آب‌سازی به با، می‌باشد. (ماده‌بندی برخی مصری در بستر با هزینه کارگر آب‌سازی)
پژوهش حاضر تاثیر تولید ذرت از داده‌های اندازه‌گیری شده در منبع فوق برگرفته شده است. مطالع شکل ۱، با افزایش ذرف مقدار محصول ذرت در آب آبیاری به‌دست می‌آید، و به‌کار بردن مقدار کرم و رنگ، به‌سیاسه آب آبیاری زرفااهای مختلف آب آبیاری، مقدار محصول ذرف در اراضی پرورش دانشگاه کشاورزی (پاک‌گا، ۱۵ کیلومتری شهرزی) اندازه‌گیری شده است. روش آبیاری به صورت یک خط آبیاری پارتم بوده که مقدار آب پاشیده شده به طرف لوله آبیاری کم و بیش به صورت خطي کاملاً مباین باشد. بنابراین، به تخمین می‌گردد:

\[W_w = \frac{127/6 - 5/605 + 31/10 - 2/885 x W^3 + 9/100 x W^2 + 5/605 x W + 31/10 - 2/885 x W^3}{127/6 - 5/605 + 31/10 - 2/885 x W^3 + 9/100 x W^2 + 5/605 x W + 31/10 - 2/885 x W^3} \]

نتایج و بحث

یک آبیاری برای زرفاای به‌بینه آب آبیاری از داده‌های اندام‌گیری شده در منبع فوق برگرفته شده است. مطالع شکل ۱ با افزایش ذرف مقدار محصول ذرف در آب آبیاری به‌دست می‌آید و به‌کار بردن مقدار کرم و رنگ به‌سیاسه آب آبیاری زرفااهای مختلف آب آبیاری، مقدار محصول ذرف در اراضی پرورش دانشگاه کشاورزی (پاک‌گا، ۱۵ کیلومتری شهرزی) اندازه‌گیری شده است. روش آبیاری به صورت یک خط آبیاری پارتم بوده که مقدار آب پاشیده شده به طرف لوله آبیاری کم و بیش به صورت خطي کاملاً مباین باشد. بنابراین، به تخمین می‌گردد:

\[W_w = \frac{127/6 - 5/605 + 31/10 - 2/885 x W^3 + 9/100 x W^2 + 5/605 x W + 31/10 - 2/885 x W^3}{127/6 - 5/605 + 31/10 - 2/885 x W^3 + 9/100 x W^2 + 5/605 x W + 31/10 - 2/885 x W^3} \]

1. Line source
شکل 3. تابع محصول در نسبت نسبت به تغییرات زرفاي آب آيياري (W)

\[P \times dY / \partial w - dC / \partial w = 0 \]

با در نظر گرفتن توابع درآمد و هزینه برای روابط 2 و 3 و مشتقگری از آنها، رابطه 6 به صورت زیر در می‌آید:

\[\frac{d}{dx} (P \times Y - C) = P \times Y - C \]

با معرفی نمودن معادلات 3 و مشتق‌گری از آنها، معادله زیر به دست می‌آید:

\[\frac{d}{dx} (P \times Y - C) / \partial w = 0 \]

صبرت W محاسبه می‌شود. در نتیجه، کل هزینه‌های تولید محصول در نتیجه‌تیز آب توان به صورت زیر نوشته می‌شود:

\[C = 12409760 + 1555w \]

در شکل 4 متوسط هزینه آب آيياري نشان داده شده است. همان‌گونه که این شکل نشان می‌دهد، با افزایش زرفاي آب آيياري، درآمد افزایش مي‌بند، ولی به علت هزینه ناجی آب آيياري نسبت به درآمد، شيب خط هزینه نسبتاً کم است. در زرفاي آب آيياري (Wm) با زیر

\[w \times (P \times Y - C) / \partial w = P \times Y - C \]

محدود، مقدار محصول به حداکثر می‌رسد، ولی برای محاسبه زرفاي بهينه آب آيياري ناگيي به اجرای کم آيياري می‌باشيم. برای يک محصول، زرفاي بهينه آب آيياري را در دو حالت به شرح زیر می‌توان تعیین نمود (2):

1. در حالت که زمین عامل محدود کننده باشد.
2. در حالت که آب عامل محدود کننده باشد.
شکل ۴. تابع درماد و هزینه محصول ذرت نسبت به تغییرات ذرف آب آبیاری در باجگاه

شکل ۵. تغییرات سود حاصله از کشت ذرف برای قیمت‌های مختلف آب آبیاری موجود به میزان ۷۷۰۰۰۰ متر مکعب

این آب را به زمین‌های دیگر اختصاص داد، سود حاصله مانند شکل ۵ تغییر می‌نماید. برای شکل ۵ هنگامی که هزینه آب برای ۵۵ رال بر سانتی‌متر محصول کاهش یافته و در نتیجه به صفر می‌رسد.

نتیجه گیری

وزرافای آب آبیاری در سه حالت برای حداکثر محصول کمتر از (W۱) و برای حداکثر سود با توجه به محدودیت زمین (W۲) و برای حداکثر سود با توجه به محدودیت آب (W۳) باید برآوردگردد. در این برآوردها به ترتیب W۱=W۲=W۳=W سود. مقادیر W۱ و W۲ و W۳ به ترتیب برای ۵۵، ۵۰ و ۴۷.۵ سانتی‌متر بوده است.

ولی با توجه به حساسیت زیاد محصول ذرت به کم آبی، و حساسیت زیاد منحنی تولید محصول نسبت به وزرافای آبیاری، این سه وزفزا تغییر هم‌چنین باشد. برای حداکثر نمونه سود خالص از کشت ذرف در شرایط کم آبی، می‌توان تا ۷/۱ درصد

\[W_{total} = W_{water} + W_{land} + W_{labour} + W_{energy} \]

با حل معادله فوق با روش نیوتن رافسون، مقدار وزرافای بهینه برای شرایط محدودیت آب (W) برای ۷۳۷۰۰ سانتی‌متر محاسبه می‌شود. در این حالت وزرافای بهینه کمتر از W سود می‌گردد.

در بررسی تغییرات W نسبت به تغییرات هزینه آب از معادله یک مشخص سود که ضریب مربوط به قیمت آب، به‌عنوان قیمت آب در معادله ۹ اطرافی حذف شده است. هرگاه حجم مشخصی آب، مثل ۵۰۰ متر مکعب در اختیار باشد، در شرایط آبیاری کامل و رسیدن به محصول حداکثر، تنها یک هکتار زمین زیر کشت می‌رود. در شرایطی که بتوان با انجام کم آبیاری بخشی از
از آب را صرفجویی نموده باپارایین، با توجه به پرکشیدگی نقاط
کم آبی مناسب نیست. این مطلب در گزارش هاول و همکاران
(9) در مناطق خشک آمریکا نیز به خوبی نشان داده شده است.

مباحث مورد استفاده

1. سلطانی، غ. 1374. خبر برداری اقتصادی از منابع آب. آب و توسهه 24-25.
2. هنری، ت. ع. سیاسخواب. 1373. کاربرد مدل CRPSM برای تخمین محصول ذرت در آبادانه سطحی و زیرزمینی. ص. 31-33.