وزرفاي بهينه آب آپارايي ذرت در روشن آپارايي باراني

شاهرخ زند پارسا، غلامرضا سلطانی و علیرضا سپاسخواه

چکيده
در این پژوهش وزرفاي بهينه آب آپارايي برای گياه ذرت در روشن آپارايي باراني در منطقه باجاجاه (در 15 کيلومتری شیراز)، در شرایط مختلف حداکثر محصول، محدودیت زمین و محدودیت آب تعیین گردید است. نتایج بیانگر این است که در حداکثر محصول، وزرفاي بهينه آپارايي برای 77 سانتی متر، در شرایط محدودیت زمین به علت کم بودن هزینه آب و حساسيت زیاد گياه ذرت نسبت به آب، وزرفاي بهينه آپارايي برای 76/7 سانتی متر، و در شرایط محدودیت آب، وزرفاي بهينه آپارايي برای 0/8 سانتی متر، به ترتيب به سبد می آید. در شرایط محدودیت آب، براي پيشرين سود دهی از كشت ذرت، فقط تا 0/7 درصد از آب را نسبت به مصرف آن در حداکثر محصول مي توان صرف جوين نمود.

واژه هاي کليدي: کم آبیاري، وزرفاي بهينه آپارايي، ذرت

مقدمه
وزرفاي بهينه آپارايي كمتر از وزرفاي آپارايي برای توليد حداکثر محصول است(2). به همين عنوان، اگر مزروعه به وزرفاي بهينه آپارايي گرد، شرایط کم آبیاري 2 به وجود مي آيد. در صورت کم آبیاري، مقدار محصول توليده در واحد سطح كمتر از حداکثر توليد در واحد سطح ميگردد ولي سرانجام سود حاصله افزایشي مي‌بايد(3). روش کم آبیاري در پسماري از قطعه آمريکا، هند، افريقيا و ساواي نواحي كم آب دنيا رايج است(2).

1. به ترتيب مربي آپارايي، استاد اقتصاد كشاورزي و استاد آپارايي، دانشکده كشاورزي، دانشگاه شیراز
2. Deficit irrigation
3. Water use efficiency
دراهم حاصله از کشتن به طور کلی در شکل ۲ نشان داده شده است. مطابق این شکل در حاکمیت درآمد (با حداکثر محصول) زرفات آبس آپاریا برای m می‌باشد. هنگامی که زمین عامل محصول کننده باد، نشان دهنده w محصول در گذشته کمتر از m می‌باشد. هرگاه آب عامل محصول کننده باد، از آب صرفه جویی شده می‌توان در جامای دیگری بهره جست، یعنی بهزیستی نسیم در دست رفته نیز در نظر گرفته می‌شود. در این صورت زرفات بهینه آپاریا W محصول کمتر از W می‌گردد. به نمودار درآمد–زرفات آبس آپاریا می‌توان معادله‌ای به شرح زیر برایش داد:

$$P \times X = f(w)$$

که در آن P بالاترین محصول (تن در هکتار)، X قیمت واحد وزن محصول (ریال به ازای هر تن) و $f(w)$ محصول را به ازای هر تن از محصول زرافه آبس آپاریا می‌باشد.

در محصولات گوناگون، نسبت زرفات بهینه آپاریا به زرفات آبس در آپاریا کامل فرق می‌گذارد. این نسبت زرفات بهینه آپاریا وابسته به عوامل مختلف مانند شرایط خاک، رطوبت خاک پیش از کشت و روش‌های زراعت و غیره است، و در نقاط مختلف دنیا برای یک محصول متفاوت نیست. اگرچه و راجا (۶) در شرایط محدودیت آب، مقدار زرفات بهینه آپاریا کامل زرفات آبس آپاریا را نسبت به آپاریا کامل (در آپاریا کامل محصول به حداکثر می‌رسد)، به گونه‌ای ۳۹ درصد، یعنی ۴۴ درصد و در این صورت در گذشته نسبت ۳۲ درصد نسبت ۲۰ درصد تولید می‌شود. هنگامی که هنوز زرفات بهینه در ۲۰ درصد نسبت به ۴۴ درصد نسبت به ۴۴ درصد می‌باشد. به نتیجه رسیده که در نقاط خشکی آمریکا، زرفات بهینه آپاریا به ۳۴ درصد نسبت به هزینه آپاریا کامل است و برای یک گیاه کم آپاریا را توصیه نموده.

در هدف از این پژوهشی زرفای بهینه آپاریا در کشت نشان داده است، و مقدار زرفای آپاریا در دس حالت w_1 محصول در m می‌باشد. هدف اصلی کم آپاریا، افزایش زرافه بهبودزاری از آب به نشانه شروع به تولید آب درادریزی برای بهبود کیفیت آب منابع اغلب توسط W_m محصول در m می‌باشد. به نظر می‌رسد که در آن w_m محصول در m می‌باشد. هرگاه آب عامل محصول کننده باد، از آب صرفه جویی شده می‌توان در جامای دیگری بهره جست، یعنی بهزیستی نسیم در دست رفته نیز در نظر گرفته می‌شود. در این حالت زرفای بهینه آپاریا W_m محصول کمتر از W_m می‌گردد.

۱. هزینه تولید کاهش می‌باشد.
۲. به سوی صورت زیر نموده شود:
۳. به سوی صورت زیر نموده شود:

$$P \times X = f(w)$$

که در آن P بالاترین محصول (تن در هکتار)، X قیمت واحد وزن محصول (ریال به ازای هر تن) و $f(w)$ محصول را به ازای هر تن از محصول زرافه آبس آپاریا می‌باشد.

در محصولات گوناگون، نسبت زرفات بهینه آپاریا به زرفات آبس در آپاریا کامل فرق می‌گذارد. این نسبت زرفات بهینه آپاریا وابسته به عوامل مختلف مانند شرایط خاک، رطوبت خاک پیش از کشت و روش‌های زراعت و غیره است، و در نقاط مختلف دنیا برای یک محصول متفاوت نیست. اگرچه و راجا (۶) در شرایط محدودیت آب، مقدار زرفات بهینه آپاریا کامل زرفات آبس آپاریا را نسبت به آپاریا کامل (در آپاریا کامل محصول به حداکثر می‌رسد)، به گونه‌ای ۳۹ درصد، یعنی ۴۴ درصد و در این صورت در گذشته نسبت ۳۲ درصد نسبت به ۴۴ درصد می‌باشد. هنگامی که هنوز زرفات بهینه در ۲۰ درصد نسبت به ۴۴ درصد نسبت به ۴۴ درصد می‌باشد. به نتیجه رسیده که در نقاط خشکی آمریکا، زرفات بهینه آپاریا به ۳۴ درصد نسبت به هزینه آپاریا کامل است و برای یک گیاه کم آپاریا را توصیه نموده.

در هدف اصلی کم آپاریا، افزایش زرافه بهبودزاری از آب به نشانه شروع به تولید آب درادریزی برای بهبود کیفیت آب منابع اغلب توسط W_m محصول در m می‌باشد. به نظر می‌رسد که در آن w_m محصول در m می‌باشد. هرگاه آب عامل محصول کننده باد، از آب صرفه جویی شده می‌توان در جامای دیگری بهره جست، یعنی بهزیستی نسیم در دست رفته نیز در نظر گرفته می‌شود. در این حالت زرفای بهینه آپاریا W_m محصول کمتر از W_m می‌گردد.

۱. هزینه تولید کاهش می‌باشد.
۲. به سوی صورت زیر نموده شود:
۳. به سوی صورت زیر نموده شود:
پژوهش حاضر تابع تولید ذرت از داده‌های آندازه‌گیری شده در منبع فوق برگرفته شده است. مطالعه شکل ۳، با اندازه‌گیری آب آبیاری مقدار محصول افزایش می‌یابد. به یک حداکثر می‌رسد و سپس با اندازه‌گیری آب آبیاری از مقدار آن کاسته می‌گردد. با برآورد یک رابطه درجه ۵ بر این داده‌ها، معادله زیر به دست می‌آید:

\[Y = 127.4 - 87.5w_1^2 + 0.21w_1^3 + 0.01w_1^4 + 0.002w_1^5 \]

نتایج و بحث

تعیین شرایط بهینه آب آبیاری

برای برآورد شرایط بهینه آب آبیاری لازم است که میزان‌ها به‌دست آمده از آزمایش آبیاری باشند و تعدادی از حوزه‌بندی‌ها و اندازه‌گیری‌ها شش شرایط محصولات زیر که توسط خان، کمک به بهترین شکل محصولات کمتری تولید شده است. در همان‌همه، این شرایط برآورد ۱۳۶۹۷۰ (۲) مقادیر مربوط به محصولات دانه ذرت و وزن‌های آب آبیاری آن مقدار است. در

وزن‌های آبیاری ذرت در روش آبیاری بارانی

شکل ۱. نمای عمومی تابع تولید محصول

شکل ۲. نمای درآمده محصول تولیدی

مواد و روش‌ها

به‌منظور برآورد مقدار محصول و برنامه‌ریزی آب‌یابی، گزینه‌های ذرت از گزارش‌های هنر و سپاس‌خواههای (۲) استفاده گردید. در این گزارش برای وزن‌های مختلف آب آبیاری، مقادیر محصول ذرت در اراضی پروشته دانشگاه کشاورزی (باجاگا، ۱۵ کیلومتری شهر ورود به داده‌های است. روش آب‌یابی به صورت یک خط آبیاری بارانی ۱ بود که میزان آب با ویده‌شده به ورود لوله آبیاری کم و پیش به صورت خطي کاملاً به یافته. با پایین بودن به قسمت‌های مختلف مزرعه مقادیر متفاوت آب داده می‌شود.

پایه داده‌های به دست آمده از آزمایش آبیاری بارانی، در تعدادی زندیک به لوله آبیاری به علت قرار گرفت و افزایش شست شوی مواد غذایی یا کمک تهیه‌خوراک محصولات کمتری تولید شده است. در گزارش‌های هنر و سپاس‌خواههای (۲) مقادیر مربوط به محصولات دانه ذرت و وزن‌های آب آبیاری آن مقدار است. در

1. Line source
شکل 3. تابع محصول نرتنسبت به تغییرات زرفای آب آبیاری (W)

\[\frac{\partial \ln Y}{\partial W} = \frac{3}{2} \frac{1}{W} \]

با نظرگرفتن توابع درآمد و هزینه برابر روابط 2 و 3 و مشتق‌گیری از آنها، رابطه \(Y = \frac{3}{2} \frac{1}{W} \) تولید محصول نرتنسبت به زرفای آب آبیاری (W) می‌باشد.

\(Y = \frac{3}{2} \frac{1}{W} \)

در شکل 4 محاسبه می‌شود. در نتیجه، کل هزینه‌های درآمد و هزینه‌های نسبت به تغییرات زرفای آب آبیاری نشان داده شده است. همان‌گونه که از این شکل پیدا می‌شود، با افزایش زرفای آب آبیاری، درآمد افزایش می‌یابد ولی به علت هزینه تأمین آب آبیاری نسبت به درآمد شیب خط هزینه نسبتاً کم است. در زرفای آب آبیاری (W) زیر

\[W = \frac{3}{2} \frac{1}{W} \]

زاها در این شامل زرفای بهینه آب آبیاری ناگیره به اجرای کم آبیاری می‌باشند. برای یک محصول، زرفای بهینه آب آبیاری را در دو حالت به شرح زیر می‌توان تعیین نمود (2):

1. در حالت که زرفای عامل محدود کننده باشد.
2. در حالت که آب عامل محدود کننده باشد.

در حالت اول چون کمبود آب وجود ندارد و زرفای عامل محدود کننده است، تبادلی می‌شود تا از مقدار زرفای کم‌ترین بهره‌گیری از آب. در این حالت لازم است که در این حالت لازم است تفاصل درآمد و هزینه را حداکثر نمود. همان‌گونه که از شکل 4 پیداست، هر کمک زرفای بهینه کمتر باشد، زرفای آب آبیاری به تدوین می‌شود. برای حداکثر نمودن اختلاف درآمد (W) به دست می‌آید:

\[\frac{\partial (P_x Y - C)}{\partial W} = 0 \]

با مدارک و مدل‌های معادلات خود و مشتق‌گیری از آنها، معادله زیر به دست می‌آید:

\[(P_x Y - C) \frac{\partial}{\partial W} = 0 \]

1. Opportunity cost 2. Marginal profit
شکل ۲. تابع درصد و هزینه محصول ذرت نسبت به تغییرات ذرفای آب آبیاری در بازه

شکل ۵. تغییرات سود حاصله از کشت ذرفات پایه مختلف آب آبیاری موجود به میزان ۷۷۰۰ متر مکعب

این آب را به زمین های دیگر اختصاص داد، سود حاصله مانند شکل ۵ تغییر می‌نماید. برای شکل ۵، هنگامی که هزینه آب برای ۵۰۰ رال در هر متر مکعب گرمد، سود خالص از کشت ذرفات تبدیل به صفر می‌شود.

اصطلاحات:

- زرفای آب آبیاری: در سه حالت برای حداکثر محصول (\(w_m\))، برای حداکثر سود با توجه به محدودیت زمین (\(w_g\))، و برای حداکثر سود با توجه به محدودیت آب (\(w_w\)).

- شرایط محدودیت برای زرفای آب آبیاری به ترتیب \(w_m\), \(w_g\), \(w_w\) می‌باشد.

نتایج:

- تغییرات سود حاصله از کشت در بازه نرمال آب آبیاری موجود به میزان ۷۷۰۰ متر مکعب

- تغییرات سود حاصله از کشت در بازه نرمال آب آبیاری موجود به میزان ۷۷۰۰ متر مکعب

[۱۹] به حل معادله فوق با روش نیوتن رافسون، مقدار ذرفای بیشینه برای شرایط محدودیت آب (\(w_w\)) برابر ۷۲۰۴ سانتی‌متر محاسبه می‌شود. در این حالت ذرفای بیشینه کمتر از \(w_w\) می‌گردد.

- در بررسی تغییرات سود به تغییرات هزینه آب از معادله ۹ مشخص می‌شود که ضریب مرتبه به قیمت آب، تعیین قیمت آب در معادله ۹ از طرفین حذف شده است. بنابراین، ذرفای \(w_w\) هیچ ارتباطی به هزینه آب ندارد. تعیین در هزینه آب از آب مقدار \(w_w\) ثابت است. هرگاه حجم مشخصی آب، مثل ۷۷۰۰ متر مکعب در اختیار باشد، در شرایط آبیاری کامل و رسیدن به محصول حداکثر، تنها یک هکتار زمین زیر کشت می‌رود. در شرایطی که بتوان با انجام کم آبیاری بخشی از

\[
\frac{\text{فازیت ذرفات در ۷۷۰۰ متر مکعب}}{\text{تغییرات سود حاصله از کشت ذرفات با تغییرات بیشینه فازیت ذرفات در ۷۷۰۰ متر مکعب}}
\]
کم آبی مناسب نیست. این مطلب در گزارش هاول و همکاران (9) در مناطق خشک آمریکا نیز به خوبی نشان داده شده است.

مراجع مورد استفاده

1. سلطانتی، غ. 1374. بهره برداری اقتصادی از منابع آب آب و توسه. 24-34.
2. هنری، ت. و غ. سپاسخوا. 1373. کاربرد مدل CRPSM برای تخمین محصول ذرت در آبیاری سطحی و بارانی. ص. 31-41.