چکیده
در این پژوهش زرفای بهینه آب آبیاری برای گیاه ذرت، در روش آبیاری بارانی، در منطقه باوجا (در 15 کیلومتری شهرز)، در شرایط مختلف محصولات محروم، محدودیت زمین و محدودیت آب تعیین گردیده است.
نتایج پیانگر این است که در محصولات زرفای بهینه آب آب آبیاری برای 27 سانتی متر، در شرایط محدودیت زمین به علت کم بودن هزینه آب و حسیب‌سازی زیاد کاهش ذرت نسبت به آب، زرفای بهینه آب آب آبیاری برای 27 سانتی متر، در شرایط محدودیت آب، زرفای بهینه آب آب آبیاری برای 4/8 سانتی متر به دست می‌آید. در شرایط محدودیت آب، برای پیش‌بینی سود دهی از کشت ذرت، فقط 4/7 درصد آب نسبت به مصرف آن در حداکثر محصول می‌توان صرف جویی نمود.
واژه‌های کلیدی: کم آبیاری، زرفای بهینه آب آبیاری، ذرت

مقدمه
ظرفیت بهینه آب آبیاری کمتر از ظرفیت آب آبیاری برای تولید محصول است(2). به همین علت، اگر مزرعه با ظرفیت بهینه آب آبیاری غیر خطر می‌شود(8)، مصرف این رابطه غیر خطر می‌شود(8)، لی هنگامی که ظرفیت آب آبیاری بیش از 50 درصد آب آب آبیاری کمتر از ظرفیت آب آبیاری برای تولید محصول است(2). به همین علت، اگر مزرعه با ظرفیت بهینه آب آبیاری غیر خطر می‌شود(8)، مصرف این رابطه غیر خطر می‌شود(8)، لی هنگامی که ظرفیت آب آبیاری بیش از 50 درصد آب آب آبیاری کمتر از ظرفیت آب آبیاری برای تولید محصول است(2). به همین علت، اگر مزرعه با ظرفیت بهینه آب آبیاری غیر خطر می‌شود(8)، مصرف این رابطه غیر خطر می‌شود(8)

1. به ترتیب مربی آبیاری، استاد اقتصاد کشاورزی و استاد آبیاری، دانشکده کشاورزی، دانشگاه شیراز
2. Deficit irrigation
3. Water use efficiency
دوآم دارد سه از کشف به طور کلی در شکل ۲ نشان داده شده است. مطالعه این شکل در حداکثر دوآم (با حداکثر محصول) زرفای آب آبیاری برای باید. هنگامی که زمین عامل محصول بهاشده باشد، زرفای بهینه آب برای حداکثر سود کمتر از محصول مقدار کمتر از محصول (W_m) هرگاه آب عامل محصول کننده بهاشده باید از آب صرفه‌جویی شده می‌توان در جامعه دیگری برره چنت، یعنی هزینه قرص‌هایی از دست رفته نزدیک در نظر گرفته می‌شود. در این حالت زرفای بهینه آب آبیاری (w) کمتر از محصول مقدار بیش از حد می‌شود. به شرح زیر برازش داده می‌باشد:

\[P \times X = f(w) \]

که در آن Y مقدار محصول (تن در هکتار) P قیمت واحد وزن محصول (ریال به ازای هر تن) و f(w) نشان دهنده تابعی از عمق آب آبیاری می‌باشد.

در محصولات گوناگون نسبت زرفای بهینه آب آبیاری به زرفای آن در آبیاری کامل برای می‌گردد. این زرفای بهینه آب آبیاری وابسته به عوامل مختلفی مانند شرایط خاک و رطوبت خاک پیش از کشت، روش آبیاری، نوع واریته و غیره است. و در نقاط مختلف دنیا برای یک محصول مقدار ثابتی نیست.

اگر چیزی و راجا (۴) در شرایط محصولات آب، مقدار زرفای بهینه آب آبیاری را نسبت به آب آبیاری کامل در آبیاری کامل محصول به حداکثر می‌رسد. بهینه ۴۴ درصد بینه ۹۰ درصد ذکر می‌کند. بهرمان و سیاسخواه (۸) در روش غیر خطی بهینه سازی آب آبیاری در قسمت شمال شرقی ایران، این نسبت‌ها را برای سبیم زمین در اسفناج ۹۰ درصد بینه بست اوردون. تولکه (۷) برای مقادیر چندان قدیمی بهینه ۴۴ درصد ذکر می‌کند. بهرمان و سیاسخواه (۸) به این ترتیب رسیدند که در نقاط خشک آمریکا، نسبت بهینه کم آبیسیار حساس است، و برای این گیاه‌ها کم آبیاری را توسعه نمودند.

هدف از این پژوهش تعیین زرفای بهینه آب آبیاری در کشت به‌صورت دردست مقدار زرفای آب آبیاری در سه حالت: ۳ درصد، ۶ درصد و ۹ درصد به‌صورت از حد می‌باشد.

۱. هزینه توپیکاله‌های آب‌های باید.

۲. بهینه آبیاری باید در حداقل مقدار آب آبیاری به‌صورت دردست مقدار هزینه‌هایی کم برای آب‌های می‌باشد.

۳. هزینه قرص‌هایی از دست رفته در آب‌های می‌باشد.

برای شکل ۱، با افزایش زرفای آب آبیاری، میزان محصول افزایش می‌باشد. ویل هرگاه زرفای آب آبیاری کم شود، شرایط خاک کم، و هزینه محصول بهجوار می‌آید. در شرایط کم باید در حداکثر مقدار آب آبیاری ناشی داشته شده است. هزینه سلول مواد مادی هزینه‌های بهینه زمین کاسته و در نتیجه، بهینه آب آبیاری است. بهینه آب آبیاری با توجه به حداکثر مقدار زرفای بهینه می‌باشد.

\[C = a + (b \times w) \]

که در آن w: زرفای آب آبیاری (cm) و a و b: هزینه‌های است. که به‌صورت آب آبیاری احتیاطی ندارند، و هزینه‌هایی به‌صورت این بازگشت آب آبیاری می‌باشد (ماده برق مصرفی در پیش از زمین کارگر آب آبیاری).
زورنای پهنی آب آبیاری در روش آبیاری پارائی

مشخصات دو نمای عمومی تابع تولید محصول

[نمودار 1]

یکنواختی ویژه آب آبیاری

[نمودار 2]

شکل ۲. نمای درآمد محصول تولیدی

تعیین می‌گردد

مواد و روش ها

به منظور برآورد مقدار محصول و برنامه‌ریزی آبیاری، گیاهان درخت، از گزارش هر و سپاسخواه (۲) استفاده گردید. در این گزارش، برای زرافه‌ای مختلف آب آبیاری، مقادیر محصول ذرت در اراضی پروشی دانشکده کشاورزی (باقا‌گاه‌های ۱۵ کیلومتری شیراز) اندازه‌گیری شده است. روش آبیاری به صورت یک خط آبیاری بارانی ۱ بوده که مقدار آب پاشیده شده به دو طرف لوله آبیاری کم و بیش به صورت خطي کاملاً می‌باشد. نتایج به نظر قسمت‌های مختلف مزرعه مقادیر متفاوت آب داده می‌شود.

نتایج و بحث

تعیین زرافه پهنی آب آبیاری

باید برآورد زرافه پهنی آب آبیاری لازم است که هزینه‌های جداگانه برای رمال و کانال گازهای شکست مشخص گردد. بر پایه فهرست‌های سال ۱۳۷۷، انرژی بر هر زمینه‌ای مربوط به آبیاری، این هزینه‌ها برابر ۱۴۲۶۹۶۴ ریل در هکتار می‌گردد. هزینه آبیاری بر پایه ساعات کار موتور یکم و برق مصرفی، به

1. Line source
شکل 3. نتایج محاسبه نسبت به تغییرات زورفای آب آب‌یاری (W)

$$P \times \partial Y / \partial w - \Delta C / \partial w = 0$$

با نظر در نظر گرفتن توابع درآمد و هزینه برای روابط ۴ و ۵ و مشتق‌گیری از آنها، رابطه ۸ بر صورت زیر در می‌آید:

$$w^2 - 0.1x^2 - 8.8x + 0.11w + \frac{1.1}{2} \left(\frac{2}{2} \right) = 0$$

در شکل ۴ مقدار هزینه درآمد و زورفای آب‌یاری نسبت به تغییرات

ゾرفای آب آب‌یاری نشان داده شده است. همان‌گونه که از این

شکل پیدا می‌شود، در افزایش زورفای آب‌یاری، درآمدها افزایش

می‌یابد. ولی به علت هزینه ناحیه‌ای نسبت به درآمدهای شبیه

خط هزینه نسبتاً کم است. در زورفای آب‌یاری (Wm) برای

77 سانتی متر، مقدار محصول به حداقل می‌رسد در برای

محاسبه زورفای بهینه آب آب‌یاری نگ‌بر به اجرای کم آب‌یاری

می‌باشیم. برای یک محصول، زورفای بهینه آب آب‌یاری را در دو

حالت به شرح زیر می‌توان تعیین نمود (۴):

1. در حالت که زمین عامل محدود کندنها باشد.
2. در حالت که آب عامل محدود کندنها باشد.

در حالت اول چون کمبود آب وجود دارد و زمین عامل محدود

کندنها است، بنابراین، تلاقی می‌شود تنها از مقدار زنی کشت

یافته‌ای به چهار زمین کشت باشد. در این حالت لازم است که

سیستم خشک بیشترین بهره گرفته شود. در این حالت لازم است تا تفاصل

درآمدها و هزینه را حداکثر نمود. همان‌گونه که از شکل ۲

پیداست، هر چه هزینه آب‌یاری کمتر باشد، زورفای آب آب‌یاری به

Wm تندیکت می‌شود. برای حداکثر نمودن اختلاف درآمدها

Wm به شرح زیر می‌توان تعیین نمود (۴):

$$\Delta(P \times Y - C) / \partial w = P \times Y - C$$

با مدار به نمودن معادلات ۳ و ۴ مشتق‌گیری از آنها، معادله زیر

به دست می‌آید:

1. Opportunity cost
2. Marginal profit
تغییرات سواد حاصله از کشت درون برای چهار مختلف آب آبیاری موجود به میزان 7700 متر مکعب در روش آبیاری پارکه.

با حفظ داده‌های فوق با روشنی نتیجه گرفته، مقدار زرفای بهره برای شرایط محدودیت آب (w_A) برای 47/4 سانتی‌متر محسوب می‌شود. در این حالت زرفای بهره به مقدار W گزارش می‌شود. در بررسی تغییرات W نسبت به تغییرات زرفی آب از معادله 9 مشخص می‌شود که ضریب ضریب به قیمت آب، بینی قیمت آب در معادله 9 از طرفین حذف شده است. هرگاه حجم شخصی زرفای در w_A به امکان اضطرابی به زرفی آب تبدیل می‌شود. این پدیده در هر زرفای زرفای از آب مقدار w_A ثابت است. هرگاه حجم شخصی آب، مثل این 7700 متر مکعب در اختیار باشد، در شرایط آبیاری کامل و رسیدن به محدودیت حداکثر، تنها یک هکتار زمین زیر کشت می‌رود. در شرایطی که بتوان با انجام کم آبیاری بخشی از
از آب را صرفه‌جویی نمود، بنابراین، با توجه به پاک‌انگیزی نقاط اندازه‌گیری شده تولید محصول و زرفات آب آبیاری در شکل ۳ می‌توان گفت که در محصول ذرت برای رسیدن به سود حداکثر

مراجع مورد استفاده

1. سلطانی‌خیام، غلامرضا. ۱۳۷۴، بحریه برداری اقتصادی از منابع آب برق و توسعه. ۴۰۲-۳۴۳.
2. همنی‌خیام، م. ر ت. و غ. ر ساسکووال. ۱۳۷۳، کاربرد مدل CRPSM برای تخمین محصول ذرت در آبیاری سطحی و بارانی. ص. ۳۱-۳۴.
3. مجموعه مقالات دومین کنگره مسولیت ملی آب و خاک کشور، معاونت تحقیقات، آموزش و ترویج کشاورزی، تهران، ۲۷-۳۰.