بررسی روابط صفات کمبودی و کیفی در میوه برشی از زنوتیپ‌های اتار

عیسی سرخوش، ذیحه الله زمانی، محمد رضا فتاحی مقدم، علی عبادی، علی ساعی، سید ضیا الدین طباطبایی و محمد رسول اکرمی

چکیده

به منظور بررسی مهمترین صفات کمبودی و کیفی میوه و اجزای آن و استفاده از این صفات برای گروه بندی زنوتیپ‌های اتار، آزمایش‌بندی استفاده از 24 زنوتیپ ساخته‌گردانه شده، در این مطالعه صفات پیشنهاد شده توسط نزدیک به 80 صفت بررسی و به نتیجه‌گیری نهایی در این صفت‌ها صفات گوناگونی در درصد و در سطح مناسبی ظاهر شدند. صفات تجربه‌ی کلاسیک توسط تعداد 30 نفر از این هفت عامل انجام شد و نکته‌ی اصلی این است که زنوتیپ‌های که در فاصله ۹ به پنج گروه اصلی تقسیم شدند. این گروهها اغلب در صفت یا تفاوت بودند و صفت نرم دانه و شکل کلاسیک تر از بین بود. علاوه بر این، با استفاده از سه عامل اصلی موقتیت زنوتیپ‌ها در مطالعه تری نیز مشخص شد که زنوتیپ‌های با طعم شیرین‌تر از زنوتیپ‌های با طعم ملی و ترش از هم تفکیک می‌گردد.

واژه‌های کلیدی: اتار، صفات کمبودی و کیفی، گروه بندی زنوتیپ‌ها، آنالیز چند متغیره، تجربه عامل

مقدمه

دانشمندان شناسایی دهه‌های ایران می‌دانند که ایران می‌باشد و خویستگاه اصلی انار بوده و سپس از این منطقه به سایر نقاط دنیا پراکنده شده است.

(۱) امرورز نیز درختان انار به صورت وحشی در جنگل‌های شمال غرب ایران به فراوانی دیده می‌شود و با توجه به قدمت

(۲) به ترتیب دانشجوی سال کارشناسی ارشد، دانشیار، استاد، دانشیار، دانشجوی کارشناسی ارشد علوم پزشکی، دانشکده کشاورزی، دانشگاه تهران

(۳) اعضای هیئت علمی موسسه نهال و بذر، استیضاح تحقیقات انار سازه

۱۴۷
کشت و کاران در ایران، تنوّع سیار زایده در میان زنوتیپ‌ها و توّده‌های محلی آن مشاهده می‌شود. از انجایی که فناوتیپ یک گیاه براین‌دی از خصوصیات زنوتیکی و محیطی و اثرات مناسب آنها می‌باشد، بنابراین به بررسی این گیاه برای زنوتیپ‌های مختلفی توانان و وجود داشته باشد (۲). طوری که ایران هم مركّم انثار و هم مرکّم تنوّع (Center of origin) (یپیداری) این محسوب می‌شود و بنابراین ایران (Center of diversity) دارای یکنین تیخ زنی (Gene pool) اثری برای استفاده از گونه‌ها با توجه به این که سطح اصلی از عمده‌های نکرد و حاصل آن نکشک می‌دهد و اثر هم از دقت‌اندازی است (۳). سپس شهروپاگی گزارش بر اساس ثبت محبوبیتی این خصوصیات تا ابتدا به‌طور محدود و با حداکثر زنوتیپ‌ها با کم‌بازاری کمیکی می‌باشد. در این بخش دو گروهی از دو گروه معنی‌داری که متغیر محسوب می‌شود و با علل متغیر محسوب از دو گروه می‌باشد (Multivariate statistical methods) اهمیت باند زیر روابط بین صفات و بیانه و مستقیم‌تر روش (Factor analysis) روی می‌گردد. در این بخش تجزیه عمّالی آماده چند معنی‌دار و ناهنجاری ارائه می‌شود. ابزار اصلی برای یکی از طریق همان‌ها، مبنای اساسی داده‌های ذهنی معنی‌دار (۱۰)، شناخت ارتباطات بیولوژیکی و کاربردی موجود در بین صفات. (۸) کاهش تعداد زایده از صفات وایسته به تعداد کمتری از عمّالها (۵) از مواردی آن محسوب می‌شود. از روش‌های آماده چند معنی‌دار، شناخته‌های فیزیکی و گروه بندی زنوتیپ‌های آبیار (۱۱) خرما (۱۲)، نامی‌های سایر درختان میوه استفاده شده است (۱۱). به‌طوری که این گیاه از آنها می‌باشد و منشا آن بوده و از نقطه نظر اقتصادی مهم‌ترین میوه برای کشور ما مهم می‌باشد. این تحقیق به منظور آشنایی هر چه بیش‌تر
جدول 1: اسمیت‌های اثر مورد بررسی هر یک با کد مربوط به منطقه نمونه‌گیری شده

<table>
<thead>
<tr>
<th>منطقه</th>
<th>زننیب</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساوه</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>ساوه</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>ساوه</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>ساوه</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>ساوه</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>ساوه</td>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>ساوه</td>
<td>G</td>
<td>7</td>
</tr>
<tr>
<td>ساوه</td>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>ساوه</td>
<td>I</td>
<td>9</td>
</tr>
<tr>
<td>ساوه</td>
<td>J</td>
<td>10</td>
</tr>
<tr>
<td>ساوه</td>
<td>K</td>
<td>11</td>
</tr>
<tr>
<td>ساوه</td>
<td>L</td>
<td>12</td>
</tr>
<tr>
<td>ساوه</td>
<td>M</td>
<td>13</td>
</tr>
<tr>
<td>ساوه</td>
<td>N</td>
<td>14</td>
</tr>
<tr>
<td>ساوه</td>
<td>O</td>
<td>15</td>
</tr>
<tr>
<td>ساوه</td>
<td>P</td>
<td>16</td>
</tr>
<tr>
<td>ساوه</td>
<td>Q</td>
<td>17</td>
</tr>
<tr>
<td>ساوه</td>
<td>R</td>
<td>18</td>
</tr>
<tr>
<td>ساوه</td>
<td>S</td>
<td>19</td>
</tr>
<tr>
<td>ساوه</td>
<td>T</td>
<td>20</td>
</tr>
<tr>
<td>ساوه</td>
<td>U</td>
<td>21</td>
</tr>
<tr>
<td>ساوه</td>
<td>V</td>
<td>22</td>
</tr>
<tr>
<td>ساوه</td>
<td>W</td>
<td>23</td>
</tr>
<tr>
<td>ساوه</td>
<td>X</td>
<td>24</td>
</tr>
</tbody>
</table>

* ارقام مشترک (هم نام) بین دو منطقه یا ستاره مشخص شده‌اند.

مواد و روش‌ها

این آزمایش با چهار تکرار از هر زننیب در قالب طرح راهکاغز کامل تصویفی که اندام‌های میوه بلکه‌ها را تشکیل می‌دهد در پاییز 1383 انجام شد. میانگین صفات میوه در زننیبات متفاوت و بیشتر با برخی از خصوصیات مهم میوه اثر و روابط بین این صفات انجام گردید.

مواد و بخش‌ها

میوه‌های 24 زننیب اثر (جدول 1) از دو منطقه ساوه و کرج، شامل کلکسیون انبار ساوه و مرکز تحقیقات علوم ازبینی دانشکده شرکارزی دانشگاه تهران، در موقع رشد و پرداخت شدند. لازم به ذکر است که قلمه‌ها انتخاب می‌شوند در مرکز تحقیقات علوم ازبینی حدود 10 سال قبل از کلکسیون اثر ساوه به بهترین خصوصیات کمی و کیفی زننیب‌ها (جدول 2) بر اساس روش ارایه شده در منبع شماره 3 به شرح زیر مورد انتخاب گزینه‌گیری قرار گرفتند.
جدول 2. صفات اندازه‌گیری شده در اثرات سیره بررسی و علائم اختصاصی مربوط به آنها

<table>
<thead>
<tr>
<th>شماره</th>
<th>واحد</th>
<th>اختصاصی</th>
<th>ضریب</th>
<th>تغییرات</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>2/42</td>
<td>2/50</td>
<td>EC</td>
</tr>
<tr>
<td>2</td>
<td>pH</td>
<td>pH</td>
<td>11/89</td>
<td>11/02</td>
<td>pHi</td>
</tr>
<tr>
<td>3</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>9/35</td>
<td>9/24</td>
<td>TA</td>
</tr>
<tr>
<td>4</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>4/02</td>
<td>4/23</td>
<td>TSS</td>
</tr>
<tr>
<td>5</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>32/95</td>
<td>31/50</td>
<td>FrI</td>
</tr>
<tr>
<td>6</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>3/32</td>
<td>2/36</td>
<td>ANTO</td>
</tr>
<tr>
<td>7</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>3/27</td>
<td>2/86</td>
<td>ArFW</td>
</tr>
<tr>
<td>8</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>19/53</td>
<td>19/82</td>
<td>ArD</td>
</tr>
<tr>
<td>9</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>19/53</td>
<td>19/82</td>
<td>ArD%</td>
</tr>
<tr>
<td>10</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>2/86</td>
<td>2/36</td>
<td>SdFW</td>
</tr>
<tr>
<td>11</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>15/8</td>
<td>15/8</td>
<td>SdD</td>
</tr>
<tr>
<td>12</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>3/32</td>
<td>2/86</td>
<td>SdD%</td>
</tr>
<tr>
<td>13</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>15/11</td>
<td>15/11</td>
<td>FrT</td>
</tr>
<tr>
<td>14</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>3/43</td>
<td>3/43</td>
<td>FrW</td>
</tr>
<tr>
<td>15</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>44/8</td>
<td>44/8</td>
<td>FrJ</td>
</tr>
<tr>
<td>16</td>
<td>میلی موس</td>
<td>میلی موس</td>
<td>2/3</td>
<td>2/3</td>
<td>FrCL</td>
</tr>
<tr>
<td>17</td>
<td>میلی موس</td>
<td>میلی متر</td>
<td>3/55</td>
<td>3/55</td>
<td>FrND</td>
</tr>
<tr>
<td>18</td>
<td>میلی موس</td>
<td>میلی متر</td>
<td>3/48</td>
<td>3/48</td>
<td>ArTW</td>
</tr>
<tr>
<td>19</td>
<td>میلی موس</td>
<td>میلی متر</td>
<td>2/86</td>
<td>2/86</td>
<td>PITW</td>
</tr>
<tr>
<td>20</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>2/76</td>
<td>2/76</td>
<td>P%</td>
</tr>
<tr>
<td>21</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>1/55</td>
<td>1/55</td>
<td>Ar%</td>
</tr>
<tr>
<td>22</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>1/55</td>
<td>1/55</td>
<td>ArL</td>
</tr>
<tr>
<td>23</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>1/55</td>
<td>1/55</td>
<td>ArD</td>
</tr>
<tr>
<td>24</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>9/55</td>
<td>9/55</td>
<td>ArL/D</td>
</tr>
<tr>
<td>25</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>9/66</td>
<td>9/66</td>
<td>SdL</td>
</tr>
<tr>
<td>26</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>2/59</td>
<td>2/59</td>
<td>SdL/D</td>
</tr>
<tr>
<td>27</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>14/7</td>
<td>14/7</td>
<td>seeds %</td>
</tr>
<tr>
<td>28</td>
<td>میلی متر</td>
<td>میلی متر</td>
<td>50/42</td>
<td>50/42</td>
<td>SdFt %</td>
</tr>
</tbody>
</table>

مقدار کل مواد جامد محلول با استفاده از رفرانگومتر (Atago Co., Japan) اندازه‌گیری شده. اندازه‌گیری اسیدیتی قابل (Atago Co., Japan) تیتراسیون با استفاده از 5 میلی لیتر از آب میوه که 95 میلی لیتر آب مغطر رقیق می‌گردید با روش استاندارد یعنی تیتراسیون pH با استفاده از متر صورت گرفت و سپس با استفاده از رفروش مربوطه مقدار درصد اسید را به‌مسیز سیتیک محاسبه گردید. شدت
بررسی روابط صفات کنی و کیفی در میوه باتریک از زنوتیپ‌های انانداژ

درازی ضریب تغییرات بالایی هستند، محدوده و سیع تری از کمیت صفت را دارا می‌باشند که دانه انتخاب بیشتری برای آن صفت محصول می‌شود. در بین آنها می‌توان به موارد اسیدهای قابل تئرسپون، میزان آنتوسیانین، وزن میوه، وزن کل دانه، وزن کل پوست، درصد شناوری بذر و ... اشاره کرد.

ضرایب همبستگی ساده صفات

همبستگی یک صفت با سایر صفات دیگر نوع رابطه را نشان می‌دهد که می‌تواند از نوع تأثیر مجموعه متغیر هم‌زمان با موارد صفت همبستگی غیر مستقیم آن را مشخص نماید. نیاز مفرط و با مشکل است، می‌توان از صفات دیگر مورد استفاده قرار گیرد. در این پژوهش ضرایب همبستگی ساده صفات انانداژگری در جدول ۳ به طور کامل آمده است. ضرایب همبستگی ساده بین صفات نشان می‌دهد که نسبت کمی از صفات انانداژگری شده همبستگی معنی‌داری وجود دارد. موارد و مراکی جی‌دار یکدیگر که این رابطه‌ها، روش‌های تئرسپون و تکنیک‌های جدیدی به این اسانسپاسیون بر اساس این اسانسپاسیون و هدایت کننده جی‌دار یکدیگر به این که انتشار روند پیام و مقدار اسیدهای قابل تئرسپون pH همبستگی بسا با صفت منی معنی‌دار است و به‌طور هم‌های Trpoma به اسیدهای قابل تئرسپون بیشتر دارد pH یا بایپن تر همبستگی، همچنین خود اسیدهای قابل تئرسپون و مقدار هیدایت الکتریکی نیز همبستگی به صورت مثبت در سطح 0.۱ معنی‌دار بوده است، در حالی که پیش از میزان موارد موجود با همدید الکتریکی همبستگی معنی‌دار نشده است. رابطه بین تن و اسیدهای نیز در سطح ۰.۱ معنی‌دار شده است. این واقعیت معنی‌دار که میوه‌ها به اسیدهای قابل تئرسپون بالاتر دارای موارد موجود بوده است، بیشتری آسانسپاسیون تئسر؛ تأثیر اسیدهای قابل تئرسپون بر طعم میوه بخش شناور و همبستگی میان آنها به انانداژگری شد. موارد دیگر انانداژگری شامل وزن میوه، وزن ۱۰۰ دانه (آریز) ۲ ۱۰۰۰ دانه و خشک، درصد ماده خشک دانه، درصد ماده خشک بذر، طول و قطر دانه، نسبت طول به قطر دانه، وزن کل دانه در میوه و وزن کل پوست، طول و قطر بذر، نسبت طول به قطر بذر، ضخامت پوست، طول تاج و قطر گل‌نوار نمی‌باشد. مقدار مواد جامد محول به مقدار اسیدهای قابل تئرسپون به عنوان شاخص طعم میوه، درصد پوست میوه و درصد دانه میوه بودند. گاهی انانداژگری‌های ورژنی با استفاده از ترکیب الکترونیکی‌ها دقت یک عدد صورت گرفت. طول و قطر دانه و بذر به کمک همیل و برای تعداد دانه و بذر از هر تکرار انانداژگری شد و منابع آنها در محاسبات مورد استفاده قرار گرفت. هر انانداژگری درصد شناوری از بذرها خشک استفاده گردید.

توجه داده می‌شود توجه و ارسال برای کلیه صفات با استفاده از نرم‌افزار SAS انجام شد. برای تجزیه همبستگی و تجزیه عامل‌ها از نرم‌افزار (Factor rotation) با استفاده از تکنیکی جرخ عامل‌ها (Varimax) و به روش ویر اکسکس (Wards method) استفاده شد. در هر عامل اصلی و مستقل ضرایب عاملی به بالا معنی‌دار در نظر گرفته شدند. همچنین نشانگر کلانتری روش وارد و محاسبه فاصله بعد از استاندارد کردن داده‌ها انجام گرفت.

نامی و بحث

توجه و ارسال

نتایج تجزیه و ارسال نشان داد که زنوتیپ‌های مورد بررسی از نظر کلیه صفات مورد طالع‌بین با یکدیگر نتایج معنی‌دار دارند و به همین دلیل کلیه صفات در مراحل بعدی تجزیه و تحلیل آماری استفاده گردیدند. دانه‌های تغییرات صفات مورد بررسی برای زنوتیپ‌های انان در جدول ۲ ارائه شده است. صفاتی که
جدول ۳ ضرایب همبستگی بین صفات به کار رفته در تجزیه عامل‌ها

<table>
<thead>
<tr>
<th>Trait</th>
<th>EC</th>
<th>TA</th>
<th>pH</th>
<th>TSS</th>
<th>FrFl</th>
<th>ANTO</th>
<th>ArFW</th>
<th>ArDW</th>
<th>ArDW %</th>
<th>SdFW</th>
<th>SdDW</th>
<th>SDW</th>
<th>PIT</th>
<th>FrW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol/cm</td>
<td>%</td>
<td>%</td>
<td>Ratio</td>
<td>Abs.</td>
<td>gr</td>
<td>gr</td>
<td>gr</td>
<td>gr</td>
<td>gr</td>
<td>gr</td>
<td>mm</td>
<td>gr</td>
<td>gr</td>
</tr>
<tr>
<td>EC</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>(0.014)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>(0.001)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FrFl</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTO</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArFW</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArDW</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArDW %</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SdFW</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SdDW</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDW</td>
<td>(0.001)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIT</td>
<td>(0.001)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FrW</td>
<td>(0.001)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FrF</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>FrCL</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>FrND</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>ArTW</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>PITW</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>P1%</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Ar%</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>ArL</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>ArD</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>ArL/ArD</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>SdL</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>SdD</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>SdL/D</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>SdF%</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Trait</td>
<td>FrJ</td>
<td>FrCL</td>
<td>FrND</td>
<td>ArTW</td>
<td>PITW</td>
<td>Pl</td>
<td>Ar</td>
<td>ArL</td>
<td>ArD</td>
<td>ArL/ArD</td>
<td>SdL</td>
<td>SdD</td>
<td>SdL/D</td>
<td>SdF</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>cm</td>
<td>cm</td>
<td>gr</td>
<td>gr</td>
<td>%</td>
<td>%</td>
<td>mm</td>
<td>mm</td>
<td>ratio</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>%</td>
</tr>
<tr>
<td>FrJ</td>
<td></td>
</tr>
<tr>
<td>FrCL</td>
<td></td>
</tr>
<tr>
<td>FrND</td>
<td></td>
</tr>
<tr>
<td>ArTW</td>
<td></td>
</tr>
<tr>
<td>PITW</td>
<td></td>
</tr>
<tr>
<td>Pl%</td>
<td></td>
</tr>
<tr>
<td>Ar%</td>
<td></td>
</tr>
<tr>
<td>ArL</td>
<td></td>
</tr>
<tr>
<td>ArD</td>
<td></td>
</tr>
<tr>
<td>ArL/ArD</td>
<td></td>
</tr>
<tr>
<td>SdL</td>
<td></td>
</tr>
<tr>
<td>SdD</td>
<td></td>
</tr>
<tr>
<td>SdL/D</td>
<td></td>
</tr>
<tr>
<td>SdF%</td>
<td></td>
</tr>
</tbody>
</table>

* معنی دار در سطح 5 درصد
** معنی دار در سطح 1 درصد
جدول 2. مقادیر ویژه و درصد تجمیع واریانس‌ها برای 7 عامل اصلی

<table>
<thead>
<tr>
<th>عامل‌ها</th>
<th>مقادیر ویژه</th>
<th>درصد تجمیع واریانس</th>
<th>واریانس نسبی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>34/29</td>
<td>0.26</td>
</tr>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>27/32</td>
<td>0.26</td>
</tr>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>20/33</td>
<td>0.26</td>
</tr>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>13/39</td>
<td>0.26</td>
</tr>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>12/39</td>
<td>0.26</td>
</tr>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>10/39</td>
<td>0.26</td>
</tr>
<tr>
<td>نیست و هدایت الکتریکی</td>
<td>0.57</td>
<td>10/39</td>
<td>0.26</td>
</tr>
</tbody>
</table>

مورد بررسی است و به صورت درصد بپردازید. شما است. در این تجربه هفت عامل اصلی و مستقل که مقادیر ویژه آنها بیشتر از تاییده. توانستن مجموعه 89 درصد واریانس کل را توجه به pH نمایند. در عامل اول صفات سایر فاصله‌های فاصله، در آب میوه و طعم میوه با ضرایب مثبت و هدایت الکتریکی و درصد ماه خشک بذر با ضرایب منفی قرار گرفتند که 11/3درصد از واریانس کل را توجه کردند. جدول همبستگی صفات (جدول 3) همبستگی این صفات با نشان دهنده که به نحوی در یک گروه قرار گرفتند. در عالم دوم طول دانه، طول و نسبت طول به قطر بذر با ضرایب منفی مقدار 18/3درصد از واریانس کل را توجه نمودند. عامل سوم 1/13 درصد از تغییرات را توجه نمود و صفات درصد دانه با ضریب عاملی منفی و درصد پوست با ضریب عاملی مثبت را در خود جای داده است. در عالم دوم طول دانه، طول و نسبت طول به قطر بذر با ضرایب عاملی منفی و وزن میوه و وزن کل دانه و وزن کل پوست با ضرایب عاملی مثبت 9/3درصد از تغییرات را توجه کردند. مواد جامد محلول با ضرایب مثبت در عامل شکم وزن بذر خشک در واریانس کل را توجه نمود. در عامل نسبت وزن بذر خشک به قرار گرفتند و 0/5 درصد تغییرات را نشان می‌دهند و طول نیست و هدایت الکتریکی با ضرایب عاملی مثبت، 3/05 درصد از کل واریانس را توجه نمود. با توجه به تجزیه عامل‌ها می‌توان گفت که بیشترین تفاوت زنوتیپ‌ها از لحاظ خصوصیات مربوط به عصاره میوه بود که بیشترین واریانس (2/35 درصد) را یعنی زنوتیپ‌ها ایجاد کرده است. تجزیه عامل همبستگی منفی در سطح 1/ می‌گردد. نتایج نشان داد که همبستگی مثبت منفی دارد بین مقادیر پوست و قطر گلو میوه وجود دارد و اثرات پنس و گل‌کننده و گل‌گشترنده نسبت به اثرات پنس تازی دارد. انتظار داشت که با وزن 100 دانه مشخص می‌شود با طول هسته‌ها همبستگی مثبت و معنی دار داشته اما با قطر آنها همبستگی نشان داد. معنی دار شدن همبستگی این صفات توسط زمانی نیز گزارش شده است (2). وزن میوه نیز با وزن تر و خشک 100 دانه همبستگی دارد که نشان دهنده این است که میوه درشت تر دارای دانه‌های بزرگ‌تری می‌باشد. در نظر داشتن این همبستگی‌ها در برنامه‌های اصلاحی آمار می‌تواند راهنمای خوبی برای انتخاب باشد.

تجزیه به عامل‌ها

با توجه به حجم و سایر داده‌های به دست آمده از ارزیابی صفات مختلف مرحله‌ای در محدوده زنوتیپ‌های مورد بررسی، امکان نتیجه‌گیری واضح و آسان با استفاده از آنالیزهای واریانس‌ها به دنبال وجود ندارد. با استفاده از تجزیه عامل‌ها صفات مختلف می‌تواند در قابل عامل‌ها با نوع مقیاس مورد بحث قرار گیرد که همگام کننده صفت را شامل می‌شود. این امر قدرت مانور محقق را برای کار روز تعداد عامل با نوع مقیاس گام‌هایی نسبت به تعداد صفت‌های مربوط به ارزیابی صفات را جستجو می‌نماید. جدول 4 نتایج تجزیه به عامل‌ها را نشان می‌دهد. میزان واریانس نسبی هر عامل نشان دهنده اهمیت آن عامل در واریانس کل صفات 154
شکل 1. گروه برنده زنوتیب‌های آتار با استفاده از هفته عامل اصلی به روش وارد توانست 28 صفت مورد ارزیابی را به صورت 7 عامل اصلی بیان دارد که در بین آنها عامل‌های اول و دوم بیشترین سهم را در توجه واریانس دارند. این تجزیه می‌تواند عامل فرق گذار اصلی بین زنوتیب‌های مورد بررسی را روش‌های ساده با توجه به این که در این پژوهش بیشتر صفات مربوط به میوه ارزیابی شده‌اند، بیشترین واریانس در صفت عصاره میوه مشاهده شده است.

تجزیه کلاس‌‌برداری
گروه‌بندی ارقام بر اساس تعداد زیادی صفت با عامل می‌تواند روشی مطمئن در تعیین شکاها و فواصل خوشه‌ای‌ها باشد. در این تحقیق تجزیه کلاس‌‌بر اساس هفت عامل اصلی که بیشترین واریانس (13/89 درصد) بین صفات را نشان داد، صورت گرفت. در فاصله 25 ارقام به دو گروه اصلی تقسیم بندیدند که گروه اول شامل زنوتیب‌های ترش و خاص و گروه دوم شامل ارقام شیرین بودند. با کاهش فاصله از 15 به 9 با در نظر گرفتن فاصله

155
شکل 2 تابیه پلات زنین‌های تکان با استفاده از سه عامل اصلی

مؤثر پایدار. با توجه به اینکه این صفات درصد بالایی از واریانس کل را تجيه می‌کردند، بتایین باعث شدن که زنین‌های هم نام در دو منطقه خراسانی قرار گرفتند، همان طور که در دو منطقه (شکل 2) مشاهده می‌شود، زنین‌های پوست سفید پشت از هر دو منطقه در یک گروه قرار گرفته است ولی زنین‌های آلیک ترش و آقا محمد علی در گروه‌های مشابه قرار نگرفته‌اند. این تفاوت‌ها می‌تواند مربوط به بررسی نشانه‌های مولکولی مشابه واقع یک نیز بوده باشد. بررسی‌های مولکولی می‌تواند تفاوت‌ها را به نحو بارز مشخص نماید.

(Trí Plot Analysis)

تجهیز تری پلات آزمون‌های پلات تصوری در و پی‌بی سه بعدی ایجاد نمایند که هر یک از این‌ها یک عامل اصلی فرق گذار محصول می‌شود. بتایین باراکنش زنین‌های به محدوده این عامل اصلی می‌تواند به تبع این به‌طور فصلی زنین‌ها و تفاوت بین آنها می‌تواند تفاوت زنین‌هایی که در یک، دو و سه عامل به صورت بیمار یا پایین اضافه می‌شود. در این پژوهش تجهیز تری پلات با استفاده از سه عامل اصلی که 36 درصد واریانس را به خود اختصاص داده بودند، انجام شد. تجزیه تری پلات (شکل 2) توانست زنین‌هایی را به دو رأ دارای بودند. در کل هم قرار گرفتند. زنین‌های بارز و هسته نرم این گروه به یکی از آباد می‌باشد که تمامی از آنها در آب شناور بر می‌مانند.

اثر مکان

با توجه به این که زنین‌های کیا بیشتر از صنعتی زنین‌های محیطی و اثر متقابل آنها می‌باشد، بیش از کلاستر بیدن، بیش از سه زنین‌های پوست سفید پشت در آن باشند. می‌تواند به این باشد که در هر دو منطقه ساوه و کرج مشترک بودن تجربه واریانس انجام شد. همان طور که در جدول مقایسه بیان می‌گردد (جدول 5) مشاهده می‌شود از طرف مشترک با سه 28 صفت مربی بررسی پنج صفت شامل EC pH و نزدیک به آن درصد پوست و در صد شناوری بذر گرفته‌اند. شکل تحت تأثیر مکان قرار گرفته‌اند. همچنین در pH منطقه کرج کمتر از سه نشان می‌دهد. همچنین در pH اسدی 18 درصد به شناسایی و درصد شناوری بیشتر بذر گرفته‌اند. شکل قطعی. با توجه به این که کرج دارای میانگین دهیان باین pH می‌باشد آزمون‌های تری ترجیح و منطقه قابل توجه است. با توجه به این که کرج اثر معنی‌دار روز شاخ به دلیل تابیه آنها در این منطقه قابل انتظار است. بتایین این کلاه کاهش در روز شاخ به دلیل تابیه می‌باشد. این تابیه سه سه در کرج می‌تواند در عدم پرش در بذرها و بتایین در بذرها و شناوری آنها

156
جدول ۵ : مقایسه میانگین صفات اندازه‌گیری شده برای زنوتیب‌های هم نام در دو منطقه ساوه و کرجه

<table>
<thead>
<tr>
<th>میانگین صفات</th>
<th>مکان</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>TA</td>
</tr>
<tr>
<td>pH</td>
<td>TSS</td>
</tr>
<tr>
<td>FrFl</td>
<td>ANTO</td>
</tr>
<tr>
<td>ArFW</td>
<td>ArDW</td>
</tr>
<tr>
<td>ArDW%</td>
<td>SdFW</td>
</tr>
<tr>
<td>SdDW</td>
<td>SDW%</td>
</tr>
<tr>
<td>PRT</td>
<td>FrW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ساوه</th>
<th>کرجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/11</td>
<td>201/89</td>
</tr>
<tr>
<td>5/31</td>
<td>222/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین صفات</th>
<th>مکان</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrJ</td>
<td>FrCL</td>
</tr>
<tr>
<td>FrND</td>
<td>ArTW</td>
</tr>
<tr>
<td>PITW</td>
<td>Pl%</td>
</tr>
<tr>
<td>ArF</td>
<td>ArL</td>
</tr>
<tr>
<td>ArD</td>
<td>ArL/ArD</td>
</tr>
<tr>
<td>SdF</td>
<td>SdL</td>
</tr>
<tr>
<td>SdL/D</td>
<td>SdF%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ساوه</th>
<th>کرجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/3</td>
<td>7/3</td>
</tr>
<tr>
<td>3/1</td>
<td>2</td>
</tr>
<tr>
<td>3/0/8</td>
<td>2</td>
</tr>
<tr>
<td>3/0/10</td>
<td>3/0/10</td>
</tr>
</tbody>
</table>

#: در هر ستون میانگین‌هایی که دارای حروف متفاوت هستند در سطح 0/۱ آزمون چند دامنه‌ای دانکن دارای تفاوت معنی‌داری هستند.
گره شیرین و ملیس- ترش تکفکن که. دو زنونگ پی- هسته
حاجی آباد (N) و هسته رز شهداد (M) در دست انتهای
محیط باشند که نیاز به بررسی دارد. بی- هسته اردستان
صفات معمولم ارکام نرم ذنی عشیره بودن و نرمی ذنیها
را نشان نماید و با نظیرِ می- تنوان نجیب که در کد
گذاری این رقم در کلکسیون ساوه اشتباه شده است.

پژوهشگران

‌۷. دانیالی، م. ر. آجودی و غ. غرامی. ۱۳۸۷. تجزیه کلسترول ارکام سویای ایران و به دست آوردن توابع معنی‌داره‌ی مربوط به آنها. علوم کشاورزی ایران ۲۴ (۲): ۲۸۵-۲۹۳.

۸. فاتحی، ر. ا. ابادی، ا. وژوئی، ز. زمانی و م. ر. گاناخدا. ۲۰۰۴. رابطه‌ی بین جثه‌ی توزیعی و جیک‌های انرژی فیزیکی ارکام‌های نشانپذیره‌ی ساوه. پایان نامه کارشناسی ارشد علوم بافتی، دانشگاه کشاورزی، دانشگاه تهران.

۹. شهر یادک، ب. ۱۳۷۳. تولید نوپا یوناخ ارکام ایلار در ایران. نشر آموزش کشاورزی، کرج.

۱۰. مقدم، م. ا. محمدی مشتی و م. آقایی سربر. ۱۳۷۳. آشنا شدن با روشهای آماری جدید. انتشارات پیشگاه، علم، تهران.

۱۱. جارادت، آ. آ. و آ. زاد. ۲۰۰۴. چاپ‌های با روزه‌ی فریب‌های چند‌متغیره، انتشارات پیشگاه علم، تهران.

۱۲. جانشی، ر. م. و د. و. مورن. ۱۹۸۴. مقدمه‌ی دی‌ای‌اس‌دی- آر کارشناسی ارشد علوم باغی، دانشگاه "کشاورزی، دانشگاه تهران.

۱۳. جانشی، د. و. و. د. و. مورن. ۱۹۸۴. تجربه‌ی صنعتی در پرورش مارکی. دانشگاه "کشاورزی، دانشگاه تهران.

۱۴. کارل، و. ا. هیلی و ف. آبزونی. ۱۹۸۸. تحلیل مولتی‌مولتی‌کی. دانشگاه "کشاورزی، دانشگاه تهران.

۱۵. کوهل، ل. پ.، لو. ک. دامولی و ل. ب. فریس. ۱۹۹۳. تحلیل آلی‌ای‌ی از نادری گره‌ی از نادری برای بررسی دانشگاه "کشاورزی، دانشگاه تهران.

۱۶. الین، گ. م. ۱۹۹۵. کشته‌ی از نادری گره‌ی از نادری برای بررسی دانشگاه "کشاورزی، دانشگاه تهران.

۱۷. امیری، چ. و س. ژاد. ۱۹۹۲. میزان‌ای از نادری گره‌ی از نادری برای بررسی دانشگاه "کشاورزی، دانشگاه تهران.

۱۸. مولوئی، گ. م. و ج. س. سایادی. ۱۹۹۲. روش‌های از نادری گره‌ی از نادری برای بررسی دانشگاه "کشاورزی، دانشگاه تهران.