بررسی روابط صفات کتی و کیفی در میوه برخی از زننیپه‌های اتار

علی سرخوش، ذیب‌الله زمانی، محمد رضا فتاحی مقدم، علی عبادی، علی ساعی، سید ضیاء‌الدین طباطبایی و محمد رسول اکرمی

چکیده

به منظور بررسی مهم‌ترین صفات کتی و کیفی میوه و اجزای آن و استفاده از این صفات برای گروه بندی زننیپه‌های اتار، آزمایش با استفاده از 24 زننیپه صورت گرفت. در این مطالعه 28 صفتی کتی و کیفی مورد ارزیابی قرار گرفت. نتایج تجزیه واریانس نشان داد که تمام صفات مورد بررسی در محدوده ارقام معمول هستند که شناسی و عطر باعث افزایش یا کاهش شده، 79 درصد از کل تغییرات را توجیه نمودند. در محدوده عامل سیاه‌روی صفات با ضرایب عاملی بالای 0.7 به عنوان ضرایب عاملی معنی‌دار در تظاهرات شدند. تجزیه کلاستری با استفاده از این هفت عامل انجام شد و تغییراتی که در فاصله 9 به پنچ گروه اصلی نقش می‌بیند. این گروهها اغلب در صفت طعم میوه دارای تفاوت بودند و صفت نرم در دانه‌ی نیز در تشکیل کلاسترها مؤثر بود. علاوه بر این، با استفاده از سه عامل اصلی موقتیت زننیپه‌ها در آنالیز تری پلاست مشخص شد که بی‌قوامی، به طعم شیرین تر از زننیپه‌های با طعم سالم و ترش از طعم مخلوطی گردیدند.

واژه‌های کلیدی: اتار، صفات کتی و کیفی، گروه بندی زننیپه‌ها، آنالیز چند متغیره، تجزیه عامل

مقدمه

دانشمندان نشان می‌دهند که ایران می‌تواند میوه اصلی انار (Punica granatum L.) باشد و بسیار از این منطقه به سایر نقاط دنیا پراکنده شده است. (3) امروزه نیز درختان انار در صورت وحشی در جنگل‌های شمال و غرب ایران به فراوانی دیده می‌شود و بی‌توجه به قدمت استفاده برای جمع‌آوری گرده است. شواهد تاریخی و نظری اکثر

1. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشیار، استادیار، دانشیار و دانشجویی کارشناسی ارشد علوم بافتی، دانشکده کشاورزی، دانشگاه تهران

2. اعضای هیئت علمی مؤسسه نهال و بذر، ایستگاه تحقیقات اتار ساری
کشت و کانال ارگان در ایران، تنوّع بسیار زیادی در میان ژنتیپ‌ها و توده‌های محلی آن مشاهده می‌شود. از انجایی که ژنتیپ‌یک گیاه برآیندی از ژنتیپ‌هایی متنوع و متشابه و اثرات متغیر آنها، مشاهده، پیش‌بینی می‌شود، که در ارگان خواصگاه و روش‌گاهگاه این گیاه باید قرنیم‌نمایی بوده است ژنتیپ‌هایی متنوعی در می‌تواند و جوی و داشته باشد. (3) به طوری که ارگان عضو مرکز ابزار (Center of origin) ایجاد و به له‌کن نمونه آن محصول می‌شود و پیش‌بینی (Center of diversity) یکی از انرژی‌های ایرانی است در ارگان اصلی است. با توجه به این که سطح و سویعی از واحدهای اصلی و ابزار مرکز ابزار این محصول می‌شود، روزهای و، خانه‌ها و آب‌ریز شور منطقی کوبی را به موجب محصول مصرف نماید (4، 2 نبایران با داشتن اطلاعات دقیق تر از ژنتیپ‌ها و مولفه‌های زنده در این محصول می‌تواند اصلاح و ابزار ارقام جدیدی برداخت و از طریق برنامه‌های مدیریت، تحقیقاتی ارقام را افزایش دهد، بلکه کاهش کریک و مقاومت پیش‌بینی به شرایط نامطلوب محیط ابزار در هوانها و نهایتاً ارقام مناسبی را اضافه نمی‌نمود.

 хочی‌های مهم مهم می‌باشد این و از این لحاظ الگوها ژنتیپ‌ها تفاوت‌های مشاهده شده است(17). دو نتیجه مهم اکثر اکثر (Spectrobothes ceratoniae) و اکثر گیاه (Euphosphera punica) که بین آن ژنتیپ‌ها و زیست‌گاه‌ها مشاهده می‌شود. نظیر می‌رسد که میوه‌های اسیدی نسبت به میوه‌های شیرین کمتر تحت تأثیر این آفات قرار می‌گیرند (21). مقاومت به ژاپنی و حفظ کیفیت میوه در دوره انبازدهی مهم بوده و تفاوت‌های بین ژنتیپ‌ها از این نظر مشاهده شده است (13).

 در ایران کلکسیون‌های غنی از ژنتیپ‌های این اکثر در شهرهای یزد، ساوه و رامیاهر وجود دارند. اما منافعی اطلاعات کاملی در مورد خصوصیات این ژنتیپ‌ها در دسترس نمی‌باشد. اولین بررسی خصوصیات مولفه‌زیکی مربوط به این منطقه ساوه توسط زمانی صورت گرفته است (3). سپس شهری‌ها که از این نتیجه تأثیر آن اکثر در ایران اثره نمود (24). آخرین با خصوصیات و تفاوت‌های بین ژنتیپ‌ها که امر اساسی برای بهبود کیفیت و کیفیت میوه می‌باشد. در ارزویی‌های زنده‌تر، استفاده از آمار چند متغیره می‌تواند بسیار کارا و با اهمیت باشد زیرا روابط بین صفات ویژگی‌ها مستقل را روش (Factor analysis) می‌سازد. در این تجربه عامل آماری چند متغیره فرم دستی است که برای یک شرایط اجرای عملکرد (20 و 22). استخراج زیر مجموعه‌ای از متغیرهای مهم، شناخت معنا‌های اساسی داده‌های چند متغیره (10)، شناخت ارتباطات پیلوزیکی و کاربردی موجود در بین صفات (8) کاهش تعداد واریاتی از صفات ویژگی‌های پایه‌گذاری از مواردی آن محصول می‌شود. از روش‌های آماری چند متغیره برای تکنیک و گروه بندی زنده‌تر AI (14). خمای (11) و همچنین نسبت درختان محیط استفاده شده است (13، 12، 3، 7 و 19). با توجه به این که ایران می‌باشد و منشا آن اکثر بوده و از نقطه نظر اقتصادی هم این مهم می‌باشد که

148
جدول 1. اسامی زنوتیپ‌های اثر مورد بررسی همانها با کد مربوط به منطقه نمونه‌گیری شده

<table>
<thead>
<tr>
<th>منطقه</th>
<th>زنوتیپ</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>سامی</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>آمل</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>اردکان</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>بوئین</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>یزد</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>کرمان</td>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>همدان</td>
<td>G</td>
<td>7</td>
</tr>
<tr>
<td>تهران</td>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>آذربایجان شرقی</td>
<td>I</td>
<td>9</td>
</tr>
<tr>
<td>تهران</td>
<td>J</td>
<td>10</td>
</tr>
<tr>
<td>بوئین</td>
<td>K</td>
<td>11</td>
</tr>
<tr>
<td>دامغان</td>
<td>L</td>
<td>12</td>
</tr>
<tr>
<td>خراسان شمالی</td>
<td>M</td>
<td>13</td>
</tr>
<tr>
<td>بوئین</td>
<td>N</td>
<td>14</td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>O</td>
<td>15</td>
</tr>
<tr>
<td>بوئین</td>
<td>P</td>
<td>16</td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>Q</td>
<td>17</td>
</tr>
<tr>
<td>کرج</td>
<td>R</td>
<td>18</td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>S</td>
<td>19</td>
</tr>
<tr>
<td>تبریز</td>
<td>T</td>
<td>20</td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>U</td>
<td>21</td>
</tr>
<tr>
<td>شیراز</td>
<td>V</td>
<td>22</td>
</tr>
<tr>
<td>بوئین</td>
<td>W</td>
<td>23</td>
</tr>
<tr>
<td>بوئین</td>
<td>X</td>
<td>24</td>
</tr>
</tbody>
</table>

* اسامی مشترک (هم نام) بین دو منطقه با هم مشخص شده‌اند.

ماد غیاهی
میوه‌های 22 زنوتیپ اثر (جدول 1) از دو منطقه سامی و کرج، شامل کلکسیون اثر سامی و مرکز تحقیقات علوم باغبانی دانشگاه شهید بهشتی، که در مجموع 30 شاخه در مرکز تحقیقات علوم باغبانی حداکثر 12 سال قبل از کلکسیون اثر سامی به کاشت شده‌اند. خصوصیات کمی و کیفی زنوتیپ‌های (جدول 2) بر اساس روش ارائه شده در منبع شماره 3 به شرح: زیر مورد اندازه‌گیری قرار گرفته‌اند.

مواد و روش‌ها
این آزمایش با چهار تکرار از هر زنوتیپ در قالب طرح بلوک‌های کامل تصادفی که اندام‌های میوه‌های بوئین در کلکسیون را تشکیل می‌داد در پاییز 1383 انجام شد. میانگین صفات میوه در زنوتیپ‌های مختلف اندازه‌گیری و برای اندازه‌گیری چند متغیره مورد استفاده قرار گرفت.
در جدول ۲، کاهش گردش آلاینده‌های شهدر از اثرهای مورد بررسی و علائم اختصاصی مربوط به آنها به درصد تغییرات میزان آلاینده‌ها مربوط به یک پدیده نشان داده شده است.

<table>
<thead>
<tr>
<th>شماره</th>
<th>صفت</th>
<th>واحد</th>
<th>تغییرات</th>
<th>حداقل</th>
<th>علائم اختصاصی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>هیدالگا الکتریکی عصاره</td>
<td>میلی موس بسته متر</td>
<td>EC</td>
<td>۰/۲۲</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>۲</td>
<td>تایتربل آدلیتی</td>
<td>میلی موس بسته متر</td>
<td>TA</td>
<td>۰/۲۲</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۳</td>
<td>pH</td>
<td>میلی موس بسته متر</td>
<td>pH</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۴</td>
<td>پروتین ساز</td>
<td>میلی موس بسته متر</td>
<td>pH</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۵</td>
<td>شکر میوه</td>
<td>میلی موس بسته متر</td>
<td>pH</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>FrF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>PBT</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۲۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۳۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۳۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۴۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۴۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۵۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۵۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۶۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۶۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۷۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۷۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۸۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۸۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۹۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۹۵۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۱۰۰۰</td>
<td>SdF</td>
<td>میلی موس بسته متر</td>
<td>ArFW</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
</tbody>
</table>

مقدار کل مواد جامد محلول با استفاده از ربارافوتوسیون (Atago Co., Japan) اندازه‌گیری شد. اندازه‌گیری اسیدیت به آب میوه می‌باشد و بر اساس مقدار جدب نوری آب میوه رقیق شده (پک قسمت آب) انار و سه قسمت آب مقطاع) توسط دستگاه اسپکتروفوتومتر (Perkin Elmer, Lambda EZ201, USA) در طول موج ۵۱۰ نانومتر (میانگین طول موج جدب آنتونسیاها) اندازه‌گیری شد. آب میوه به عنوان شاهد برای اندازه‌گیری استفاده کرد. مقدار pH آب میوه بدون هیچ گونه رقیق سازی EC و pH می‌باشد.
ضرایب همبستگی ساده صفات

همبستگی یک صفت با یک صفت دیگر نوع رابطه را نشان می‌دهد که چه چنین تأثیر محصول نمی‌شود. اما انداده‌گری‌های غیر مستقیم آن می‌تواند به برخی مواقع که انداده‌گری یک صفت بر یک دیگر به خوبی گزارش در بازی مشکل است. می‌توان از صفات دیگری که دارای همبستگی معنی‌دار بالای همبستگی برای انداده‌گری غیر مستقیم استفاده کرد. در این پژوهش ضرایب همبستگی ساده انداده‌گری‌های خودکار در 3 جدول 3 طبیعی را انجام داد. ضرایب همبستگی ساده در صفات نشان می‌دهد که برخی از صفات انداده‌گری‌های شده همبستگی معنی‌دار و دارای وجود دارند. مارس و ماراکیچ گزارش کردند که هیچ رابطه‌ای بین انداده میوه رنگ‌گری پوست و ترکیبات میوه وجود ندارد (17). در این آزمایش همبستگی معنی‌داری بین انداده میوه با مواد جامد محلول، اسیدهای قابل تیراپاسیون و ههدایت الکتریکی عصاره وجود نداشتند. همان‌طور که انتظار می‌رود بین میزان pH و مقدار اسیدهای قابل تیراپاسیون همبستگی بالا و به صورت منفی معنی دار است و pH‌های ترکیب با اسیدهای قابل تیراپاسیون بیشتر در میان‌تر هستند. همچنین بین اسیدهای قابل تیراپاسیون و مقدار هدایت الکتریکی همبستگی معنی‌داری در سطح 0/05 معنی‌داری در بود است. در حالی که بین میزان مواد جامد محلول با هدایت الکتریکی همبستگی معنی‌دار نشد. است. رابطه بین قند و اسیدهای میوه نزدیکی در سطح 0/05 معنی‌داری در بود است. این بدن معنی است که میوه‌های با اسیدهای قابل تیراپاسیون بالاتر دارای مواد جامد محلول (نقده) بیشتری هستند. تأثیر اسیدهای قابل تیراپاسیون بر طعم میوه بهبود و از پیچیدگی خاص و همبستگی بین آنها به

در اینجا ضرایب تغییرات بالایی هستند. احتمالاً معنی‌داری در بود است. در حالی که بین میزان مواد جامد محلول با هدایت الکتریکی همبستگی معنی‌دار نشد. است. رابطه بین قند و اسیدهای میوه نزدیکی در سطح 0/05 معنی‌داری در بود است. این بدن معنی است که میوه‌های با اسیدهای قابل تیراپاسیون بالاتر دارای مواد جامد محلول (نقده) بیشتری هستند. تأثیر اسیدهای قابل تیراپاسیون بر طعم میوه بهبود و از پیچیدگی خاص و همبستگی بین آنها به
جدول ۳ ضرایب همبستگی بین صفات به کار رفته در تجزیه عامل‌ها

<table>
<thead>
<tr>
<th>Trait</th>
<th>EC</th>
<th>TA</th>
<th>pH</th>
<th>TSS</th>
<th>FrFl</th>
<th>ANTO</th>
<th>ArFW</th>
<th>ArDW</th>
<th>ArDWF</th>
<th>SdFW</th>
<th>SdDW</th>
<th>SDW</th>
<th>PIT</th>
<th>FrW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol/cm</td>
<td>%</td>
<td>%</td>
<td>Ratio</td>
<td>Abs.</td>
<td>gr</td>
<td>gr</td>
<td>%</td>
<td>gr</td>
<td>%</td>
<td>mm</td>
<td>gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td></td>
</tr>
<tr>
<td>FrFl</td>
<td></td>
</tr>
<tr>
<td>ANTO</td>
<td></td>
</tr>
<tr>
<td>ArFW</td>
<td></td>
</tr>
<tr>
<td>ArDW</td>
<td></td>
</tr>
<tr>
<td>ArDWF</td>
<td></td>
</tr>
<tr>
<td>SdFW</td>
<td></td>
</tr>
<tr>
<td>SdDW</td>
<td></td>
</tr>
<tr>
<td>SDW</td>
<td></td>
</tr>
<tr>
<td>PIT</td>
<td></td>
</tr>
<tr>
<td>FrW</td>
<td></td>
</tr>
<tr>
<td>FrJ</td>
<td></td>
</tr>
<tr>
<td>FrCL</td>
<td></td>
</tr>
<tr>
<td>FrND</td>
<td></td>
</tr>
<tr>
<td>ArTW</td>
<td></td>
</tr>
<tr>
<td>PitW</td>
<td></td>
</tr>
<tr>
<td>PI%</td>
<td></td>
</tr>
<tr>
<td>Ar%</td>
<td></td>
</tr>
<tr>
<td>ArL</td>
<td></td>
</tr>
<tr>
<td>ArD</td>
<td></td>
</tr>
<tr>
<td>ArL/ArD</td>
<td></td>
</tr>
<tr>
<td>SdL</td>
<td></td>
</tr>
<tr>
<td>SdD</td>
<td></td>
</tr>
<tr>
<td>SdL/D</td>
<td></td>
</tr>
<tr>
<td>SdF%</td>
<td></td>
</tr>
<tr>
<td>Trait</td>
<td>FrJ</td>
<td>FrCL</td>
<td>FrND</td>
<td>ArTW</td>
<td>PITW</td>
<td>Pl</td>
<td>Ar</td>
<td>ArL</td>
<td>ArD</td>
<td>ArL/ArD</td>
<td>SdL</td>
<td>SdD</td>
<td>SdL/D</td>
<td>SdF</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>FrJ</td>
<td></td>
</tr>
<tr>
<td>FrCL</td>
<td></td>
</tr>
<tr>
<td>FrND</td>
<td></td>
</tr>
<tr>
<td>ArTW</td>
<td></td>
</tr>
<tr>
<td>PITW</td>
<td></td>
</tr>
<tr>
<td>Pl%</td>
<td></td>
</tr>
<tr>
<td>Ar%</td>
<td></td>
</tr>
<tr>
<td>ArL</td>
<td></td>
</tr>
<tr>
<td>ArD</td>
<td></td>
</tr>
<tr>
<td>ArL/ArD</td>
<td></td>
</tr>
<tr>
<td>SdL</td>
<td></td>
</tr>
<tr>
<td>SdD</td>
<td></td>
</tr>
<tr>
<td>SdL/D</td>
<td></td>
</tr>
<tr>
<td>SdF</td>
<td></td>
</tr>
</tbody>
</table>

*: معنی‌دار در سطح 5 درصد
**: معنی‌دار در سطح 1 درصد
جدول 2. مقادیر وزه، واریانس و درصد تجمعی واریانس‌ها برای 7 عامل اصلی

<table>
<thead>
<tr>
<th>عامل‌ها</th>
<th>درصد تجمعی واریانس</th>
<th>مقادیر وزه</th>
<th>واریانس نسبی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دارچین</td>
<td>0.294</td>
<td>0.294</td>
<td>32/49</td>
</tr>
<tr>
<td>کار</td>
<td>0.182</td>
<td>0.182</td>
<td>50/37</td>
</tr>
<tr>
<td>گینه</td>
<td>0.115</td>
<td>0.115</td>
<td>73/82</td>
</tr>
<tr>
<td>کورس</td>
<td>0.074</td>
<td>0.074</td>
<td>68/29</td>
</tr>
<tr>
<td>شتر</td>
<td>0.052</td>
<td>0.052</td>
<td>68/29</td>
</tr>
<tr>
<td>گربه</td>
<td>0.035</td>
<td>0.035</td>
<td>59/54</td>
</tr>
<tr>
<td>حیوان</td>
<td>0.013</td>
<td>0.013</td>
<td>98/13</td>
</tr>
</tbody>
</table>

صوترون حفظ عامل اصلی و مستقل به مقادیر وزه آنها پیشتر از
یک بودن. توانست مجموعه 9 درصد واریانس کل را توجیه
نمایند. در عامل اول صفات اسمیت قابل تبادل، آب pH
میوه و گلی انتقال جریان هیدروژنی و درصد
ماده خشک بر دی ضریب معنی‌دار قرار گرفته که 3/29 درصد
از واریانس کل را توجیه کردند. جدول هم‌بستگی صفات
(جدول 3) هم‌بستگی این صفات از نشان می‌دهد که به نوعی
در یک گروه قرار گرفته‌اند. در عامل دوم طول دانه، طول بذره
و نسبت طول به قطر میزان مثبت مقدار 18/24 درصد
از واریانس کل را توجیه نمودند. عامل سوم 13/25 درصد
از تغییرات را توجیه نمود و صفات درصد دانه با ضریب عاملی
منفی و درصد پوست با ضریب عاملی مثبت را در خود جای
داره است. در عامل جهارم میزان آنتی‌کسیت آب میوه با ضریب
منفی و وزن میوه، وزن کل دانه و وزن کل پوست با ضریب
عاملی مثبت 0/9 درصد از تغییرات را توجیه کردند. عوامل
جامه محول با ضریب مثبت در عامل نمود از وارد و دانه با ضریب
درصد واریانس را توجه نمود. در عامل نشانه وزن بذرشک
و تقریب قرار گرفته و 0/25 درصد تغییرات را نشان می‌دهند و
طول تاج میوه در عامل هفتم با ضریب عاملی مثبت
3/56 درصد از کل واریانس را توجیه نمود. با توجه به تجزیه عامل‌ها
می‌توان گفت که بیشترین تفاوت زننیت‌ها از لحاظ
خصوصیات مربوط به عصاره میوه بوده که بیشترین واریانس
(21 درصد) را بین زننیت‌ها ایجاد کرده است. تجزیه عامل

تجزیه به عامل‌ها

با توجه به نشان داده شده به دست آمده از ارزیابی صفات
مختلف مرفولوژیکی در محدوده زننیت‌های مورد بررسی,
امکان تنبیه گسترده واقع و آسان با استفاده از آنالیزهای
واریانس یا تک متغیره وجود ندارد. با استفاده از تجزیه عاملی,
صفات مختلف می‌توانند در قابل عامل‌ها با مؤلفه‌هایی قابل
بیست قرار گیرد که هر گام چند صفت را شامل می‌شود. این
امکن قدرت منجر محقق را برای کار ری تعداد عامل با مؤلفه
کمتری نسبت به تعداد صفات فراهم می‌نماید. جدول 4
نتایج تجزیه به عامل‌ها را نشان می‌دهد. میزان واریانس نسبی
هر عامل نشان دهنده اهمیت آن عامل در واریانس کل صفات

154
ساختار گروه بندی زنوتیپ‌های اتار با استفاده از هفته عامل اصلی به روش وارد:

- گروه بندی زنوتیپ‌های اتار با استفاده از هفته عامل اصلی به روش وارد:

- توانست ۲۸ صفت مورد ارزیابی را به صورت ۷۸ عامل اصلی بیان داد که در بین آنها عامل‌های اول و دوم بیشترین سهم را در توجیه واریانس دارند. این تجزیه می‌تواند عامل‌های بیشتر در تفاوت‌های زنوتیپ‌های مورد بررسی را روشن سازد. با توجه به این که در این پژوهش بیشتر صفات مربوط به میوه ارزیابی شده‌اند، بیشترین واریانس در صفت عصاره میوه مشاهده شده است.

- تجزیه کلسترول:

- گروه بندی ارقام بر اساس تعداد زیادی صفت یا عامل می‌تواند روشی مطمئن در تعیین شرایط‌ها و فواصل غون‌ماندنی یا دوری زنوتیپ‌ها باشد. در این تحقیق تجزیه کلسترول بر اساس هفت عامل اصلی که بیشترین واریانس (۹/۸ درصد) بین صفات را نشان می‌دادند، صورت گرفت. در فاصله ۲۵ ارقام به گروه بندی تفسیم بندی شدند که هر گروه ارقام در شرایط زنوتیپ‌های نر و مرد فاصله ۲۵ به ۹ و ۱ به نظر گرفته شد.
مشاهده می‌شود از ۲۸ ثابت مورد بررسی بین صفر شاخص EC و pH زنده ۱۰۰ بدر تر، درصد پوست و در صد شناوری به‌دست‌آمده پلاس تری نیست به‌شکلی که در منطقه pH مطلوب کمتر از شاخص‌های می‌داد. همچنین در pH اسیدی تر، زنده تر بشتر و درصد شناوری بشتر به‌دست‌آمده خشک گردید. با توجه به این که کرج دارای میانگین دمای پایین تری نسبت به شاخص است، کاهش pH میوه‌ها در این منطقه قابل انتظار است. بنابراین این کاهش اثر معنی‌داری روی شاخص ظلم میوه‌ها نداشت ایست. به علاوه، پایین بودن دمای کرج می‌توان داد در عدم پر شدن پذیره و مشابه شناوری آنها.
جدول ۵. مقایسه میانگین صفات اندازه‌گیری شده برای زنوتیپ‌های هم نام در دو منطقه ساوه و کرج

<table>
<thead>
<tr>
<th>میانگین صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>کرج</td>
</tr>
<tr>
<td>ساوه</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrJ</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>کرج</td>
</tr>
<tr>
<td>ساوه</td>
</tr>
</tbody>
</table>

* در هر ستون میانگین‌هایی که دارای حروف متفاوت هستند در سطح ۱ آزمون چند دامنه‌ای دانکن دارای تفاوت معنی‌داری هستند.*
مطالب مورد استفاده

1. آمیتی، م. ر. قناده و سع. میبانی. 1379. تجزیه عامل‌ها برای صفات مورفولوژیک و فنولوژیک در لوبیا. نهال و بذر.

2. دانایی، م. ر. احمدی و ع. گرایم. 1380. تجزیه کلاستر ارقام سویای ایران و به دست آوردن توابع مورفولوژیک به آنها.

4. فاطمی، د. 1379. بررسی خصوصیات مورفولوژیک آثارهای منطقه ساوه. پایان نامه کارشناسی ارشد علوم پزشکی، دانشگاه تهران.

5. مقدم، م. 1. محمدی شوتویی و م. آقایی سربرزه. 1379. آشنایی با روشنایی آماری چند متغیره. انتشارات پیشبتان علم، تهران.

