افزایش میزان شوری آب آبیاری بر ارقام چمن آفریقایی (Cynodon spp.) در شرایط خاک شور در اصفهان

چکیده

به منظور بررسی اثر میزان مختلف شوری آب آبیاری بر رشد و کیفیت ارقام چمن آفریقایی در خاک شهر ECE=17/2 (دست زیمنس بر متر) یک آزمایش گلدانی به صورت فاکتوریال در قالب طرح یک بُکه‌ای کامل نمادی (۳×3) در دانشگاه صنعتی اصفهان در سال‌های ۱۳۸۱ و ۱۳۸۲ به اجرا در آمد. در این آزمایش، شوری آب آبیاری به عنوان فاکتور اول و پنج سطح شوری (۰/۳۰، ۱/۱۰، ۲/۱۰، ۳/۱۰ و ۴/۱۰ متر) برابر در نظر گرفته شدند. در طول آزمایش ارزیابی رشد چمن با روش مانگ‌سنجی (۱۰ رشته) و سطح ۳ بُکه، وزن خشک با شش هواپیمایی و ریختن تعداد استولن دستک) انجام گیرید. نتایج آزمایش نشان داد که خاک شهری آب آبیاری بیشتری از ارقام مختلف تأثیر مثبتی به طوری که با افزایش سطح شوری درجه رشد کاهش یافته. براساس میانگین ماهیانه در ماه‌های مرداد و در، به ترتیب فوقه و ضعیف ترین رشته میانگین سالانه، نشان داد ارقام Tifdwarfy ISF2 به ترتیب بیشترین و کمترین رشته را داشتند. همچنین با افزایش شوری آب آبیاری سطح بُکه وزن خشک فستیل، طول و تعداد استولن کاهش یافته. افزایش شوری آب آبیاری از ۰/۳۰ تا ۴/۱۰ متر به ترتیب، وزن خشک رشد افزایش و پس از آن کاهش یافته. به دلیل اثر متقابل مشاهده شد، در این آزمایش، ارقام نسبی به شوری متفاوت بود. در این ارقام مورد مطالعه در این آزمایش از نظر کلیه صفات مورد اندازه‌گیری اختلاف معنی‌داری مشاهده شد که حاکی از توان زنینگی بالا بین ارقام چمن آفریقایی مورد مطالعه می‌باشد. در سطح بالای شوری، ارقام JP2 و Midlawn به نظر وزن خشک بُگه‌های سبز، ارقام ۴-۱۸ و ۳۲۰۰ W18-4 از نظر تعداد و طول استولن و ارقام ۴-۱۸ و ۳۲۰۰ W18-4 Midlawn تیف و ارقام ۱-۱۸ Tifway و ارقام ISF1 کمتر نسبت به سایر ارقام Tifway داشتند.

واژه‌های کلیدی: استولن (دستک)، چمن آفریقایی، رشد، رنگ

رضوی، جواد، نیکی‌انا

1. به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار علوم گیاهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. مربی آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
در بررسی های دردک و همکاران (15)، اختلاف رشدی بین بخش‌های فوقانی گیاه و ریشه‌های برومدارگاس مشاهده گردید.

و در نتیجه کاهش در رشد ریشه در بالاترین میزان شوری (9/5 دسمین برم) که همان عکس عمل برومدارگاس را موجب زنده ماندن این گیاه تحت شرایط نشان می‌دهد و ذاکر می‌باشد. همچنین، نتایج پیکوک (Seashore paspalum) (12) برای گزارش نمو‌نامه که ارقام مختلف از تکرک آب درآمبن داده می‌باشد. و یکی از دیگر ارقام لاین مورد ارزیابی بود. آن نتایج به‌طور کلی در اثر نشان شوری طوفانی آسیب نمی‌پذیرد ولی رشد بخش هواپیما به تدریج در میزان شوری 28/6 دسمین برم 50 درصد کاهش می‌پیدا و رشد ریشه‌ها بی‌افزاری شوری 80 دسمین زیستی برگ‌افزاری می‌باشد. همچنین، مارکوم (20) تحقیق دربارهی چنین برومدارگاس را «خیلی خوب» گزارش نمود.

برومدارگاس و همکاران (22) بیان نمودند که از میان 22 رقم برومدارگاس ارکام برای Tifgreen و Tifdwarf شوری دارای حالت مستند بودند. ولی UAE داريای کمترین و پیشترین تحمیل به شوری بودند. در بررسی دیگر (12) رزمجو (13) مقدار تحمیل به شوری برومدارگاس را بالاتر از 30 دسمین زیستی پیش امتحان زده است. در این مطالعه St. Augustinegrass, Seashore paspalum, Bermudagrass، Centipedegrass و همچنین زمینی در 70 درصد میزان گزینه‌ها به حالت مستند بودند. همچنین رزمجو (22) نتایج برومدارگاس (7 رقم و 9 اکوپلاژ نو) از نواحی مختلف به‌طور کلی در اثر نشان شوری طوفانی آسیب نمی‌پذیرد ولی رشد بخش هواپیما به تدریج در میزان شوری 28/6 دسمین برم 50 درصد کاهش می‌پیدا و رشد ریشه‌ها بی‌افزاری شوری 80 دسمین زیستی برگ‌افزاری می‌باشد. همچنین، مارکوم (20) تحقیق دربارهی چنین برومدارگاس را «خیلی خوب» گزارش نمود.

هم اکنون حداکثر سرانه فضای سبز در دنیا بین 5 تا 50 متر مربع متغیر می‌باشد. استانداردد تعریف شده برای ایران 30 متر مربع است. در هیچ کدام از شهرهای بهتر کشور اکثر عزار همتوسازی فضای سپر در حد استانداردهای مطلوب جهانی وجود ندارد. زیرا کوابندی منابع آب یکی از عوامل محدود کننده در توسعه فضای سبز است. این مشکل در استانهای جنوبی و مرکز کشور به دلیل خشکسی و محدودیت شدید منابع آب شیبینی، جدی‌تری می‌باشد (6).

برای اکثر جنگ‌ها خاک نسبتاً حاصلخور و سیستم‌های کشاورزی شکوفا و قابل استفاده است. در کشورهای مختلف حاصلخور است. در استانداردهای ایران برنامه‌ریزی برای استفاده در مناطق گرم، در مناطقی که کاربرد گزارش‌های چنین سرمایه‌داری به خاطر تنش خشکسی و شوری محدودیت دارد. این چنین سازگاری خوبی نشان دادهاند.
این میزان شوری آب آبیاری ارقام چمن آفریقایی (Cynodon spp. در شرایط خاک شور در اصفهان

تجمیل‌شان به شوری آب دریا بررسی نموده و مشاهده‌های کرد که ارزیابی ارقام چمن آب‌یابی انتخاب زنن‌های محتمل به شوری امکان پذیر است و در این بررسی شوری JT
دریا بدون هیچ‌گونه خصوصیات زنن داده. همچنین تأیید به دست آمده توسط رزمجوی (22) نشان می‌دهد که با افزایش تدريجی غلتک شوری آب دریا تحمل به شوری در اکثر ارقام بیشتر می‌شود، بیشترین کاهش تحمل این گیاهان با افزایش تدريجی غلتک نمک در آب آبیاری ممکن است به‌وجود یابد.

بررسی‌های رزمجوی (22) و به‌کمک مطالعات (25 و 26) نشان می‌دهد که توسعه ارقام محتمل به شوری برای ورود به صحت بجهان چن، مخصوصاً در خاک‌های امیدبخش به نظر می‌رسد.

هدف از این آزمایش بررسی اثر سطح مختلف شوری آب آبیاری روی شاخص‌های کیفی و کیفیت رشد آن چمن (Cassiope Rbc) در شرایط آب و خاک شور (E<21/20 و زمین به متر) در هوا خشک اصفهان می‌باشد.

مواد و روش‌ها

به منظور بررسی تحمل به شوری 10 رقم چمن آفریقایی شامل JP2 JP1 JSF2 JSF1 Tifway Tifgreen Tifdwarf
صوئر فاکتوریل 10 (5 همدار رنگ سطح شوری) در قالب طرح بلکهای کامل تصادفی بایه تکرار در سال
1382-1381 انجام گرفت. خاک مورد استفاده دارای پهان لیم
ریسی، pH=7/3 و EC = 7/2 بوده چنین نهایت 400
به میلی‌گرم در کیلوگرم و و
ک میلی‌گرم در کیلوگرم بود.

اجرا آزمایش

(الف) آزمایش به صورت گلستانی و در هوا آزاد به مدت یک‌سال انجام گرفته. به میزان 150 گلستان تصادفی توسط بطری دهانه 25 و ارتفاع 30 سانتی‌متر نهی و ابتدا جهت سهولت در

181
جهت آبیاری املاح نیز در هر نویت آبیاری متوسط گردد. آب مورد نیاز جهت آبیاری املاح با استفاده از رابطه زیر محاسبه می‌گردد (19).

\[L_R = \frac{ECiw}{ECe - ECiw} \times 100 \]

که در این رابطه:
\[L_R = \text{درصد آبیاری مورد نیاز} \]
\[ECiw = \text{هدایت الکتریکی آب آبیاری} \]
\[ECe = \text{هدایت الکتریکی صفحه اشباع خاک} \]
\
\[ECe \times \text{مقدار 10 درصد کاهش محصول زراعی و با استفاده از جدول تحلیل بر روی گیاهان زراعی و علوفه‌اک این کم‌افزایش یا تبعیض گردد.} \]
\
\(\text{اگر منطقه تالاب} \times \frac{\text{میزان 2000 کیلوگرم در هکتار کود فسفات دی اسیدممحاسبه و قبل از کاشت به حکم هر کلگان اضافه گردد. در طی دوره رشد}} \]
\
\(\text{تازه ماهیان مقدار 50 کیلوگرمس به هکتار گذر مناسب}} \]
\
\(\text{برای هر کلگان محاسبه و به صورت کود سرک اعمال گردد.}} \]
\
\(\text{به منظور اعمالات تیمارهای مختلف خاکه به ترکیبات}} \]
\
\(\text{مختلف آب جهت واقع در پارک پیشتری خمینی شهر با متوسط}} \]

شکل 1. منحنی رطوبت خاک

(The National Turfgrass Evaluation Program)
جداول 1. خصوصیات شیمیایی آب آبیاری با پنج سطح شوری مختلف (Cynodon spp.)

<table>
<thead>
<tr>
<th>ترکیبات (میلی‌آب و الاین بر لیتر)</th>
<th>ECe*</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCO3⁻</td>
<td>SO₄²⁻</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>2/4</td>
<td>17/8</td>
<td>14/6</td>
</tr>
<tr>
<td>2/6</td>
<td>2/6</td>
<td>31/6</td>
</tr>
<tr>
<td>2/8</td>
<td>45/3</td>
<td>2/6</td>
</tr>
<tr>
<td>6/1</td>
<td>2/6</td>
<td>13/6</td>
</tr>
<tr>
<td>2/4</td>
<td>53/2</td>
<td>17/6</td>
</tr>
<tr>
<td>2/3</td>
<td>73</td>
<td>19/8</td>
</tr>
</tbody>
</table>

* ECe* در صورت آزمایش با پنج سطح شوری می‌باشد.

نبشتهٔ غربال، علی‌رغم تعداد ۵ کیلومتر نامان‌بستگی و عدد ۱، زرد، نارنجی، شروع اندازه‌گیری این پارامتر بعد از پوشش کامل بود و به صورت منظم در آزمایش گرفته شده است. دیپیش هر شروع شوری شاخصی‌ها در باک‌هایی کافی قرار داده شدند و در خشک‌کردن کن (۵۰/۰ روش) به مدت ۴۸ ساعت در خشک‌گرد و توزین به عمل آمد.

۱) اندازه‌گیری طول و تعداد استلون در پایان آزمایش قبل از برداشت چمن در هر گلدان به طور تصادفی به استاندارد انتخاب گردید و طول آنها توسط خط اکس اندازه‌گیری شد. همچنین تعداد استلون در هر گلدان شمارش و ثبت گردید.

۲) تجزیه آماری

به منظور تجزیه و تحلیل داده‌ها از نرم‌افزارهای SAS و MSTATC و SAS به میانگین‌ها به روش آزمون Jed Damenه دانک انجام گرفت.

نتایج و بحث

۱۳۸۱-۶۲ لگر ارقام در طول ماه‌های ۵۰-۸۰ به صورت میانگین صرف رنگ چمن در نمای‌های مختلف شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه میانگینها در هر گلدان با افزایش شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه میانگین صرف رنگ چمن در نمای‌های مختلف شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه میانگین صرف رنگ چمن در نمای‌های مختلف شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه میانگین صرف رنگ چمن در نمای‌های مختلف شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه میانگین صرف رنگ چمن در نمای‌های مختلف شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه میانگین صرف رنگ چمن در نمای‌های مختلف شوری (جدول ۲) نشان می‌دهد که با افزایش تعداد و شوری لگر ارقام چمن در هر گلدان ماه‌های مختلف با کاهش می‌یابد. در مجموع مقایسه MSTATC به میانگین‌ها به روش آزمون Jed Damenه دانک انجام گرفت.

۲) پژوهش در پایان آزمایش

در پایان آزمایش بخش سبز چمنی گلدان پرداشت و توسط (Leaf Area Meter، دستگاه اندازه‌گیری سطح برق) میزان سطح برق بر Delta-T Scan Image Analysis System حسب سانتی‌متر مربع اندازه‌گیری شد.

۳) وزن خشک بخش حاوی

در پایان آزمایش، بخش حاوی توسط شاخص‌های (شاخص‌های از محل طول) قطع گردید و در پاک‌کاری کافی‌سازی قرار داده شد و به مدت ۴۸ ساعت در خشک‌کردن کن (۵۰/۰ روش) خشک‌شده و توزین به عمل آمد.

۴) وزن خشک ریشه

در پایان آزمایش بعد از جدا کردن بخش حاوی، گلدانها را در تشک‌های ۴ چم در آب قرار داده تا خشک‌شدن موجود در گلدان‌ها
جدول ۲: مقایسه مانگین رنگ چن در تیمارهای مختلف شوری برای هر ماه* **

<table>
<thead>
<tr>
<th>ماه</th>
<th>۱۷/۰۲</th>
<th>۱۴/۰۲</th>
<th>۱۰/۰۲</th>
<th>۶/۹۳</th>
<th>۳/۳۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرداد</td>
<td>۸/۲۲</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۹**</td>
<td>۸/۲۶**</td>
</tr>
<tr>
<td>شهریور</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>مهر</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>آبان</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>آذر</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>دی</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>فوریه</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>خرداد</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
<tr>
<td>تیر</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
<td>۸/۲۸</td>
</tr>
</tbody>
</table>

* دمی زینم برمتر
** در هر رنگ مانگین‌ها که حداکثر دارای یک حرف مشترک هستند بر اساس آزمون چند دامنه‌ای دانکین در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.
*** عدد ۹ بانکر رنگ بالا، عدد ۸ بایان خوب، عدد ۷ خوب، عدد ۶ نسبتاً خوب، عدد ۵ یا کمتر نامحسوب و عدد ۱ زرد رنگ

این ارقام چن گرمی‌سری، تحت شرایط شوری در ماه‌های گرم به دلیل تشدید شوری و در ماه‌های سرد به دلیل ماهیت گرمی‌سری بودن دارای رنگ نامحسوب، ولی در ماه‌های معتدل دارای رنگ خوب بودند. ضمیناً در مجموع رنگ در ISF2 امکان از پرتی رنگ نسبت به سایر ارقام برخوردار بود.

سطح برگ

 مقایسه مانگین سطح برگ در ارقام مختلف نشان می‌دهد که Tidwarf و ۳۲۰۰۰W18-4 ارقام ۴۱۷۲۵0 درجه ۴. سطح برسی را داشته‌اند (جدول ۲). با افزایش شوری آب آبیاری سطح برسی کاهش یافته. به طوری که یک رابطه مستقیم بین شوری آب آبیاری و سطح برسی مشاهده شد (شکل ۲-الف). در مجموع ارقام شوری ۱۵۵۷ام زیرین برسی باعث شده سطح برسی به حدود یک دهم شوری ۱۵۵۷ام زیرین برسی، کاهش یابد، بنابراین به

184
المردانی شوری آب آبیاری بر ارقام چمن آفریقایی (Cynodon spp.) در شرایط خاک شور در اصفهان

شکل ۲. روابط بین صفات مختلف اندازه‌گیری شده و سطح شوری آب آبیاری: (الف) سطح برگ (ب) وزن خشک قسمت هواپیم، (ج) وزن خشک ریشه (د) طول متوسط استolon ه (ه) تعداد استون در گلدان.
جدول ۳ مقایسه میانگین زنگ ارقام مختلف چمن بر موداگراس به طور ماهیانه و سالیانه

<table>
<thead>
<tr>
<th>میانگین سالیانه</th>
<th>تیر ۸۲</th>
<th>خرداد ۸۲</th>
<th>اردیبهشت ۸۲</th>
<th>فروردین ۸۲</th>
<th>دی ۸۱</th>
<th>آذر ۸۱</th>
<th>دی ۸۱</th>
<th>آبان ۸۱</th>
<th>مهر ۸۱</th>
<th>مرداد ۸۱</th>
<th>شهریور ۸۱</th>
<th>مرداد ۸۱</th>
<th>ارقام ارزش</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۵۰</td>
<td>۰/۴۱۰</td>
<td>۰/۴۴۰</td>
<td>۰/۴۸۰</td>
<td>۰/۵۱</td>
<td>۰/۵۶</td>
<td>۰/۵۷</td>
<td>۰/۶۵</td>
<td>۰/۷۱</td>
<td>۰/۸۰</td>
<td>۰/۸۷</td>
<td>۰/۹۵</td>
<td>Tifdwarf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۵۵</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
<td>۰/۴۹</td>
<td>۰/۵۳</td>
<td>۰/۵۸</td>
<td>۰/۶۰</td>
<td>۰/۶۴</td>
<td>۰/۶۶</td>
<td>۰/۷۳</td>
<td>۰/۷۷</td>
<td>۰/۸۶</td>
<td>Tifgreen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۵۲</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
<td>۰/۴۹</td>
<td>۰/۵۳</td>
<td>۰/۵۸</td>
<td>۰/۶۰</td>
<td>۰/۶۴</td>
<td>۰/۶۶</td>
<td>۰/۷۱</td>
<td>۰/۷۷</td>
<td>۰/۸۶</td>
<td>Tifway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۵۳</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
<td>۰/۴۹</td>
<td>۰/۵۳</td>
<td>۰/۵۸</td>
<td>۰/۶۰</td>
<td>۰/۶۴</td>
<td>۰/۶۶</td>
<td>۰/۷۱</td>
<td>۰/۷۷</td>
<td>۰/۸۶</td>
<td>ISF1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۴۱۰</td>
<td>۰/۴۱</td>
<td>ISF2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۵۰</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
<td>۰/۴۹</td>
<td>۰/۵۳</td>
<td>۰/۵۸</td>
<td>۰/۶۰</td>
<td>۰/۶۴</td>
<td>۰/۶۶</td>
<td>۰/۷۱</td>
<td>۰/۷۷</td>
<td>۰/۸۶</td>
<td>JP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۵۰</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
<td>۰/۴۹</td>
<td>۰/۵۳</td>
<td>۰/۵۸</td>
<td>۰/۶۰</td>
<td>۰/۶۴</td>
<td>۰/۶۶</td>
<td>۰/۷۱</td>
<td>۰/۷۷</td>
<td>۰/۸۶</td>
<td>JP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۵۰</td>
<td>۰/۴۰</td>
<td>۰/۴۵</td>
<td>۰/۴۹</td>
<td>۰/۵۳</td>
<td>۰/۵۸</td>
<td>۰/۶۰</td>
<td>۰/۶۴</td>
<td>۰/۶۶</td>
<td>۰/۷۱</td>
<td>۰/۷۷</td>
<td>۰/۸۶</td>
<td>Midlawn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۴۰</td>
<td>۳۲۰۰W۱۸-۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۴۰</td>
<td>۳۲۰۰W۱۹-۹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* در هر ستون و بین میانگین های ماهیانه میانگین هایی که حداکثر دارای یک حرف مشترک هستند بر اساس آزمون چند دامنه دانک در سطح احتمال ۵ درصد اختلاف معنی داری ندارند.
** عدد 9 یا پاسخ طبیعی، عدد 8 سیار خوب، عدد بهتر نسبتاً خوب، عدد 5 یا کمتر نامناسب و عدد 1 زرد رنگ.
جدول 4. اثر میزان شوری آب و اثر متغیر آنها بر سطح برگ (سانتی‌متر مربع) در گلدان در پایان آزمایش **

<table>
<thead>
<tr>
<th>رقم شوری</th>
<th>میانگین 3200W19-9</th>
<th>3200W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری A</td>
<td>149/76</td>
<td>144/76/e</td>
<td>145/76/b</td>
<td>135/76/c</td>
<td>126/76/f</td>
<td>90/76/hj</td>
<td>101/76/d</td>
<td>78/76/ha</td>
<td>101/76/d</td>
<td>78/76/ha</td>
</tr>
<tr>
<td>شوری B</td>
<td>126/18</td>
<td>123/18/e</td>
<td>125/18/c</td>
<td>114/18/b</td>
<td>91/18/hj</td>
<td>61/18/ha</td>
<td>63/18/ha</td>
<td>62/18/ha</td>
<td>63/18/ha</td>
<td></td>
</tr>
<tr>
<td>شوری C</td>
<td>95/91</td>
<td>90/91/e</td>
<td>120/91/c</td>
<td>133/91/f</td>
<td>95/91/ha</td>
<td>57/91/ha</td>
<td>50/91/ha</td>
<td>63/91/ha</td>
<td>50/91/ha</td>
<td></td>
</tr>
<tr>
<td>شوری D</td>
<td>80/91</td>
<td>81/91/e</td>
<td>77/91/c</td>
<td>80/91/b</td>
<td>65/91/ha</td>
<td>74/91/ha</td>
<td>73/91/ha</td>
<td>30/91/ha</td>
<td>73/91/ha</td>
<td></td>
</tr>
<tr>
<td>شوری E</td>
<td>150/0</td>
<td>148/0/e</td>
<td>30/0</td>
<td>14/0</td>
<td>14/0</td>
<td>20/0</td>
<td>14/0</td>
<td>14/0</td>
<td>14/0</td>
<td></td>
</tr>
</tbody>
</table>

* دست زیرین برهم‌کنش
** میانگین هایی که حداقل دارای یک حرف مشترک هستند بر اساس آزمون چند دامنه دانکن در سطح احتمال 5 درصد اختلاف معنی‌داری ندارند.
وزن شکل بخش هواپی مطالعه رگرسیون نشان داد رابطه مستقیم معکوسی بین درجه شوری آب ایباری و وزن شکل بخش هواپی چنین و وجود دارد به طوری که با افزایش شوری وزن شکل بخش هواپی کاهش می‌یابد (شکل -2 ب). از مجموع ارقام شوری 17/8/2017 بررسی بر پایه وزن شکل بخش هواپی به حدود یک هشتم شوری 3/2 دسی زیمنس سر مثلاً پایه (جدول 5) لیکن به دلیل وجود اثر متقابل معنی داری ارقام و شوری و اکثر ارقام مقاومت بود. برای مثال با افزایش درجه شوری آب از 18/7/2017 دسی زیمنس بر بار شکل وزن شکل بخش هواپی Tifwafy کمتر از سینتی باند (یک باد) در میان ارقام مورد استفاده Tifwafy ارقام 18/20 و 3210 و سینتی باند در ریاضیات کمترین وزن شکل بخش را داشتند. این موضوع می‌تواند مربوط به سطح برق آن باشد (جدول 4).

در بررسی رزمجود و همکاران (22) نیز ارقام جسم برپورداگر از نظر عکس العمل به سطح مختلف شوری نتایج داشتند و در این بررسی ریش IR مقاومت بود و رقم IR حساس بود و رقم IR مقاومت از ارقام Tifgreen بود. آنها نخاطر نشان می‌نمودند که یک تنش Tifwafy و Tifdwarf زنیکی از نظر عکس العمل به شوری در این ارقام چمن و وجود دارد. به هر حال اولین تنش شوری روی گیاه کاهش رشد است که در گیاهان متحمل کمتر می‌باشد (8).

وزن شکل بخش ترقی مقایسه میانگین وزن شکل بخش و دسته از ارقام مختلف شوری به ترتیب باند و JPD 2 و 3200 و سینتی باند در ریاضیات وزن شکل ریشه را داشتند (جدول 6) به طور میانگین، با افزایش شوری آب ایباری از 75/30 دسی زیمنس بر بار وزن شکل بخش ریشه افزایش یافت. این نتایج یک بار به کاهش گذشت (جدول 6).

مالیات برق داده‌های افزایشی کاهش سرعت برق و رقم IR نتایج که در مطالعه رزمجود و همکاران (22) نیز افزایش شوری، رقم IR ضرر دارد خاصیت دیده و رقم IR نتایج که در مطالعه با گیاه‌ها و این اثر مخرب که مورد بر سر باند پاتولوژی و فضای بین سولوی برق دارد. این کاهش سطح برق می‌گردد و با Tifwafy و Tifdwarf وزن شکل بخش کاهش می‌یابد. همچنین مطالعات با گیاه سویا (10) نشان داد که با افزایش شوری میزان توسه برق به طور معنی‌داری کاهش می‌یابد که این کاهش ناشی از ریزش تعدادی از برق‌های مسن و نیز توقف توسه و رشد برق می‌باشد. با توجه به این که یکی از آثار شوری در گیاه جلوگیری از جذب آب و ایجاد تنش عضلانی است به این علت توانست آب جهت آماس سولوی کاهش برق و در نتیجه وزن توسه و توسه برق نیز کاهش می‌باشد. از طرفی در گیاه‌های بالای نیمک یون‌های سرد و کلر باعث معمولی گیاه شده و عفونیت فتوسنتزی آن را مختل می‌کند به این ترتیب مواد غذایی لازم برای رشد و کاهش سلول‌ها فراهم نشده و توسه برق‌ها به کندر سرعت می‌گیرد.

لاهوتو و رزمجود زاده (9) کشاورزی داده‌های باین افزایش شوری میزان کارولفیل A و B کاهش می‌یابد و این به این میزان کارولفیل A بیشتر تحت تأثیر شوری قرار می‌گیرد و نیز کارولفیل B مهم‌ترین نسبت به سایر رگدانه‌ها در گیاه کارولفیل برق دارد و از آن که نمی‌تواند ماه گیاه (برگ و ساقه و...) با کارولفیل مرتبط است، پس کاهش وزن شکل

گیاه در بسیاری و نهایتاً فتوسنتز باشد.
جدول 5. اثر میزان شوری، ارقام و اثر متقابل آنها بر وزن خشک (گرم در هر مترمربع) فسته هوایی چمن در پیان آزماش**

<table>
<thead>
<tr>
<th>رنگ</th>
<th>میانگین</th>
<th>3200W19-9</th>
<th>3200W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41/33</td>
<td>58/0^a</td>
<td>48/3^d</td>
<td>53/7^b</td>
<td>45/8^de</td>
<td>43/8^ef</td>
<td>35/9^kl</td>
<td>19/0^PF</td>
<td>40/7^ef</td>
<td>14/0^PF</td>
<td>4/5^f</td>
</tr>
<tr>
<td>B</td>
<td>43/4/3</td>
<td>51/7^bc</td>
<td>47/7^jk</td>
<td>50/0^bc</td>
<td>39/9^e j</td>
<td>37/0^j k</td>
<td>35/1^kl</td>
<td>14/0^ku</td>
<td>4/5^f</td>
<td>10/0^jk</td>
<td>4/5^f</td>
</tr>
<tr>
<td>C</td>
<td>26/81</td>
<td>33/0^m</td>
<td>54/1^ej</td>
<td>41/4^e j</td>
<td>31/5^m</td>
<td>26/8^m</td>
<td>23/3^m</td>
<td>14/0^s</td>
<td>0/1^f</td>
<td>10/0^jk</td>
<td>14/0^s</td>
</tr>
<tr>
<td>D</td>
<td>27/33</td>
<td>48/4^pq</td>
<td>56/4^pq</td>
<td>42/3^pq</td>
<td>33/1^pq</td>
<td>24/7^pq</td>
<td>14/0^pq</td>
<td>14/0^pq</td>
<td>14/0^pq</td>
<td>14/0^pq</td>
<td>14/0^pq</td>
</tr>
<tr>
<td>E</td>
<td>4/0</td>
<td>57/3^vxy</td>
<td>58/7^vxy</td>
<td>4/0^vxy</td>
<td>3/7^vxy</td>
<td>3/7^vxy</td>
<td>5/7^vxy</td>
<td>3/7^vxy</td>
<td>5/7^vxy</td>
<td>10/0^vxy</td>
<td>14/0^vxy</td>
</tr>
</tbody>
</table>

**: میانگین هایی که حداکثر یک حرف مشترک هستند، بر اساس آزمون جنچ دانکن در سطح احتمال 0.05 درصد اختلاف معنی داری ندارند.

*: دستی زیانس پرمر
جدول ۶ اثر میزان شوری، ارقام و اثر متقابل آنها بر وزن خشک (گرم در مترمربع) ریشه در پایان آزمایش **

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار شوری</th>
<th>میانگین</th>
</tr>
</thead>
</table>
| 277/53 | ۳۳/۱ د | ۳۹/۴ د
| ۲۷۷/۸ | ۴۶/۷ د | ۴۷/۵ د
| ۲۸۸/۷ | ۵۲/۱ د | ۳۶/۳ د
| ۲۸/۱۱۸ | ۲۲/۱ د | ۲۲/۷ د
| ۲۸/۵ | ۴۷/۹ د | ۴۷/۹ د
| ۲۸/۱۱۸ | ۴۶/۸ د | ۴۵/۵ د

* دمای زیر می‌تواند بر میزان شوری تأثیر بگذارد.

** میانگین‌هایی که حداقل دارای یک حرف مشترک هستند بر اساس آزمون چند دامنه‌ای دانکن در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.
آرزوی نژاد شوری آب آبیاری در ارتفاعات (Cynodon spp.) در شرایط خاک شور در اصفهان

این موضوع باشد. بی نظر می‌رسد ارقام محتمل به شوری در سطوح مختلف شوری به رشد و تخمین سلول‌های اندیش‌های خود ادامه می‌دهد (۱۳).

تعداد استوکون (دستک)

افراز شوری آب آبیاری نیز باعث کاهش تعداد استوکون گردیده (شکل ۲-ه). به طوری که در مجموع ارقام شوری آبیاری ۱۸/۷دسی زیمنس برمر باعث شده است تعداد استوکون به حدودهای یک پنجم شوری ۳/۷دسی زیمنس برمر کاهش یابد (جدول ۸). ولی به دلیل وجود اثر مقابل معنی‌دار بین ارقام و شوری واکنش ارقام متفاوت بود. برای مثال با افزایش شوری آب به ۱/۳/۷دهسی زیمنس برمر باعث شده شوری واکنش ارقام متفاوت بود و برای مثال با افزایش باعث شده واکنش ارقام متفاوت بود. در تحقیقات صنعت زراعتگردن رقم نیز از تعداد استوکون بیشتر برخوردار Tifgreen و Tifway بودند (۷).

لزوم به ذکر است که کاهش تعداد و طول استوکون به علت کاهش رشد و تخمین سلول‌های شوری و پیشرفت در ارقام حساس می‌باشد (۱۳). همان طوری که نظر شوری این امر به علت اثرات اسمیوم، سمیت بوده و اثرات مقابل آنها می‌باشد (۱۲).

در مجموع می‌توان اظهار داشت که در سطوح بالای شوری از نظر وزن و نیز Tifway و JP2 از نظر وزن خشک ریشه و Tifway از نظر وزن خشک ریشه و Tifway از نظر وزن خشک ریشه و ارقام Tifway و JP2 از نظر حساسِ سلول در ارقام مختلف (جدول ۷) مقایسه بین ارقام شوری البرزی در ارتفاعات با Tifway و JP2 بر ترتیب بیشترین موجود و ارکم شوری از نظر وزن خشک ریشه و ارقام Tifway و JP2. این رقم‌ها تهیه نشان داده شد و نیز در Tifway واکنش بیشتری داشتند.

در مجموع، شوری در ارتفاعات به عنوان یک مکانیزم کارایی در ارتفاعات در ایران می‌باشد.
جدول ۷. اثر میزان شوری، ارقام و اثر متقابل آنها بر طول متوسط استوان (سانتی متر) در پایان آزمایش**

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>میانگین</th>
<th>۲۰۰۰W19-9</th>
<th>۲۰۰۰W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم</td>
<td></td>
</tr>
<tr>
<td>۲۵/۲۶ A</td>
<td>۲۱/۳۳ bk</td>
<td>۲۷/۳۶ ef</td>
<td>۳۳/۱ bc</td>
<td>۲۱/۱ b</td>
<td>۲۱/۱ b</td>
<td>۱۸/۷ ma</td>
<td>۲۷/۹ b</td>
<td>۳۸/۱ a</td>
<td>۲۹/۴ d</td>
<td>۱۰/۷ b</td>
<td>۳/۳ b</td>
</tr>
<tr>
<td>۴۴/۲۱ B</td>
<td>۱۹/۵ km</td>
<td>۲۶/۸ gh</td>
<td>۲۰/۱ m</td>
<td>۲۴/۸ h</td>
<td>۱۷/۸ b</td>
<td>۲۳/۷ c</td>
<td>۳۲/۱ h</td>
<td>۲۸/۷ f</td>
<td>۸/۶ b</td>
<td>۶/۹ c</td>
<td>۱۴/۸</td>
</tr>
<tr>
<td>۴۱/۰ C</td>
<td>۱۸/۷ mo</td>
<td>۲۷/۳ gh</td>
<td>۲۴/۸ d</td>
<td>۲۳/۸ md</td>
<td>۱۸/۷ p</td>
<td>۲۷/۸ d</td>
<td>۲۶/۸ g</td>
<td>۱۰/۰ d</td>
<td>۱۰/۲ B</td>
<td>۶/۹ c</td>
<td>۱۴/۸</td>
</tr>
<tr>
<td>۱۷/۶ D</td>
<td>۱۹/۵ km</td>
<td>۲۴/۸ hi</td>
<td>۱۳/۸ h</td>
<td>۱۹/۸ ma</td>
<td>۲۷/۸ h</td>
<td>۲۴/۸ h</td>
<td>۲۰/۷ m</td>
<td>۲۰/۷ m</td>
<td>۸/۶ b</td>
<td>۶/۹ c</td>
<td>۱۴/۸</td>
</tr>
<tr>
<td>۷/۷1 E</td>
<td>۳/۰ v</td>
<td>۱۳/۵ qm</td>
<td>۱۳/۱ a</td>
<td>۹/۰ m</td>
<td>۸/۲ v</td>
<td>۱۳/۱ qm</td>
<td>۱۳/۱ qm</td>
<td>۱۷/۸ g</td>
<td>۱۰/۰ d</td>
<td>۶/۹ c</td>
<td>۱۴/۸</td>
</tr>
</tbody>
</table>

تمامی جدول‌ها به پایان بررسی می‌رسد.

** دستی زیستی بر روی

*** میانگین هری که حداقل دارای یک حرف مشترک هستند بر اساس آزمون جنگی دامنه‌ای دانکن در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.
جدول ۸. اثر میزان شوری، ارتفاع و اثر مقابل آنها بر تعداد استolon در گلدان در پایان آزمایش **

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار شوری*</th>
<th>میانگین</th>
<th>3200W19-9</th>
<th>3200W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۶۰/۱۳</td>
<td></td>
<td>۵۰/۱۸۸٤</td>
<td>۵۹/۱۸۶٤</td>
<td>۷۴/۱۹۳ود</td>
<td>۵۳/۱۸۳٣</td>
<td>۵۳/۱۸۳٣</td>
<td>۵۸/۱۹۰٤</td>
<td>۸۱/۱۹۰٤</td>
<td>۶۵/۱۸۸٤</td>
<td>۳۵/۱۸۷٤</td>
<td>۳۵/۱۸۷٤</td>
</tr>
<tr>
<td>B</td>
<td>۵۴/۰۵</td>
<td></td>
<td>۴۸/١٨٨٤</td>
<td>۴۸/١٨٨٤</td>
<td>۷۵/۱۹۳ود</td>
<td>۴۸/۱۹۸٤</td>
<td>۴۸/۱۹۳ود</td>
<td>۷۸/۱۹۳ود</td>
<td>۸۰/۱۹۳ود</td>
<td>۷۶/۱۹۸٤</td>
<td>۲۳/۱۸۸٤</td>
<td>۷۹/۱۸۳ود</td>
</tr>
<tr>
<td>C</td>
<td>۴۸/۹۴</td>
<td></td>
<td>۳۶/۱٨٨٤</td>
<td>۴۸/۱٨٨٤</td>
<td>۵۳/۱۹٠ود</td>
<td>۴۸/۱٨٩٤</td>
<td>۴۸/۱٨٩٤</td>
<td>۴۸/۱٨٩٤</td>
<td>۷۳/۱٨۸٤</td>
<td>۷۵/۱۹۳ود</td>
<td>۱۰/۱۸۸ود</td>
<td>۱۰/۱۸۸ود</td>
</tr>
<tr>
<td>D</td>
<td>۳۹/۸۸</td>
<td></td>
<td>۳۱/٢٩٤ود</td>
<td>۴۱/٢٩٤ود</td>
<td>۲۶/۱٨٨٤</td>
<td>۴۱/٢٩٤ود</td>
<td>۴۱/٢٩٤ود</td>
<td>۲۶/۱٨۸٤</td>
<td>۹/١٨۸ود</td>
<td>۲۴/۱٨٨ود</td>
<td>۲۳/۱٨٩ود</td>
<td>۱۴/۱٨۸ود</td>
</tr>
<tr>
<td>E</td>
<td>۱۳/۸٤</td>
<td></td>
<td>۹/١٨٨ود</td>
<td>۲۲/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
<td>۱۵/١٨٨ود</td>
</tr>
</tbody>
</table>

* دست زیمنس بر می‌آورد

** میانگین هایی که بین دو یا چند گруه مشترک هستند بر اساس آزمون چند دامنه یکنواخت در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.
نمایندگاری

یان، پ. 82-20.

۱.7. نیکمی، ج. 1952. تأثیر تجاری‌های مختلف کودی و نوری بر روی رشد سه نوع چمن. پایان نامه کارشناسی ارشد باغبانی، دانشگاه تهران.

۱.8. کافی، م. ع. ن. 1379. گیاه‌شناسی کاهانی به نشانه‌های محیطی. انتشارات دانشگاه فردوسی مشهد.

۱.9. لاهوتی، م. و. ر. رحمت زاده. 1371. اصول دیتیولورژی گیاهی. انتشارات آستان قدس رضوی، مشهد.

۱.10. نیکی، ح. و. میرعموصوی. 1378. بررسی عکس العمل‌های فیزیولوژیکی سویا در شرایط نش میوه، علوم و صنایع کشاورزی

