تأثیر فاصله اندونها ی بر خصوصیات فیزیولوژیکی و مقاومت به سرما در دو گونه فسکویی
مرتعی و فسکویی بند

مهدیه پارسیان، آقافزار میرولیحانی، عبدالمحجید رضایی و مجتبی خیام نکویی

چکیده

به منظور بررسی نقش اندونها ی بر ایجاد خصوصیات با ارزش فیزیولوژیکی و اندازهی مقاومت به سرما در دو گونه فسکویی مرتعی (Festuca arundinacea Schreb.) و فسکویی بند (Festuca pratensis Huds.) که در بخش‌های تابستانی ایران به‌طور رایج و عمده گزارش شده لازم بود، تحقیقی در زمینه تأثیر این اندازه‌ها در مراحل مختلف گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شد. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، نطفه و نهادن) و گروه سه می‌بایستی الاکتوبر (با مراحل گسترش، نطفه و نهادن) انجام شدند. در این مطالعه، در اقلیم شمالی لله به استفاده از روش‌های چهارشکنی، در مراحل مختلف، گام‌های تولید نطفه که شامل ۲۰ تا ۳۰ درصد نسبی آب بی‌بی و طوفان کریوئیدی می‌باشد انجام شدند. در کل این تحقیق سه می‌بایستی الاکتوبر (با مراحل گسترش، گل‌گذاری و نفوذ)، گروه و اکتوبر (با مراحل گسترش، N9

واژه‌های کلیدی: فاصله اندونها ی، اندونها ی فسکویی مرتعی، فسکویی بند، مقاومت به سرما، صفات فیزیولوژیکی

مقدمه

سرما، به عنوان یکی از تنش‌های محیطی غیرزیستی، مشکلات بسیاری را برای گیاهان چه در سطح سلولی شامل و اکتشه‌ها از دست دادن فشار تورسپانس و بر هم خوردن تعادل غشایی به دنبال کشش تغییرات مولکولی مورفولوژیک و

غذاهای، بیوستروم، کاهش جذب خلاص فتوسنتزی، توقف رشد و در نها نمرگ گیاه را به همراه دارد (۲).
فیزوپولیکس ناشی از حضور فلورا قاره‌های اندوفیتیا در گونه‌هایی از جنس مستقرکننده (به دارای همبستگی علف‌فول و سازگاری و سبب می‌باشند)، مختصات اصلاح باتان به به‌ره‌گیز از این راه‌انداز در ایجاد گیاهان دارای عملکرد بهینه و عادات رشدی کارآمد در شرایط تنش تغییر شده‌اند.

اندوافیتیا هم‌رستن با گیاهان علفی خانواده گندم‌های Neotyphodium، فلورا قاره‌ای از جنس Clavicipitaceae و خانواده گیاهان آلوهده به نتیجه در مقیمی شدن و ضمن ذائق از میزان درک همبستگی با گیاهان این نشان‌دهنده آب و هوای مزید با ایجاد نمی‌کند (4 و 11).

اندوافیتیا به توصیف ملاحظه‌ای در حفاظت بیولوژیک گیاهان در برابر نگهداری خشکی و مقاومت به بیماری‌های قارچی و ویروسی دارند. همچنین در افزایش عملکرد (بذر و علف) و دودگی، میزان آلانتراتیک با عفقت‌های مری و مقاومت به شرایط ناسازگار محیطی مانند pH خشکی تغییرات نسبی و سبب ناصرفه بهبود در فرآیندهای تولید اقلام به وسیله نش در گیاهان آوندی، فلورا قاره‌ای. بی‌خوابی و باکتری‌ها. از نظر تجمع باگت‌لی‌ها، شیب اتیا و جویدار که به نسیم مطالعات مایکروسیمیایی تایید شده است. این تحقیقات ها شامل ترکیبات نیتروژنی (مانند پرولین) و ترکیبات اینن، هیدروفیلی می‌باشد (2). مایکروسیمیایی مایکروسیمیایی (2). بررسی مکانیسم‌های مقاومت به خشکی در گیاهان، اظهار داشتند حضور آسیدامیدی پرولین که بکی از محدوده تجزیه آلکانئید از کروت و سنتر پیرامون تولید شده توسط قاره‌های اندوفیتیا می‌باشد، تحمب بهتر نشان‌های آب کشیدگی را در میزان‌های آلوده امکان دُز در سازه (16). محلول‌های مانند پرولین با تری‌هالوژ تجمع یافته در سازه، نوعی نشان حفاظتی برای غشای سلولی دارند. غلظت بالای پرولین در بوست میوه گریپ فروت نشان داد که مقاومت این میوه به دماهای بالایی هم در مزرعه و هم در محیط‌های انتاری به‌بود می‌پاید. وجود پرولین در بوست سلولی سبب زمینی، آن را
تأثیر قارچ های اندازه‌گیری در خصوصیات فیزیولوژیکی و مقاومت به سرما در دوره گونه ...

با توجه به آثار گزارش شده قارچ های اندازه‌گیری بر تحریک تنظیم اسپری، تغییر آب شرکتی در مناطق رشدی حساس گیاه (طوری‌ها) و احتمالاً پیاداری عضایانی سلولی هنگام قدرت گیاه را در مقابل با نش سرما افزایش می‌دهند، به نظر می‌رسد که این قارچ ها حضور معنی‌داری در رفتار صفت مقاومت به سرما داشته باشند. چنانچه اثر مثبت حضور اندازه‌گیری در ایجاد گیاهان مقاوم به سرما اثرات گردیده، چنان گیاهانی می‌توانند مستقیماً جهت کشت در محیط‌های سرد انتخاب گردده و با یا از قارچ های محتوی آنها به عنوان پانسیل جدید در اعضا زنده کردن به سرما طریق روش های مختلف اندازه گیری تمایل استفاده نمود. اما علی رغم مطالعات انگلیسی شده برای درک اندازه‌گیری در به‌کارگیری که خیلی نسبت به شرایط شرطی محلی، گیاهان یابی بی‌پر تأثیر اندازه‌گیری در موارد شدن گیاه با تنها دمای پایین، منشتر نشده است. تحقیق حاضر گامی در راستای بررسی این امر از همیشه اندازه‌گیری خواهد بود.

مواد و روش‌ها

این پژوهش در سال 1381 در دو چهار گل‌خانه و آزمایشگاهی در دانشگاه کشاورزی دانشگاه صنعتی اصفهان به اجرا درآمد. ماده آزمایشی مورد استفاده شال سه کلون بود.

Festuca pratensis Schreb.

کلون از گیاه فسفوئید (فستوکا ۷۵) که هزارا یولئید بوده و یک کلون از گیاه

Festuca pratensis Huds.

Festuca pratensis (فستوکا ۶۰) که دیپولید می‌باشد.

پس از کاست بذردهی آلوه در یک هکتار در دوره گونه ۷۵ و۸۳ گیاه‌های حاصل از نظر ثابت حضور اندازه‌گیری اندازه‌گیری بررسی شدند. بدین منظور نمونه‌هایی از گل غلاف برگ از هر یک بونه به گردید، و پس از رنگ آمیخته‌ای با رنگ رنگ‌های (۷۰ موردنانه) میکروشکوپی قرار گرفتند. سپس از هر توده یک بونه که دارای حداکثر تراکم های فلاری در بافت
نوبت ۱ میزان چند نوری مقادیر مشخص از آل-پروپیل (محلول‌های استاندارد) در طول موج ۵۰ نانوترم

با تیمار شاهد به میزان ۷۵ درصد و تن مالیم (۴ درجه) به میزان ۶ درصد این صفت را کاهش دادند (جدول ۱۰). با عنايت به معنی در شدن اثر زنوتیپ × انودافایت در کلیه سطح‌نش نانوپیک (جدول‌های ۱۵ و ۱۶)، مقدار میانگین‌ها در تجربه چهارگانه با انگشت یکی تنش زنوتیپ ۳۸ نانومتر اندودافایت و با از این دو مولفه (۸۳ E۵۰) و پس از این ۴۰ نانومتر در حفظ محتوای آب برگ و در نتیجه مقاومت بیشر در برای نش آب کشیدگی ناشی از سرما بود (جدول‌های ۵ و ۹).

اثر زنوتیپ، انودافایت، دما و آثار ترکیبی آنها در تجزیه مربک در سطح اختلال ۱ درصد بسیار معنی‌دار بود (جدول ۵). حضور انودافایت در مجموع منجر به آفزایش ۲ درصدی در محتوای نانوآب برگ در مقایسه با عدم حضوران جرجدی (جدول ۱۰). مارکس و کلای (۱۷) یکی از علل مقاومت گیاهان آلوده به فلز را در مکمل نش آب کشیدگی (و احتمالاً سرما) کاهش از دست دادن آب ذکر نمودند. تنظیم فشار تورژنسنس در شرایط محضودرتویت مکانیسم دیگر است که گیاهان آلوده می‌توانند شرایط کمبود رطوبت را بهتر تحمل نمایند.

محفوظی و مجیدی (۱۳) اعلام نمودند که ارقام مقاوم به نسبت سرما بر اثر انجماد، این یافته که منجر به چنین نتایجی است که از دست مدهند. لویت (۹) نیز در این راستا پیشنهاد نمود که افزایش توان گیاه

محتوای نسبی آب طوفانی به روش مشابه اندودافایت گردید. به منظور اندودافایت میزان ترازوی یونیکس، پس از گذشت روز از نابه‌اکثریت دمایی، چند بیثور به طور تصادفی گیاه کن تغذیه و برگهای رشد یافته و همسان آنها جدا کردند و به قطعات ۱ سانتی‌متری بردیدند. در ۵/۰۵/۰۴/۲۰۱۳ این قطعات برگی پس از ۳ مروتی مشخص داشتند، در لوله آزمایش حاوی ۲۰ میلی‌لیتر آب در بار تغذیه قرار داده شد. مقدار هدایت الکتریکی محلول‌های EC از ۴۸ ساعت تا ۱۲ ساعت در ۷ طبقه دیجیتال قرار گیردید (در زمان فرانک، نمودن به وسیله حمام آب گرم به دلیل ۳۵ درجه رسانه شدند). پس از انجام مراحل قبل انتوکلوانید، آن گام پس از رسیدن به دمای ۲۵ درجه سانتی‌گراد محدوده الکتریکی محلول‌های اندودافایت گردید. درصد آسیب وارد به گیاه با استفاده از تقسیم کردن میزان هدایت الکتریکی قبل از انتوکلوانید آن به انتوکلوانید ضربه ۱۰۳ میکروآمپر گردید.

محتوای پروپیل ۴/۰۵/۲۰۰۴ پس از تزریق در روز چهاردهم ۹/۵ از تیمارهای دومی به روش بیتر و همکاران (۶) اندودافایت شد. میزان جذب نمودن‌های آماده شده در طول موج ۵۰ نانوترم به دست آمد. به منظور تبدیل طول موج‌های خون‌اندازه به میزان پروپیل، محلول‌های استاندارد با مقادیر مشخصان آل-پروپیل خاص‌ته نه شد. این محلول‌ها هم در طول موج ۵۰ نانوترم فرآیند گردیدند. سپس ارتباط بین گلوله پروپیل و جذب نور با استفاده از بهترین منحنی درجه دوم دیویسشند شد و از روی این منحنی میزان گلوله پروپیل بر حسب میکروآمپرد. گرم وزن نمودی به دست آمد (شکل ۱).

نتایج و بحث

مقدار نسبی آب برگ

مقدار نسبی آب در برگ در اثر افرازیون شدت تنش کاهش یافت. تیمارهای دوپت مختلفی از لحاظ این صفت در گروه‌های آماری متفاوتی قرار گرفتند. تنش شدید (۱۰–۵ درجه) در مقایسه

۲۰۰
جدول 1. تجزیه و بررسی مقادیر آب نسبی برگ، مقادیر آب نسبی طوفه، میزان تراوش پویی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پرولین، در زنوتیپ‌های ۶۰، ۷۵ و ۸۳.

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادی</th>
<th>مقادیر آب نسبی برگ</th>
<th>مقادیر آب نسبی طوفه</th>
<th>میزان تراوش پویی</th>
<th>میزان تجمع پرولین</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>۲</td>
<td>۳۷/۳۸</td>
<td>۱۳۵/۸۶</td>
<td>۲۸۳/۵۶</td>
<td>۴۵۴/۷۵</td>
<td>۶۵۷/۹۶</td>
</tr>
<tr>
<td>انفولایت</td>
<td>۱</td>
<td>۱۴۴/۵۰</td>
<td>۶۰/۵۱</td>
<td>۲۴۱/۷۹</td>
<td>۷۴/۰۵</td>
<td>۴۳/۹۸</td>
</tr>
<tr>
<td>زنوتیپ × انفولایت</td>
<td>۲</td>
<td>۹۵/۲۷</td>
<td>۸۳/۷۵</td>
<td>۶۷/۶۱</td>
<td>۹۴/۵۴</td>
<td>۴۳/۹۸</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۲</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
</tr>
<tr>
<td>درصد ضریب نگریزات</td>
<td>۱۸/۵۰</td>
<td>۹/۵۰</td>
<td>۶/۵۰</td>
<td>۶/۵۰</td>
<td>۶/۵۰</td>
<td>۶/۵۰</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی دار در سطح احتمال ۰/۰۵ و ۰/۰۱ درصد.

جدول 2. تجزیه و بررسی مقادیر آب نسبی برگ، مقادیر آب نسبی طوفه، میزان تراوش پویی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پرولین، در زنوتیپ‌های ۶۰، ۷۵ و ۸۳.

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادی</th>
<th>مقادیر آب نسبی برگ</th>
<th>مقادیر آب نسبی طوفه</th>
<th>میزان تراوش پویی</th>
<th>میزان تجمع پرولین</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>۲</td>
<td>۴۳/۵۶</td>
<td>۱۳۵/۸۶</td>
<td>۲۸۳/۵۶</td>
<td>۴۵۴/۷۵</td>
<td>۶۵۷/۹۶</td>
</tr>
<tr>
<td>انفولایت</td>
<td>۱</td>
<td>۱۴۴/۵۰</td>
<td>۶۰/۵۱</td>
<td>۲۴۱/۷۹</td>
<td>۷۴/۰۵</td>
<td>۴۳/۹۸</td>
</tr>
<tr>
<td>زنوتیپ × انفولایت</td>
<td>۲</td>
<td>۹۵/۲۷</td>
<td>۸۳/۷۵</td>
<td>۶۷/۶۱</td>
<td>۹۴/۵۴</td>
<td>۴۳/۹۸</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۲</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
<td>۸/۵۰</td>
</tr>
<tr>
<td>درصد ضریب نگریزات</td>
<td>۱۸/۵۰</td>
<td>۹/۵۰</td>
<td>۶/۵۰</td>
<td>۶/۵۰</td>
<td>۶/۵۰</td>
<td>۶/۵۰</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی دار در سطح احتمال ۰/۰۵ و ۰/۰۱ درصد.
جدول 3. تجزیه واریانس مقدار آب نسبی برگ، مقدار آب نسبی طوقه، میزان تراش پونی، درصد خسارت غشای سینتیپلاسمی و میزان تجمع پرولین، در زنویع‌هاي ۳۰، ۶۰، ۹۰ و ۱۲۰ روزه

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادي</th>
<th>مقدار آب نسبی برگ</th>
<th>میزان خسارت غشای سینتیپلاسمی</th>
<th>میزان تراش پونی</th>
<th>مقدار آب نسبی طوقه</th>
<th>میزان تجمع پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنویع</td>
<td>۲</td>
<td>۰.۰۳۹</td>
<td>۶.۰۲۷</td>
<td>۶.۰۸۷۰</td>
<td>۶.۰۷۰۰</td>
<td>۳.۷۰۰۰</td>
</tr>
<tr>
<td>اندکافايت</td>
<td>۱</td>
<td>۰.۸۹</td>
<td>۶.۰۲۷</td>
<td>۶.۰۸۷۰</td>
<td>۶.۰۷۰۰</td>
<td>۳.۷۰۰۰</td>
</tr>
<tr>
<td>زنویع × اندکافايت</td>
<td>۲</td>
<td>۱۰.۰۷۲</td>
<td>۶.۰۲۷</td>
<td>۶.۰۸۷۰</td>
<td>۶.۰۷۰۰</td>
<td>۳.۷۰۰۰</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۲</td>
<td>۰.۳۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد ضرب غیرهای</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی دراد در سطح احتمال ۵ و ۱ درصد

جدول ۴. تجزیه واریانس مقدار آب نسبی برگ، مقدار آب نسبی طوقه، میزان تراش پونی، درصد خسارت غشای سینتیپلاسمی و میزان تجمع پرولین، در زنویع‌هاي ۳۰، ۶۰، ۹۰ و ۱۲۰ روزه

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادي</th>
<th>مقدار آب نسبی برگ</th>
<th>میزان خسارت غشای سینتیپلاسمی</th>
<th>میزان تراش پونی</th>
<th>مقدار آب نسبی طوقه</th>
<th>میزان تجمع پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنویع</td>
<td>۲</td>
<td>۰.۰۳۹</td>
<td>۶.۰۲۷</td>
<td>۶.۰۸۷۰</td>
<td>۶.۰۷۰۰</td>
<td>۳.۷۰۰۰</td>
</tr>
<tr>
<td>اندکافايت</td>
<td>۱</td>
<td>۰.۸۹</td>
<td>۶.۰۲۷</td>
<td>۶.۰۸۷۰</td>
<td>۶.۰۷۰۰</td>
<td>۳.۷۰۰۰</td>
</tr>
<tr>
<td>زنویع × اندکافايت</td>
<td>۲</td>
<td>۱۰.۰۷۲</td>
<td>۶.۰۲۷</td>
<td>۶.۰۸۷۰</td>
<td>۶.۰۷۰۰</td>
<td>۳.۷۰۰۰</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۲</td>
<td>۰.۳۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد ضرب غیرهای</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی دراد در سطح احتمال ۵ و ۱ درصد
جدول 5. تجزیه واریانس مقادیر آب نسبی برگ، مقادیر آب نسبی طوفه، میزان تراوش پوستی، درصد خسارت غشا سیتوپلاسمی و میزان تجمع پولین، در زنوتیپهای ۶۰، ۷۵ و ۸۰

<table>
<thead>
<tr>
<th>صفات</th>
<th>متغیرها</th>
<th>دما</th>
<th>زنوتیپ</th>
<th>دما × زنوتیپ</th>
<th>زنوتیپ × اندوفايت</th>
<th>دما × اندوفايت</th>
<th>دما × زنوتیپ × اندوفايت</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان تجمع پولین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میزان خسارت غشا سیتوپلاسمی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میزان تراوش پوستی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقادیر آب نسبی برگ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقادیر آب نسبی طوفه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

درصد ضرب نگیریت

* و **: به ترتیب معنی دار در سطح احتمال ۰/۰۵ و ۰/۱ درصد
جدول 6. میانگین زنوتیپ‌های مختلف، سطوح اندازه‌گیری و ترکیب این عوامل برای صفات مقدار آب نسبی برگ، مقدار آب نسبی طوفه، میزان تراوش بوئی و درصد خسارت

<table>
<thead>
<tr>
<th>تعداد</th>
<th>میزان تراوش بوئی (میکرومتر بر گرم)</th>
<th>میزان خسارت غشا سیتونیل‌پاسی</th>
<th>مقدار آب نسبی برگ</th>
<th>مقدار آب نسبی طوفه</th>
<th>نتیجه‌گیری</th>
<th>کاهش‌های (E%) سطح اندازه‌گیری</th>
<th>نتیجه‌گیری</th>
<th>کاهش‌های (E%) سطح اندازه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>605</td>
<td>61.6</td>
<td>84.5</td>
<td>95.8</td>
<td>95.8</td>
<td>زنوتیپ 60</td>
<td>84.5</td>
<td>95.8</td>
<td>زنوتیپ 60</td>
</tr>
<tr>
<td>4/15</td>
<td>45.6</td>
<td>71.6</td>
<td>89.5</td>
<td>89.5</td>
<td>زنوتیپ 89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>زنوتیپ 89.5</td>
</tr>
<tr>
<td>15.8</td>
<td>18.8</td>
<td>87.3</td>
<td>87.3</td>
<td>87.3</td>
<td>زنوتیپ 87.3</td>
<td>87.3</td>
<td>87.3</td>
<td>زنوتیپ 87.3</td>
</tr>
<tr>
<td>8/44</td>
<td>83.2</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
</tr>
<tr>
<td>8/17</td>
<td>87.5</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
</tr>
<tr>
<td>8/15</td>
<td>87.5</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
</tr>
<tr>
<td>1/290</td>
<td>130.2</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>زنوتیپ 95.6</td>
</tr>
<tr>
<td>6/07</td>
<td>61.6</td>
<td>84.5</td>
<td>95.8</td>
<td>95.8</td>
<td>زنوتیپ 60</td>
<td>84.5</td>
<td>95.8</td>
<td>زنوتیپ 60</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیر مشترک اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
جدول 7: میانگین زنوتیپ‌های مختلف سطوح اندوکایت و ترکیب این عوامل برای صفات مقدار آب نسبی گرگ، مقدار آب نسبی طوفه، میزان تراوش بونی، درصد خسارت غشای سنی‌پلاسمی و میزان تجمع پرولین. در تیمار ۶ درجه سانتی‌گراد (T۶)

<table>
<thead>
<tr>
<th></th>
<th>میزان تجمع پرولین (میکرومول برم)</th>
<th>میزان خسارت غشای سنی‌پلاسمی (درصد)</th>
<th>میزان تراوش بونی (میکرومبل برم) (درصد)</th>
<th>مقدار آب نسبی طوفه (درصد)</th>
<th>مقدار آب نسبی گرگ (درصد)</th>
<th>صفات</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/0</td>
<td>89</td>
<td>558</td>
<td>86</td>
<td>85</td>
<td>زنوتیپ ۶۰</td>
<td>حاصل اندوکایت (E)</td>
<td>LSD (%)</td>
</tr>
<tr>
<td>17/8</td>
<td>89</td>
<td>547</td>
<td>84</td>
<td>89</td>
<td>زنوتیپ ۷۵</td>
<td>بدون اندوکایت (E)</td>
<td>LSD (%)</td>
</tr>
<tr>
<td>25/0</td>
<td>89</td>
<td>531</td>
<td>82</td>
<td>89</td>
<td>زنوتیپ ۸۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/49</td>
<td>9,324</td>
<td>52/835</td>
<td>7,960</td>
<td>8,540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/0</td>
<td>88</td>
<td>545</td>
<td>83</td>
<td>93</td>
<td>حاصل اندوکایت (E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/19</td>
<td>77</td>
<td>410</td>
<td>83</td>
<td>83</td>
<td>بدون اندوکایت (E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/81</td>
<td>77/13</td>
<td>54/84</td>
<td>57/88</td>
<td>4,374</td>
<td>LSD (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/87</td>
<td>90</td>
<td>557</td>
<td>90</td>
<td>92</td>
<td>۶۰ E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/13</td>
<td>89</td>
<td>559</td>
<td>82 ab</td>
<td>78 ab</td>
<td>۶۰ E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28/39</td>
<td>53</td>
<td>539</td>
<td>91 ab</td>
<td>91 ab</td>
<td>۷۰ E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/97</td>
<td>77</td>
<td>535</td>
<td>85 ab</td>
<td>91 ab</td>
<td>۷۰ E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/50</td>
<td>33</td>
<td>176 ab</td>
<td>82 ab</td>
<td>83 ab</td>
<td>۸۰ E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/48</td>
<td>58 bc</td>
<td>296</td>
<td>58 bc</td>
<td>83 E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیر مشترک اختلاف معنی‌داری در سطح احتمال ۵ درصد دارند.
جدول 8 میانگین زنوتیپ‌های مختلف سطح انفراپا و ترکیب این عوامل برای صفات مقدار آب نسبی برگ، مقدار آب نسبی طوقه، میزان تراوش پوست و درصد خسارت غشا سیتوپلاسمی و میزان تجمع پرولین در تیمار 2- درجه سانتی‌گراد (T).

<table>
<thead>
<tr>
<th>صفات</th>
<th>مقدار آب نسبی برگ (میکرومول بر گرم)</th>
<th>میزان تراوش پوستی (درصد)</th>
<th>میزان تجمع پرولین (میکرومول بر گرم)</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزرتیپ 30</td>
<td>35d</td>
<td>94c</td>
<td>49a</td>
<td></td>
</tr>
<tr>
<td>لیزرتیپ 75</td>
<td>29b</td>
<td>75c</td>
<td>41c</td>
<td></td>
</tr>
<tr>
<td>لیزرتیپ 83</td>
<td>37a</td>
<td>83d</td>
<td>50a</td>
<td></td>
</tr>
<tr>
<td>حاره انفراپا (E+)</td>
<td>34c</td>
<td>78d</td>
<td>51b</td>
<td>LSD (5)</td>
</tr>
<tr>
<td>بدن انفراپا (E-)</td>
<td>33b</td>
<td>88d</td>
<td>55d</td>
<td></td>
</tr>
</tbody>
</table>

منابع های دارای حروف غیر مشترک اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
جدول 9 میانگین زنوتیپ‌های مختلف سطوح اندوفایت و ترکیب این عوامل برای صفات مقادار آب نسبی برگ، مقادیر آب نسبی طفه، میزان تراوش بوفی، درصد خسارت غشا سیتوپلاسمی و میزان تجمع پرولین. در تیمار 10- درجه سانتیگراد (Ta).

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>صفات</th>
<th>میزان تراوش بوفی (میکرومتر برم)</th>
<th>میزان تجمع غشا سیتوپلاسمی (میکرومتر برم)</th>
<th>مقدار آب نسبی برگ</th>
<th>مقدار آب نسبی طفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/02 a</td>
<td>زنوتیپ ٦٠</td>
<td>٧٧ b</td>
<td>٧١٥ b</td>
<td>٤١ b</td>
<td>٢٤ b</td>
</tr>
<tr>
<td>١٧/٣٣ b</td>
<td>زنوتیپ ٧٥</td>
<td>٨٦ b</td>
<td>٧٠٦ b</td>
<td>٥٥٢ b</td>
<td>١٩ b</td>
</tr>
<tr>
<td>١٤/٤٥ ab</td>
<td>زنوتیپ ٨٣</td>
<td>٨٠ a</td>
<td>٩٧٢ a</td>
<td>٥٤ b</td>
<td>٣٦ a</td>
</tr>
<tr>
<td>٣/٤٠٠٩</td>
<td>حاوی اندوفایت (E')</td>
<td>٨٣٧</td>
<td>٦٤١٨</td>
<td>٢٨٢٨</td>
<td>LSD (5)</td>
</tr>
<tr>
<td>١٨/١٠ a</td>
<td>بدون اندوفایت (E')</td>
<td>٧٠٢ b</td>
<td>٥٣ a</td>
<td>٢٤ a</td>
<td>LSD (5)</td>
</tr>
<tr>
<td>١٠/٧٠ b</td>
<td>حاوی اندوفایت (E')</td>
<td>٨٣ a</td>
<td>٨٢٧ a</td>
<td>٣٣ a</td>
<td>LSD (5)</td>
</tr>
<tr>
<td>٢/٤٥٣</td>
<td>بدون اندوفایت (E')</td>
<td>٩٤٨</td>
<td>٣٠٩١</td>
<td>٣٢٠٩</td>
<td>LSD (5)</td>
</tr>
<tr>
<td>٢/٣٦٠ a</td>
<td>٦٧٢ a</td>
<td>٤٨ b</td>
<td>٣٥ a</td>
<td>٢٦ b</td>
<td>٦٠ E'</td>
</tr>
<tr>
<td>١١/٣٣ b</td>
<td>٨٠٤ b</td>
<td>٣٤ a</td>
<td>٢٤ b</td>
<td>٦٠ E'</td>
<td>٧٥ E'</td>
</tr>
<tr>
<td>١٠/٢٧٣ b</td>
<td>٧٠٦ b</td>
<td>٥٣ a</td>
<td>١٩ c</td>
<td>٧٥ E'</td>
<td>٧٥ E'</td>
</tr>
<tr>
<td>١١/١٠٠ b</td>
<td>٦٨٨ b</td>
<td>٥٩ a</td>
<td>٣٣ b</td>
<td>٧٥ E'</td>
<td>٧٥ E'</td>
</tr>
<tr>
<td>١٩/٣٣ a</td>
<td>٨٠٤ b</td>
<td>٥٦ a</td>
<td>٣١ a</td>
<td>٧٥ E'</td>
<td>٧٥ E'</td>
</tr>
<tr>
<td>٩/٥٥ b</td>
<td>٩٤٨ a</td>
<td>٣٢ b</td>
<td>١٩ c</td>
<td>٧٥ E'</td>
<td>٧٥ E'</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشترک اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
جدول 10: میانگین وزنتیبهای مختلف سطوح اندازه‌گیری سطوح دما و ترکیب وزنتی به اندازه‌گیری برای صفات مقدار آب نسبی برگ، مقدار آب نسبی طوفه، میزان تراوش بینی و درصد خسارت غلظت سیتوپلاسمی و میزان تجمع پرولین در تجزیه مركب.

<table>
<thead>
<tr>
<th>صفات مقدار آب نسبی برگ</th>
<th>مقدار آب نسبی طوفه</th>
<th>میزان تراوش بینی</th>
<th>درصد خسارت غلظت سیتوپلاسمی</th>
<th>تجمع پرولین (میکرومول بر گرم)</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاکی اندازه‌گیری (E)</td>
</tr>
<tr>
<td>ZnO</td>
<td>ZnO</td>
<td>ZnO</td>
<td>ZnO</td>
<td>ZnO</td>
<td>ZnO</td>
</tr>
<tr>
<td>66</td>
<td>65</td>
<td>64</td>
<td>61</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>71</td>
<td>71</td>
<td>74</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>1710</td>
<td>57</td>
<td>59</td>
<td>64</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>3/52</td>
<td>7/275</td>
<td>7/132</td>
<td>1/0000</td>
<td>7/741</td>
<td>1/307</td>
</tr>
<tr>
<td>حاکی اندازه‌گیری (E)</td>
</tr>
<tr>
<td>(Control1)</td>
<td>(Control1)</td>
<td>(Control1)</td>
<td>(Control1)</td>
<td>(Control1)</td>
<td>(Control1)</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>40</td>
<td>33</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>حاکی اندازه‌گیری (E)</td>
</tr>
<tr>
<td>(Control2)</td>
<td>(Control2)</td>
<td>(Control2)</td>
<td>(Control2)</td>
<td>(Control2)</td>
<td>(Control2)</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>40</td>
<td>33</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>حاکی اندازه‌گیری (E)</td>
</tr>
<tr>
<td>(Control3)</td>
<td>(Control3)</td>
<td>(Control3)</td>
<td>(Control3)</td>
<td>(Control3)</td>
<td>(Control3)</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>40</td>
<td>33</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>حاکی اندازه‌گیری (E)</td>
</tr>
<tr>
<td>(Control4)</td>
<td>(Control4)</td>
<td>(Control4)</td>
<td>(Control4)</td>
<td>(Control4)</td>
<td>(Control4)</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>40</td>
<td>33</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>حاکی اندازه‌گیری (E)</td>
</tr>
<tr>
<td>(Control5)</td>
<td>(Control5)</td>
<td>(Control5)</td>
<td>(Control5)</td>
<td>(Control5)</td>
<td>(Control5)</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>40</td>
<td>33</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

پیشنهاد میانگین های دارای حروف مشترک اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
1. معرفی وضعیت و اصلاح نیازهای ایران. دانشگاه تبریز، صفحه 362.

2. میرمحمدی میبدی، ع. م. 1379. جنبه‌های فیزیولوژیک و بهبود تنش‌های سرمای به‌دردسرگی گیاه‌شناسی. انتشارات گلیم.

