تأثیر قارچ‌های اندونوفایت بر خصوصیات فیزیولوژیکی و مقاومت به سرما در دو گونه فسکویی مرتعی و فسکویی بند

مهدیه پارساانی، آقایان میرولی، عبدالمحکی رضایی و مجتبی خیام نکویی

چکیده

به منظور بررسی نقش اندونوفایت‌ها در ایجاد خصوصیات با ارزش فیزیولوژیکی و اندازه مقاومت به سرما در دو گونه فسکویی مرتعی (Festuca arundinacea Schreb.) و فسکویی بندن (Festuca pratensis Huds.) شد. در این راستا کلیه‌های آلوه به قارچ اندونوفایت و علیک از آن در دو نوع گیاه فسکویی بلند و گیاه فسکویی مرتعی با شماره‌های 67 و 68 به کار گرفته شدند. کلون‌ها تحت تأثیر تیمارهای سرمایی شامل 0 - 60 درجه سانتی‌گراد فاز داده شدند و با شاهد (20 درجه سانتی‌گراد) مقایسه شدند. از این مطالعه در هر تیمار دمایی در قالب طرح آزمایشی فاکتوریال با طرح پایه کاملاً تصادفی در سه نتیجه‌ی آماری در هر سطح سرمایی به طور جداگانه و سپس به صورت تجزیه مركب انجام شد. پس از اعمال تیمارها ساخت محتوای نسبی آب، برف و طوفان، میزان تراش بیوی در حاشیه نسبی آب، برف و طوفان گذشته. میزان اسید آمینه پروتئین در گیاهان حاوی اندونوفایت در مقایسه با گیاهان فائده‌ای آن در هر دو شرایط نش، عدم گذشته به طور قابل ملاحظه‌ی پیشی گرفت. قارچ اندونوفایت در حضور پایداری گیاهان سولیوی در نتیجه کاهش میزان نتیجه کنترلی در کلیه سطح دمایی تأثیر گذار بود. در میزان زنی‌پتی‌های سود بررسی زنی‌پتی‌های، به بهزی در حضور اندونوفایت از نظر برخی از صفات بررسی شده کارآت عمل نموده و مقاومت به سرما و مقدار بیشتری از خود نشان داد. زنی‌پتی‌های بیشتری از 60 در مراکز بهداشتی فاز داده گرند.

واژه‌های کلیدی: قارچ‌های اندونوفایت، فسکویی مرتعی، فسکویی بندن، مقاومت به سرما، صفات فیزیولوژیک

مقدمه

سرما، به عنوان یکی از ناهارهای محیطی غیر زیستی، مشکلات بسیاری را برای گیاهان چه در سطح سلولی شامل واکنش‌های عملکردی نشان می‌دهد. از اینکه دانش فاصله و اثر ترکیباتی داتکه، کشک‌واری، دانشگاه صنعتی اصفهان

1. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشیار و استاد زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

2. عضو هیئت علمی مؤسسه تحقیقات شهید فروه، اصفهان

197
فیلوپوزیک تاکنون از حضور فیلوپوزیک گونه‌هایی از جنس فستوکا (که در ارائه غلظت غلظت و
سارگاری و سبب می‌شوند) متحمل می‌باشند. این برهه‌گیری از این راه‌هادی در ایجاد گیاهان دارای علائم بهبود
عادات رشدی کارآتر در شرایط تنش تغییر شدند.

اندوزامیتیا هم‌رزمیتا با گیاهان غلظت خانواده گندم‌انداندوزامیتیا خارجی از جنس Neotyphodium
و خانواده Clavicipitaceae. هستند که به صورت سیستمیک از طریق بذر گیاهان سپرده به نتیجه یا، ضمنی تنش رابطه هم‌رزمیتا، هیچ‌گونه علائم بیماری را در گیاهان می‌بینیم.

اندوزامیتیا تأثیر قابل ملاحظه‌ای در حفاظت پیوسته‌یبیک در نهادهای ناهار و منابع‌های تغذیه‌ای و مقاومت‌

به بیماری‌های خارجی و غیر خارجی می‌دهند. همچنین افزایش تنش عامل و پیوند پیوسته‌ینی با حفظ

حالت نیمه ماهیان در میان آب کم‌کشیدگان درک تهیه‌کننده هستند.

در این مقاله از سه گروه سه گروهی به گیاه خارجی و در این مقاله از سه گروه سه گروهی به گیاه خارجی و

узیسته‌یبیک وجود دارد که به وسیله مطالعات بیوشیمیایی

تأثیر مناسب ای و گروه سه گروهی به گیاه خارجی و

تغییرات و سیستم‌های دیسکولیسی می‌باشد.

(14) مالیتوسکی و بلسکی (11) در بررسی مکانیسم‌های مقاومت

به خشکی در گیاهان داشتن نهادهای ناهار و منابع‌های تغذیه‌ای و مقاومت به بیماری‌های خارجی و

تغییرات و سیستم‌های دیسکولیسی می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

در این مقاله از سه گروه سه گروهی به گیاه خارجی و

تغییرات و سیستم‌های دیسکولیسی می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.

تحمیل بهتر نهادهای آب کم‌کشیدگان در میزان‌های آب‌های

امکان دیگر می‌سازد (16). محلول‌های مانند پنولین با تری

حالت تجزیه ای گیاه‌های ساکن باعث افزایش هزینه و سایر

پیش‌آمیز تولید شده توسط قارچ‌های اندوزامیتیا می‌باشد.
با توجه به آثار گزارش شده قارچ‌های انگلیسی بر تحريك تنظیم اصولی تعمیق آب کشیدگی در زمین فیزیولوژیکی و مقاومت به سرم در دو گونه...
محصول‌های نسبی آب طویه قیمت به روش مشابه اندک‌گیری گردید. به منظور اندک‌گیری میزان تراوش بیونی، پس از گذشت 10 روز از تیمارهای دمایی، چند بار به طور تصادفی گازینگ شده و برگ‌های رشد یافته و همین آنها جدا گردید و به قطعات 1 سانتی متری بردیده شد. 0.5 گرم از این قطعات برگی پس از 3 مره سبزشیدن به آب مفطر دیوتیوز، در لوله آزمایش حاوش ۲ میلی‌لتر آب دوبار تفکیق قرار داده شد. مقدار هدایت الکتریکی محلول پس از 48 ساعت توسط دستگاه قرانس گردید و پس از قرانس تیمار، نمونه‌ها به وسیله حمام آب گرم به دمای 25 درجه سانتی‌گراد بیSHOT. یا به دست آمده و پس از انجام مراحل قبل لوله‌های آزمایش محوله نمونه‌های گیاهی به مدت 1/5 ساعت انتوکلاژ گردیده، آن گاه پس از رسیدن به دمای 25 درجه سانتی گراد مقدار هدایت الکتریکی محلول اندک‌گیری شد. درصد امس آب وارد به غشا با استفاده از تقسیم کردن میزان هدایت الکتریکی قبل از انتوکلاژ به میزان آن بعد از انتوکلاژ گردید. 100 محاسبه گردید.

محصول‌های پرولین 0/5 گرم در زمان چهاردهم هر کیف از تیمارهای دمایی به روش بیترت و همکاران (6) اندازه‌گیری شد. میزان جذب نمونه‌های آماده شده در طول موج ۶/۰ نانومتر به دست آمد. به منظور تبدیل طول موج‌های خواندن نمونه به میزان پرولین، محصول‌های استاندارد با مقدار مشخص‌ال- پرولین خاص تهیه شد. این محصول‌ها به در طول موج 6/۰ نانومتر قرانس گردیدند. سپس از آن تیار نیروگه سبز و جذب نمونه به استفاده از بهترین منحنی درجه دوم تعیین شد و از روز این منحنی، میزان غلتک پرولین به حساب می‌گردد.

کلمات کلیدی:
- پرولین
- مقادیر نسبی آب گرم
- مقدار نسبی آب در پرولین
- اثر افزایش شدت نش کاهش
- تراج و بحث
- مقدار نسبی آب

تراج و بحث

مقدار نسبی آب در پرولین

مقدار نسبی آب در پرولین در اثر افزایش شدت نش کاهش یافت. تیمارهای دمایی مختلف با لحظه این سخت در گروه‌های آماری متفاوت نیز گرفتند. نش شدت (10- افر. 0) مرحله در مقیاسه...
جدول 1. تجزیه واریانس مقدار آب نسبی برز، مقدار آب نسبی طوفه، میزان تراش روی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پرولین، در زنوتیپ‌های ۶۰، ۶۵، ۷۰ و ۸۵.

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادی</th>
<th>مقدار آب نسبی برز</th>
<th>میزان تراش روی</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
<th>میزان تجمع پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>2</td>
<td>۱/۳۹</td>
<td>۱۲/۱۰۶</td>
<td>۲۹/۷۷</td>
<td>۵/۷۶</td>
</tr>
<tr>
<td>انفشارت</td>
<td>1</td>
<td>۱/۴۰</td>
<td>۰/۸۰</td>
<td>۲/۰۴</td>
<td>۴/۸۰</td>
</tr>
<tr>
<td>زنوتیپ x انفشارت</td>
<td>2</td>
<td>۰/۸۰</td>
<td>۱/۳۴</td>
<td>۸/۹۰</td>
<td>۱/۳۴</td>
</tr>
</tbody>
</table>

درصد ضریب تغییرات

* و **: به ترتیب معنی‌دار در سطح احتمال ۰۵ و ۰۱ درصد.

جدول 2. تجزیه واریانس مقدار آب نسبی برز، مقدار آب نسبی طوفه، میزان تراش روی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پرولین، در زنوتیپ‌های ۶۰، ۶۵، ۷۰ و ۸۵.

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادی</th>
<th>مقدار آب نسبی برز</th>
<th>میزان تراش روی</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
<th>میزان تجمع پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>2</td>
<td>۴۳/۵۶</td>
<td>۳۷/۲۲</td>
<td>۱۶۵/۷۰</td>
<td>۳۱/۰۴</td>
</tr>
<tr>
<td>انفشارت</td>
<td>1</td>
<td>۲۴/۴۰</td>
<td>۰/۱</td>
<td>۱۴۸/۴۰</td>
<td>۷۶/۸۵</td>
</tr>
<tr>
<td>زنوتیپ x انفشارت</td>
<td>2</td>
<td>۹۶</td>
<td>۹۶/۲۷</td>
<td>۱۱۹/۰۰</td>
<td>۲۷/۱۷</td>
</tr>
</tbody>
</table>

درصد ضریب تغییرات

* و **: به ترتیب معنی‌دار در سطح احتمال ۰۵ و ۰۱ درصد.
جدول ۳: تجزیه واریانس مقدار آب نسبی پرگ، مقدار آب نسبی طوفه، میزان تراوش یونی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پروپین، در زنوتپ های ۶۰، ۶۵ و ۷۵

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادي</th>
<th>مقدار آب نسبی پرگ</th>
<th>میزان تراوش یونی</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
<th>مقدار آب نسبی طوفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتپ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اندفایت</td>
<td>1</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>زنوتپ × اندفایت</td>
<td>2</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>خطا</td>
<td>12</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
</tbody>
</table>

و **: به ترتیب معنی دار در سطح احتمال ۰.۰۵ و ۱ درصد

جدول ۴: تجزیه واریانس مقدار آب نسبی پرگ، مقدار آب نسبی طوفه، میزان تراوش یونی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پروپین، در زنوتپ های ۶۰ و ۷۵.

<table>
<thead>
<tr>
<th>صفات</th>
<th>درجه آزادي</th>
<th>مقدار آب نسبی پرگ</th>
<th>میزان تراوش یونی</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
<th>مقدار آب نسبی طوفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتپ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اندفایت</td>
<td>1</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>زنوتپ × اندفایت</td>
<td>2</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>خطا</td>
<td>12</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
</tbody>
</table>

و **: به ترتیب معنی دار در سطح احتمال ۰.۰۵ و ۱ درصد
جدول 5. تجزیه واریانس مقدار آب نسبی برگ، مقدار آب نسبی طوفه، میزان تراوش یوئی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پروتئین در زنوتیپهای 90، 85، 75 و 40.

<table>
<thead>
<tr>
<th>تغییرات</th>
<th>میزان تجمع پروتئین</th>
<th>میزان خسارت غشای سیتوپلاسمی</th>
<th>میزان تراوش یوئی</th>
<th>مقدار آب نسبی برگ</th>
<th>مقدار آب نسبی طوفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما</td>
<td>53/94</td>
<td>&quot;</td>
<td>3275/55</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>نتیجتا (دما)</td>
<td>93/88</td>
<td>&quot;</td>
<td>3386/50</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>انگیزه</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>دما × زنوتیپ</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>دما × انگیزه</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>خلاصه</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
</tbody>
</table>

درصد ضریب تغییرات: * و ** به ترتیب معنی‌دار در سطح احتمال 0.05 و 0.01 درصد.
کاهش هدایت الکتریکی محصول در کلیه سطوح دما به تأخیر
گذاز بوده‌اند. به طور کلی، اندوافیت تراوشه بینی را
به میزان 20 درصد کاهش دادند (جدول 10). احتمالاً،
اندوارگی‌ها با تجمع دان قد تبری هالوز در سطول پایداری
بیشتر شده را به بیمار می‌شود.

در میان زیتون‌های مورد بررسی، زیتون‌های 75 و 83
حذف اندوافیت به میزان بیشتری سختی طبیعی غشا
سول‌های خود را تحت تاثیر سرما در حفظ کردند و از میزان
نسبت الکترولیتی کمتری برخوردی پیدا می‌کنند (جدول‌های 4.
8 و 9).

درصد خارط غشا سیتوبلاسی
به نتایج نشان می‌دهد که در میزان تراوشه بینی، بر
آن درصد خارط غشا، دان ناد که با کاهش دما از تیمار
شاهد تا تیمار 2 درجه غشا به شدت اسید کرده و این رد
دام‌ها 2 و 10 درجه تفاوت دندانی وجود نداشتند
(جدول 10). در تحقیق‌های اولیه و نیز ترجیح می‌کنیم که
یافته‌ها در سطح احتمال 1 درصد بیشتر معنی دار شدند
(جدول‌های 4.1, 2.1 و 2.5).

حذف اندوافیت‌ها در کلیه سطوح دما در کاهش درصد
خارط غشا مؤثر بوده و در مقایسه با عدم حذف اندوافیت
در مجموع به میزان 20 درصد تغییرات خود در غشا
جلوگیر کرده‌اند (جدول‌های 4.1, 8.7 و 9.10). زیتون‌های
83 و 75 پس از آن زیتون‌های 10، کمترین میزان خارط غشا را دارا
کردند (جدول 10).

میزان تراوشه بینی (پایداری غشا سیتوبلاسی)
تغییراتی که در ساختار غشا سول در اثر تغییر فاز
چری و تغییرات دیگر ایجاد می‌شود، سبب افزایش
تفاوت‌های غشا نسبت به بیرون و افزایش نمود
می‌گردد. با افزایش سطح ماده مبتلا به سول‌ها در اثر تخم‌یل غشا به بیرون تراوشه نمود
(جدول 10). نتایج به دست آمده در تجربه‌های جدایگانه
(جدول‌های 4.1, 8.7 و 9) نیز ترجیح می‌گردد (جدول 10). نتایج
داده‌ها اندوافیت‌ها در حفظ پایداری غشا سول‌هی و در نتیجه

محوریان نسبی آب طوفه
بافت‌های طوفه که در حدود 65-75 درصد رطوبت دارند،
قادرند سرمایه از آن‌ها تا 20 درجه سانتی‌گراد را تحمل
نمی‌کنند. در رطوبت بالای 40 نمی‌توان طوفه باعث حساس
به سطوح پیچ و دمای دست‌ها در بین.

در پژوهش‌های تالار بیشتر شده تئور می‌تواند رطوبت
نسبی آب طوفه کاهش یابد که (جدول 10). با توجه به تناوب
جدول‌های 8 و 9 در دماهای 2 و 10 درجه سانتی‌گراد،
حذف اندوافیت‌ها به طور چندری این سختی‌ها را افزایش داد. در
حالی که این افزایش‌ها نسبت به طوفه در نتیجه حذف
اندوارگی‌ها با ایجادیت در زنجیره ای این ازدحام بود.
محطه بیشتر آب طوفه، خشکی تئور از دماهای انجام را
افراش می‌گردد (13). اما طوفه‌های که می‌تواند از قبل
کریوهیدرات‌ها را بیشتر در درون خود تجمع دهد دیرتر دچار
اندام را می‌شوند (13). بنابراین با توجه به تئور
بیشتر کریوهیدرات‌ها و افزایش وزن خشک طوفه در اثر حذف
اندوارگی‌ها، به نهایت احتمالاً آثار متقابلی از
افراش می‌تواند آب طوفه را تغییری نماید.

میزان تراوشه بینی (پایداری غشا سیتوبلاسی)
به نتایج نشان می‌دهد که در میزان تراوشه بینی، بر

میزان اسید آمین پروپون
با غنایت به معنی‌دار درد نشان داده را در تجربه‌های
(جدول 5). اختلافات معنی‌داری بین سطوح دما به مطالعه آماری دیده نمی‌شود. بیشترین تجمع پروپون در درجه 6 درجه و
کمترین میزان آن در درجه شاهد مشاهده گردید. نتایج به دست‌
جدول 6. میانگین زنجبیل‌های مختلف. سطوح انگرایی و ترکیب این عوامل برای صفات مقدار آب نسبی برگ، مقدار آب نسبی طوفه، میزان تراوس بونی، درصد خسارت غشای سینوسالاسی و میزان تجمع پرولین، در تیمار شاهد (Control)

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میزان تجمع پرولین (میکرومول بر گرم)</th>
<th>میزان خسارت غشای سینوسالاسی (درصد)</th>
<th>میزان تراوس بونی (میکرومول بر گرم)</th>
<th>مقدار آب نسبی طوفه (درصد)</th>
<th>مقدار آب نسبی برگ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/590</td>
<td>0/583</td>
<td>1/453</td>
<td>1/453</td>
<td>1/453</td>
<td>1/453</td>
</tr>
<tr>
<td>8/44</td>
<td>0/34</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
</tr>
<tr>
<td>2/74</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
</tr>
<tr>
<td>0/167</td>
<td>0/36</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
</tr>
<tr>
<td>0/290</td>
<td>0/28</td>
<td>0/93</td>
<td>0/93</td>
<td>0/93</td>
<td>0/93</td>
</tr>
<tr>
<td>5/5</td>
<td>0/54</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
</tr>
<tr>
<td>3/6</td>
<td>0/48</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
</tr>
<tr>
<td>4/73</td>
<td>0/47</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
</tr>
<tr>
<td>5/43</td>
<td>0/38</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
</tr>
<tr>
<td>0/64</td>
<td>0/73</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
<td>0/80</td>
</tr>
<tr>
<td>0/57</td>
<td>0/30</td>
<td>0/95</td>
<td>0/95</td>
<td>0/95</td>
<td>0/95</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیر مشترک اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
جدول 7: میانگین زنوتیپ‌های مختلف سطوح اندوفیت و ترکیب این عوامل برای صفات مقدار آب نسبی برگ، میزان تراوش بونی و درصد خسارت غشا سیتوپلاسمی در بذریه سنتی‌گراد (T1) تیمار ۶ در نتایج ترکیب تیمار ۶ بررسی شد.

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>مقدار آب نسبی برگ (درصد)</th>
<th>میزان تراوش بونی (میکرومتر بر کرم)</th>
<th>میزان خسارت غشا سیتوپلاسمی (درصد)</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>زنوتیپ ۶۰</td>
<td>۸۵ a</td>
<td>۵۱۵ a</td>
<td>۱۱/۰ ۸۹ a</td>
<td>زنوتیپ ۶۰</td>
</tr>
<tr>
<td>زنوتیپ ۷۵</td>
<td>۸۱ a</td>
<td>۳۴۲ b</td>
<td>۱۷/۸ ۸۹ b</td>
<td>زنوتیپ ۷۵</td>
</tr>
<tr>
<td>زنوتیپ ۸۳</td>
<td>۸۹ a</td>
<td>۴۴۱ c</td>
<td>۵۰/۵ ۸۹ b</td>
<td>زنوتیپ ۸۳</td>
</tr>
<tr>
<td>حاوی اندوفیت (E۷)</td>
<td>۹۲ a</td>
<td>۳۴۴ b</td>
<td>۳/۴۹ ۶۵ b</td>
<td>حاوی اندوفیت (E۷)</td>
</tr>
<tr>
<td>بدون اندوفیت (E)</td>
<td>۸۵ a</td>
<td>۴۱۰ a</td>
<td>۲/۸۴ ۷۸ a</td>
<td>بدون اندوفیت (E)</td>
</tr>
</tbody>
</table>
| میانگین های دارای هر دو سطح اندوفیت و ترکیب مختلف با گروه ۵ درصد احتمال میانگین‌های مشترک از دسترسی نیستند. 

میانگین‌های دارای حروف غیر مشترک اختلاف معنی‌داری در سطح احتمال ۵ درصد دارند.
جدول ۸ میانگین زنوتیپ‌ها مختلف، سطوح اندوفایت و ترکیب این عوامل برای صفات مقدار آب نسبی یارگ، مقدار آب نسبی طوفه، میزان تراوش یونی، درصد خسارت غشای سیتوپلاسمی و میزان تجمع پروتئین در تیمار ۲-درجه سانتی‌گراد (٪).

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>صفات</th>
<th>مقدار آب نسبی یارگ (میکرومول بر گرم)</th>
<th>میزان تراوش یونی (میکرومول بر گرم)</th>
<th>میزان تجمع پروتئین (درصد)</th>
<th>زنوتیپ</th>
<th>حاره اندوفایت</th>
<th>بدن اندوفایت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۵۸ a</td>
<td>۹۷ a</td>
<td>۹۰۱ a</td>
<td>۶۲ b</td>
<td>۵۳ a</td>
<td>۶۰</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۴/۳۷ c</td>
<td>۸۷ b</td>
<td>۷۵۰ c</td>
<td>۶۱ a</td>
<td>۷۴ b</td>
<td>۷۵</td>
<td>E'</td>
<td>E'</td>
</tr>
<tr>
<td>۱۴/۳۰ b</td>
<td>۷۷ c</td>
<td>۸۵۱ b</td>
<td>۶۹ a</td>
<td>۳۷ a</td>
<td>۵۳</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۱/۵۵۳</td>
<td>۳/۲۷۵</td>
<td>۸۸/۴۵۵</td>
<td>۳/۸۵۵</td>
<td>۲/۹۰۵</td>
<td>LSD (٪)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۶/۲۱ a</td>
<td>۸۱ b</td>
<td>۷۸۳ b</td>
<td>۶۱ a</td>
<td>۳۴ a</td>
<td>۳۴</td>
<td>E'</td>
<td>E'</td>
</tr>
<tr>
<td>۱۰/۳۲ b</td>
<td>۸۹ b</td>
<td>۸۸۵ b</td>
<td>۵۵ b</td>
<td>۳۱ a</td>
<td>۳۱</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۱/۸۷۳</td>
<td>۲/۷۸۱</td>
<td>۳۳/۳۳۳</td>
<td>۳/۱۴۷</td>
<td>۲/۳۷۲</td>
<td>LSD (٪)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰/۲۷ a</td>
<td>۹۹ b</td>
<td>۸۵۲ c</td>
<td>۶۷ a</td>
<td>۳۷ b</td>
<td>۶۰</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۱۰/۹ b</td>
<td>۹۷ a</td>
<td>۹۵۱ a</td>
<td>۶۴ c</td>
<td>۳۲ c</td>
<td>۶۰</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۴/۳۷ b</td>
<td>۷۷ c</td>
<td>۷۹۴ c</td>
<td>۶۷ b</td>
<td>۳۳ d</td>
<td>۷۵</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۴/۳۷ d</td>
<td>۸۷ b</td>
<td>۸۰۴ d</td>
<td>۶۴ a</td>
<td>۴۱ a</td>
<td>۴۱</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۱۷/۸ a b</td>
<td>۷۱ d</td>
<td>۷۹۸ d</td>
<td>۶۸ a</td>
<td>۴۱ a</td>
<td>۴۱</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>۱۰/۸ a c</td>
<td>۸۳ b</td>
<td>۹۱۳ b</td>
<td>۶۴ b</td>
<td>۳۳ b</td>
<td>۳۳</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیر مشترک اختلاف معنی‌داری در سطح احتمال ۵ درصد دارند.
جدول 9. میانگین زنوتیپ‌های مختلف، سطوح اندودفایت و ترکیب این عوامل برای صفات مقدار آب نسبی برگ، مقدار آب نسبی طوقه، میزان تراوش بیونی، درصد خسارتهای غشا سیتوپلاسماتی و میزان تجمع پولیوی در تیمار 10-1 درجه سانتی‌گراد (T1)

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میزان تجمع پولیوی (میکرومول بر کرم)</th>
<th>میزان خسارت غشا سیتوپلاسماتی (درصد)</th>
<th>مقدار آب نسبی طوقه (درصد)</th>
<th>مقدار آب نسبی برگ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/02</td>
<td>97ab</td>
<td>0/15b</td>
<td>41b</td>
<td>24b</td>
</tr>
<tr>
<td>1/33</td>
<td>86b</td>
<td>0/06b</td>
<td>55a</td>
<td>21b</td>
</tr>
<tr>
<td>14/55ab</td>
<td>80a</td>
<td>0/02a</td>
<td>54a</td>
<td>26a</td>
</tr>
<tr>
<td>3/005</td>
<td>0/09</td>
<td>0/966</td>
<td>0/398</td>
<td>2/828</td>
</tr>
<tr>
<td>18/10a</td>
<td>0/3b</td>
<td>0/07b</td>
<td>0/43a</td>
<td>0/44a</td>
</tr>
<tr>
<td>10/70b</td>
<td>0/3a</td>
<td>0/09a</td>
<td>0/48a</td>
<td>0/33a</td>
</tr>
<tr>
<td>2/453</td>
<td>1/977</td>
<td>0/739</td>
<td>0/591</td>
<td>2/309</td>
</tr>
<tr>
<td>2/260a</td>
<td>97a</td>
<td>0/79a</td>
<td>0/48b</td>
<td>0/25b</td>
</tr>
<tr>
<td>1/33b</td>
<td>98a</td>
<td>0/84b</td>
<td>0/43c</td>
<td>0/26b</td>
</tr>
<tr>
<td>1/37b</td>
<td>80a</td>
<td>0/75d</td>
<td>0/43ab</td>
<td>0/19c</td>
</tr>
<tr>
<td>1/10b</td>
<td>95b</td>
<td>0/79bc</td>
<td>0/51a</td>
<td>0/33bc</td>
</tr>
<tr>
<td>0/32c</td>
<td>72a</td>
<td>0/84b</td>
<td>0/57a</td>
<td>0/31a</td>
</tr>
<tr>
<td>0/57b</td>
<td>88c</td>
<td>0/94b</td>
<td>0/59b</td>
<td>0/22bc</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشترک اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
جدول 10. میانگین وزنی‌های مختلف سطوح اندوکرات، سطوح دانه‌ای و تركیب زنوتیپ‌های اندوکرات برای صفات مقدار آب نسبی برگ، مقدار آب نسبی طوقه، میزان تراوش بونی، درصد خسارت غشا سیتونی‌پلاسی و میزان تجمع پرولین. در تجزیه میکرومتری. (میکرومتر بر گرم) (درصد)

<table>
<thead>
<tr>
<th>صفات</th>
<th>تیمارها</th>
<th>میزان تراوش غشا سیتونی‌پلاسی (درصد)</th>
<th>میزان تجمع پرولین (میکرومتر بر گرم)</th>
<th>میزان تراوش بونی (درصد)</th>
<th>مقدار آب نسبی برگ (درصد)</th>
<th>مقدار آب نسبی طوقه (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زنوتیپ 60</td>
<td>زنوتیپ 75</td>
<td>زنوتیپ 83</td>
<td>Z</td>
<td>88</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>حاوی اندوکرات (E)</td>
<td>پذیر اندوکرات (E)</td>
<td></td>
<td>66</td>
<td>78</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>1/0005</td>
<td>1/005</td>
<td>1/015</td>
<td>67</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>شاهد (Control)</td>
<td>(T1) - 6°C</td>
<td></td>
<td>70</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>1/0008</td>
<td>1/015</td>
<td></td>
<td>72</td>
<td>82</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>1/015</td>
<td>1/015</td>
<td></td>
<td>76</td>
<td>86</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>1/0008</td>
<td>1/015</td>
<td></td>
<td>78</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>1/015</td>
<td>1/015</td>
<td></td>
<td>82</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیر مشترک اختلاف معناداری در سطح احتمال 5 درصد دارند.

endophytes.

Endophytes are symbiotic fungi that inhabit the phloem of plants, such as grasses, providing various benefits to their hosts, including stress tolerance and increased physiological responses.


