بررسی روابط همبستگی سرعت و دوره پرشدن دانه با اجزای عملکرد و سایر صفات فیزیولوژیک در ارقام پرنج

مهمو مجتبایی زمانی، مسعود اصفهانی، رحیم هراتزاد و مهرزاد اله قلی پور

چکیده

به منظور تعیین روابط همبستگی بین سرعت و دوره پر شدن دانه با سایر صفات فیزیولوژیک و اجزای عملکرد و پی بردن به آثار مستقیم و غیر مستقیم صفات مختلف بزرگتر پر شدن دانه، تعداد 33 رقم پرنج در سال زراعی 1390 در مزرعه مؤسسه تحقیقات بزرگ کشور واقع در رشت در تصمیم گیری حد مطلق و محاسبات محاسبات تعداد گذاری شده و 100 روز بعد از گردیدن از مرحله دوازده بذر ثبات دانه در یک مدل علائم گربه مدل کمپیوتری 3 برای هر کلیه ارقام (998) و به کمک آن سرعت و دوره پر شدن دانه برای هر هوا ارتفاعی گردید. در این بررسی سرعت پر شدن دانه با صفات ویژه بر ظرفیت مخزن بهبود داده گردید و آنالیز داده در خوشه همبستگی نشان داد و با صفات ویژه به میزان نسبت کلیک برگ پرچ و برگ پیم همبستگی معنی داری نداشت. نتایج نسبتی رگرسیون گام به گام نشان داد که زن تهابی تک دانه. دوره پر شدن دانه و زاویه برگ پرچ سه صفت مهم در سرعت پر شدن دانه مستند ولی نتایج نسبتی مشخص کرد که فقط دو صفت از سه صفت با یاد داشت (زن تهابی تک دانه و دوره پر شدن دانه) بیشترین تأثیر را بر سرعت پر شدن دانه داشته. نتایج نسبتی رگرسیون گام به گام یافته در نظر نگرفتن وزن تهابی تک دانه نشان داد که نسبت کلیک برگ پرچ، عرض دانه، دوره پر شدن دانه و طول دانه در سرعت پر شدن دانه مهم شدند. نتایج به ترتیب می‌رسد که پس از وزن تهابی دانه که بیشترین اثر مستقیم و مثبت و دوره پر شدن دانه که بیشترین اثر مستقیم منفی را بر سرعت پر شدن دانه تأثیر گذار است.

واژه‌های کلیدی: پرنج، پر شدن دانه، عملکرد، نسبتی عیب

مقیده

مردم که زمین دارند با توجه به روند سرعت افراش جمعیت، نیاز به افزایش تولید پرنج ضروری می‌باشد و ایران به عنوان یکی از کشورهای وارد کننده پرنج که واردات سالانه پرنج از

1. دانشجوی سابق کارشناسی ارشد، استادیار و استاد زراعت و اصلاح نباتات دانشکده علوم کشاورزی، دانشگاه گيلان

2. پژوهشنگر مؤسسه تحقیقات بزرگ کشور، رشت

213

Downloaded from ipippul.ac.ir at 3:32 IRDT on Thursday September 19th 2019
در غلظ مطالعات، بین سرعت پر شدن، دانه و وزن دانه ارتباط معنی داری وجود دارد (16، 17، 18) جوز و همکاران (19) نشان دادند. این نتایج که وزن حیاتی خود دانه به میانگین و حداکثر سرعت پر شدن دانه همبستگی معنی داری داشت و با دهانه این کمک کردند. نتایج در این ارایه در زمینه سرعت پر شدن دانه انداده هامیش بخشی داشت و وزن دانه و تعداد دانه با دوره پر شدن دانه همبستگی معنی داری نداشت.

کانون نیز تاثیر مشابهی مبنی بر ارتباط مثبت معنی دارین بین سرعت پر شدن دانه با وزن دانه و اندازه دانه و ارتباط منفی معنی دارین سرعت پر شدن دانه با تعداد دانه را می‌برد. این کشوری بیشتر در نظر گرفته شود (12، 15، 16 و 18)، در پژوهشی برنج تجمع نشانه و سابیر ترکیبات دانه، رابط دانه به تولید مواد پودرده توسط برگ‌های سبز و غلاف است. فقط مقدار اندکی از مواد پودرده تولید شده قبل از کلیه بر مکردد دانه تأثیر دارد. قسمت عمد مواد پودرده تولید شده بعد از کلیه به طور مستقیم به دانه در خرشه انتقال می‌یابد (9 و 12). برگ درسور تغییر می‌کند. بر این تأثیر مواد فتوسنتزی را به خواص می‌فرستند. با توجه دانه همکاران نشان داد که قطع برگ بر روی بخش‌های اثر روي عملکرد دارند، و در جنگل سالانه به این دانه کمک می‌کنند. برگ اثر بر عملکرد دانه، در صورتی که قطع برگ چهار تاکمی بر عملکرد دانه. وی از آزمایشی با استفاده از علف کش و در حدود ۴۰۰۰–۷۰۰ هزار تن دانه، در بحران جهانی کم‌بود برنج درگیر است. (1)

یکی از راه‌های تولید ارقام پر محسوب، پی‌دان کردن شاخه‌های مورفولوژیک و فیزیولوژیک موجب عملکرد برنج و سیر مصرف در جهت بهبود این شاخه‌ها می‌باشد. سرعت و طول دوره پر شدن به عنوان در سیر فیزیولوژیک مهم، نقش بسزایی در تعیین نرخ عملکرد دارد. پر شدن دانه، ذخیره‌سازی فراورده‌های پلیمری در سلول‌ها و اندازه‌های این است که در طی دوره پر شدن دانه ایجاد شده‌اند، و به فاصله‌هایی نسبت به آن‌ها، عملکرد برنج باید بهبود یابد و انتقال فناها به دنبال مغز فناها به دنبال مغز عناصری مانند ایزوترپ و هی‌کره است (18). برندامه در طی سه مراهله و ۵ زوج واحد (۲–۳) افزایش خطي (۵–۶) روز بعد از گل‌دهی و ۳ رشد کند ناتوری به اندازه می‌رسد (۷) و زمانی که برنج فوهای حداکثر وزن خود را به دست آورده مطابق با زمانی است که از لحاظ مورفولوژیک برگ‌هایی از این آزاد را پیدا کرده است. دانه زمانی است که برناک انتقال مواد فتوسنتزی به دانه است که این میزان انتقال وابسته به سرعت و طول دوره انتقال است که بعنوان سرعت و دوره پر شدن دانه منجر می‌شود (۱۲). راکی کردن پر شدن دانه به تأمین از ارتباطات مخزن و منبع می‌باشد و در وضعیتی که به تولید مواد توانایی بالا می‌یابد. برای مثال تولید مواد فتوسنتزی توسط می‌باشد ۲-۱ انتقال مواد پودرده توسط بیشترین همکردی و ۳-۱ تولید مواد فتوسنتزی در مخزن است. ظرفیت مخزن شالی انتقال دانه در حوزه و پتانسیل وزن دانه است که مجموع تولید مواد پودرده تابعی از مدت زمان و سیر انتقال مواد پودرده است (۱۲). در مورد مخزن بعد از گرده‌افشانی عملکرد و تحمیل مواد فتوسنتزی را تحت تأثیر قرار می‌دهد. ظرفیت بالای مخزن فتوسنتز پوشش گیاهی را افزایش می‌دهد و در تهیه کننده مدادهای خشک تولید شده بعد از گل‌دهی بهتر شده و عملکرد دانه بالاتر می‌رود. زیرا عمد برکه‌های موجود در دانه حاصل فتوسنتز بعده از گل‌دهی است (۹ و ۱۳).
پوشاند فرمات‌های مختلف گیاه نشان داد که برگ‌ها به عنوان مهم‌ترین اندام، پرش در آنها را تحت تأثیر قرار می‌دهند. طی مطالعات متعدد که توسط آکادمی علوم کشاورزی جنگنش و مرکز ملی تحقیقات برنج هیریند چین اخرا شده است، بهترین این مدل روش‌های برق‌های پر‌محصول به یک صورت که به برنج بالایی بافتی، بلند، رسی، باریک و ضخیم و نیز مقطع آنها به شکل 7 باشد، دیده شده است. (۲) حفظ کلروفیل در برگ پرچم و در برگ زریانی باعث تغییر در برگ برق آنها بیشتر و به‌دیدن تسمیه مواد فوسفوری به دانه‌ها و عملکرد کاه‌دوزی برنج به دنیا نشان داده که اثر این این اثر عملکرد بالاتر داشتن. نتایج از آزمایش‌های نشان داد که از عملکرد تعداد خوش به دانه، زاویه برگ پرچم و مقدار کلروفیل برگ پرچم هم‌بستگی معنی‌داری دارد.

تعیین قرار دادن برگ‌های پر‌محصول دانه به مساله مهم در زراعت و صنایع نباتات می‌باشد. روش‌های مختلف برای حصول تخمین سرعت و طولدوزی برنج دانه بیشتره شده است. اما بطور کلی برای بزرگ‌های هemma عهده‌دار

به‌داشتهای معمول در طول زلزله رشد نیاز است، به‌منظور تخمین سرعت برنج دانه از بزرگ‌های مختلف

لیست‌های سیاه‌و‌سفیدی و اغلب عهده‌دار ۳ استفاده می‌شود. گاهی نیز فقط بر روی تغییرات خشک خشک خشک خشک خشک خشک

به‌صورت رگرسیون خطی بررسی می‌گردد. (۱۸)

هدف از پژوهش حاصل بررسی و روابط هم‌بستگی بین سرعت و دوره بر دانه به مقدار ترمیم‌ریزی و اجرای عملکرد و مشاهد صفاتی است که به‌بیشتر تاثیر ای‌تی برای

یک رونده دانه دارد.
دانه برای هر رقم در مدل‌های مختلف برایش شد و در انتهای آن مدل پیش‌نهایی جمع و همکاران که بی‌کمال و بزرگ‌جمله‌ای در جریه 3، به‌طور مداوم با واحد ضریب نسبی‌ها استفاده شد. با استفاده از نرم‌افزار MATLAB از داده‌های وزن تک دانه و زمان بردارش آنها معادله دارج می‌شده بی‌کمال می‌شود. از نرم‌افزار SPSS، گزارش‌های استفاده گردید.

* منظور تغییر روابط همبستگی بین صفات مورد ارزیابی با SPSS و نرم‌افزار کامپیوتری استفاده شد و برای بررسی تأثیر هرکدام از صفات مورد نظر بر روی معنای وابسته، همچنین حذف نتایج‌ها که اثر ناجیزی روی معنای وابستگی دارد و برای قرار گرفتن مدل از روش منظور کشف روابط عقلی و مطابق و تغییر همبستگی صفات مؤثر در سرعت بر دانه تجربی سیس (برای وزن تک دانه به اجزای مربوط به روش دوی و لب) به صورت آناتومیم و غیرمستقیم انجام داده شد. از نرم‌افزار Path74 استفاده شد.

**نتایج و بحث**

در این پژوهش کلیه داده‌های به دست آمده از وزن خشک دانه برای هر رقم در مدل چند جمله‌ای درجه 3 برایش شد که با برترین ضریب نسبی در مدل‌های برایش شد. در جریه 1999/0 و کوچک‌ترین ضریب نسبی 0/976 بود. میانگین ضریب نسبی برای کلیه گروه 0/98 بود که کمتر از 0/3 برای پیش‌نهایی مدل بود. برای جمله‌ای درجه 3 برایش (3 مدل مناسبی برای براش داده‌های موجود بود.

\[
\frac{dy}{dt} = b_1 + t \cdot b_2 + t^2 \cdot b_3
\]

۳ وزن تک دانه، ۳ وزن و ثابت رگرسیون است.

اندازه‌گیری مقدار کلروفیل به درصد بالایی در این مدل جهت پیش‌نهایی و با استفاده از دستگاه کلروفیل تمستانت SPAD-502 (بیماری زاینی) صورت گرفت. فرمول از سه ناحیه مختلف (پسمانده بزی و نزدیک به نوک و انتهای) در هر بارکه ۳۰ متری صورت گرفته و میانگین آن انت‌شده.
جدول 1: ضرایب همبستگی بین صفات اندازه‌گیری شده در 93 رقم برنج

| صفت | کارولفیل برنج 1 | کارولفیل برنج 2 | وزن مخصوص 2 برنج | بالایی | مساحت برنج 1 | مساحت برنج 2 | مساحت برنج 3 | مساحت برنج 4 | زایده برنج 1 | زایده برنج 2 | ارتفاع کیسه | تعداد پنجه بارور | تعداد دانه | درجات ترشح برنج 1 | درجات ترشح برنج 2 | درجات ترشح برنج 3 | درجات ترشح برنج 4 | سرعت پر شدن دانه | زمان پر شدن برنج 1 | زمان پر شدن برنج 2 | زمان پر شدن برنج 3 | زمان پر شدن برنج 4 | طول دانه | عرض دانه | مالکیت برنج 1 | مالکیت برنج 2 | مالکیت برنج 3 | مالکیت برنج 4 |
|------|-----------------|-----------------|-------------------|-------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|----------------|---------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|
| 1    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 2    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 3    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 4    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 5    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 6    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 7    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 8    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |
| 9    | 0.001           | 0.001           | 0.03              | 0.001 | 0.001         | 0.001         | 0.001         | 0.001         | 0.001        | 0.001        | 0.001        | 0.001         | 0.001         | 0.001       | 0.001           | 0.001           | 0.001           | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          | 0.001          |

** و ***: به ترتیب معنی‌دار در سطح 5 درصد، 1 درصد و غیر معنی‌دار
در تحقیق نام برده وجود نداشت (۲۰). در تحقیق حاضر، سرعت و دوره پر شدن دانه با تعداد روز
تا ۵ درصد کل دهی همیگنی نداشت. جنرژ و همکاران نیز
عدم وجود چنین همیگنی را در ۱۵ زنوتیپ اعلام نمود (۳۲).
بر اساس نتایج کاوش سرعت پر شدن دانه با تعداد روز تا
۵ درصد کل دهی همیگنی وجود نداشت. ولی به وسیله دوپر شدن
دانه با تعداد ۵ درصد کل دهی همیگنی مثبت و معنی
داری وجود داشت (۱۴).

در بررسی ضرایب همیگنی سرعت پر شدن دانه با صفات
وانتهای به مبدأ مانند مساویت برد، وزن مخصوص برد و
زاویه برد پرچم همیگنی معنی داری می‌شود. ولی بین
سرعت پر شدن دانه با میزان کاراکتر برد پرچم و برد دوم
همیگنی معنی معنی در در سطح احتمال یک درصد دیده
شد. شاید توان چنین توجه نکرده که هر چه غلظت کاراکتر
برد بیشتر باشد، عمر همیگنی برد بیشتر و مواد پرورده را
در مدت زمان طولانیتری به دانه‌ها می‌رساند. بنابراین سرعت
پر شدن دانه کاهش و دوره پر شدن دانه طولانیتر می‌شود.
تاکنون اطلاعاتی در این زمینه در تحقیقات دیگر گزارش نشده
است.

در این آزمایش عامل‌کاردیان دانه به صفاتی مانند تعداد
دانه پر در خودش، میزان ۳ برگ بالاپایی، ارتفاع گیاه و تعداد
بنچه پارو در بونه در سطح احتمال یک درصد همیگنی
مثبت معنی دارد نشان داد. در حالتی که بین ۱۰۰ دانه
همیگنی معنی داری نداشت. چنین به نظر می‌رسد که ارقام با
پشتین سطح برد در ۳ برگ بالاپایی، بالاترین عملکرد را به
خود اختصاص داده‌اند. در حالی که در بونه همیگنی
روی سافته، ماده فتوسنتزی به وسیله همیگنی مثبت و
واستی به همیگنی معنی داری ندارند. از این دیده
می‌باشد. در این آزمایش دوره پر شدن دانه با عامل‌کار
و اساس می‌باشد که هر چه سطح برد بیشتر باشد
مواد فتوسنتزی به وسیله همیگنی مثبت و
واستی به همیگنی معنی داری ندارند. از این دیده
می‌باشد که هر چه سطح برد بیشتر باشد
مواد فتوسنتزی به وسیله همیگنی مثبت و
واستی به همیگنی معنی داری ندارند. از این دیده
می‌باشد. در این آزمایش دوره پر شدن دانه با عامل‌کار
و همکاران بین دوره پر شدن دانه با عامل‌کار
مثبت و معنی دارد نشان داد. در این آزمایش دوره
آذر فصل را، سرعت پر شدن دانه را معتقد دانستند به
شواهدی منبی بر ارتباط بین دوره پر شدن دانه با طرفیت مخزن

۲۱۸
در این تحقیق، همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرش پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

ضریب همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

فصل دوم: محاسبه همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

در این تحقیق، همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

در این تحقیق، همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

در این تحقیق، همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

در این تحقیق، همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.

در این تحقیق، همبستگی مثبت بین موجودی ایرانی نزدیک‌ترین مدل رگرسیونی بین سرعت پرشان دنده از نظر مختصات رگرسیون کاملاً متفاوت با گام انجام شد که سرعت پرشان دنده بعنوان متغیر دوم و سایر صفات اریازایی بد به علت نظر که به عنوان کدام با نتیجه شناخته شد.
جدول 2. ترکیب رگرسیون گام به گام سرعت پر شدن دانه با دیگر متغیرهای موجود بررسی در 93 رقم پرینت

<table>
<thead>
<tr>
<th>متغیر وارد شده</th>
<th>b در مدل نهایی</th>
<th>R²</th>
<th>b در مرحله وارد شدن</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن نهایی نک دانه</td>
<td>0/87</td>
<td>0/88</td>
<td></td>
</tr>
<tr>
<td>دوره پر شدن دانه</td>
<td>0/99</td>
<td>0/99</td>
<td></td>
</tr>
<tr>
<td>زاویه برک پرچم</td>
<td>0/99</td>
<td>0/99</td>
<td></td>
</tr>
</tbody>
</table>

ع柿 از میادا = 0/531

جدول 3. خلاصه ترکیب رگرسیون گام به گام سرعت پر شدن دانه با دیگر متغیرهای موجود بررسی با حذف صفت وزن نهایی دانه در 93 رقم پرینت

<table>
<thead>
<tr>
<th>متغیر وارد شده</th>
<th>b در مدل نهایی</th>
<th>R²</th>
<th>b در مرحله وارد شدن</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلرولیف برک پرچم</td>
<td>0/215</td>
<td>0/215</td>
<td></td>
</tr>
<tr>
<td>عرض دانه بدون پوسته</td>
<td>0/235</td>
<td>0/235</td>
<td></td>
</tr>
<tr>
<td>دوره پر شدن دانه</td>
<td>0/277</td>
<td>0/277</td>
<td></td>
</tr>
<tr>
<td>طول دانه بدون پوسته</td>
<td>0/504</td>
<td>0/504</td>
<td></td>
</tr>
</tbody>
</table>

ع柿 از میادا = 0/589

نتایج تجزیه رگرسیون گام به گام در جدول 2 آراته شده است. در این بررسی، وزن نهایی دانه بعنوان اولین صفت وارد مدل گردید و به‌دیده معنی‌دار بودن ضریب رگرسیون آن در مدل باقی ماند. اساس انتخاب اولین متغیر مستقل در این روش داشتن بیشترین ضریب همبستگی با متغیر واپسین می‌باشد. این صفت به تنهایی 87 درصد از تغییرات سرعت پر شدن را توجه کرد. پس از آن به ترتیب صفات دوره پر شدن دانه و زاویه برگ پرچم وارد مدل گردیدند و به‌دیده معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 4 در مدل باقی ماندند و حدود 99 درصد از تغییرات سرعت پر شدن دانه را توجه کردند. نتایج نشان می‌دهد که صفت وزن نهایی دانه مقدار زیادی از تغییرات سرعت پر شدن را توجه نکرد. که این امر ممکن است اثر متغیرهای دیگر را پوشاند. بنابراین بکارگیری دیگر تجزیه رگرسیون گام به کام با حذف صفت وزن نهایی دانه از بین صفات مستقل انتخاب شد. که نتایج آن در جدول 3 آراته شده است. کلرولیف برک پرچم اولین صفت بود که وارد مدل شد و 0/215 درصد از تغییرات سرعت پر شدن دانه با دیگر متغیرهای موجود بررسی در 93 رقم پرینت.
جدول ۲ - نتایج رگرسیون گام به گام وزن نهایی تک دانه با دیگر متغیرهای مورد بررسی در ۹۳ رقم برش

<table>
<thead>
<tr>
<th>متغیر وارد شده</th>
<th>R²</th>
<th>مدل نهایی در منطقه وارد شدن</th>
<th>مدل نهایی در منطقه وارد شدن</th>
<th>مدل نهایی در منطقه وارد شدن</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت پرشدن دانه</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>دوره پرش شدن دانه</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
</tr>
<tr>
<td>زاویه برگ پرچم</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
</tr>
</tbody>
</table>

عرض از میاندازه = ۰/۱۵۵، ۰/۱۵۵

جدول ۳ - اثر مستقل و غیر مستقل ۳ متغیر وزن نهایی تک دانه، دوره پرش شدن دانه و زاویه برگ پرچم بر سرعت پرشدن دانه در ۹۳ رقم برش

<table>
<thead>
<tr>
<th>متغیر مستقل</th>
<th>اثر مستقل</th>
<th>اثر غیر مستقل</th>
<th>وزن نهایی تک دانه</th>
<th>دوره پرش شدن دانه</th>
<th>زاویه برگ پرچم</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل نهایی دانه</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
</tr>
<tr>
<td>دوره پرش شدن دانه</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
</tr>
<tr>
<td>زاویه برگ پرچم</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
</tr>
</tbody>
</table>

تغییرات سرعت پرشدن دانه از توجهی کردنی که 
کاذن نتایج حاصل از تجزیه رگرسیون جایگاه آن است که 
طول دانه به عنوان اولین شکل وارد مدل رگرسیونی شد و 
۸۸ درصد از تغییرات سرعت پرشدن دانه را توجهی کرد. و پس از 
اند این تغییرات سرعت پرشدن دانه به عنوان نهایی وابسته در بررسی 
مقدمه وزن نهایی تک دانه، دوره پرش شدن دانه و زاویه برگ 
پرچم به عنوان متغیر مستقل مورد تجزیه علت قرار گرفت. 
که نتایج آن در جدول ۵ شناخت داده است. ملاحظه می‌شود 
که وزن نهایی دانه، دارای بیشترین اثر مستقل بر سرعت پرشدن 
دانه می‌باشد. در جدول ۱ نیز مشاهده می‌گردد که این متغیر 
دارای بیشترین همبستگی منبت به سرعت پرشدن دانه است و 
در تجزیه رگرسیون گام به گام نیز نخستین صفتی بوده که وارد 
مدل شد. دوره پرش دانه نیز اثر مستقل منبت بر سرعت 
پرچم دانه دارد. لیست آمار غیر مستقل در این تجزیه کوچک و 
قابل اعجاب است، و زاویه بکر پرچم نیز هیچکنون تأثیر 
مستقلی در روز سرعت پرش دانه نداشت و همبستگی منبت 
و ناجی آن بر سرعت پرش دانه ناشی از اثرات غیر مستقلی و 
ماده حاکی از ارتباط قوی بین میانگین سرعت پرشدن دانه و 
وزن نهایی دانه است.

در تحقیق حاضر و به همکاری با متغیر بزرگ از تجربه رگرسیون جایگاه آن است که 
عمل محسوبی از طریق وزن نهایی دانه و به عنوان رفع 
هرگونه شکل، مجدداً تجزیه رگرسیون گام به گام انجام و این 
بار وزن نهایی دانه به عنوان متغیر وابسته و دیگر صفات ارزیابی 
شده به عنوان متغیر مستقل در نظر گرفته شدند. که نتایج آن 
در جدول ۴ ارائه شده است. این حال سرعت پرشدن دانه 
به عنوان اولین صفت وارد مدل گردید که به نهایی ۸۷ درصد از 
تغییرات وزن نهایی دانه را توجهی کرده و سپس به ترتیب صفات 
دوره پرش شدن دانه و زاویه بکر پرچم وارد مدل شدند که 
درصد از تغییرات وزن نهایی دانه را توجهی کردن. نتایج به دست
جدول 6: اثر مستقیم و غیر مستقیم 3 متغیر کارولفیل بر گرم پرچم، عرض دانه، دوره پر شدن دانه و طول دانه بر سرعت پر شدن دانه

<table>
<thead>
<tr>
<th>همبستگی کل با</th>
<th>اثر مستقیم</th>
<th>اثر غیر مستقیم از طریق کارولفیل بر گرم پرچم</th>
<th>عرض دانه</th>
<th>دوره پر شدن دانه</th>
<th>طول دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارولفیل بر گرم پرچم</td>
<td>0.320</td>
<td>0.1386</td>
<td>0.300</td>
<td>0.047</td>
<td>0.076</td>
</tr>
<tr>
<td>عرض دانه</td>
<td>0.300</td>
<td>0.368</td>
<td>0.1386</td>
<td>0.036</td>
<td>0.023</td>
</tr>
<tr>
<td>دوره پر شدن دانه</td>
<td>0.047</td>
<td>0.036</td>
<td>0.047</td>
<td>0.010</td>
<td>0.024</td>
</tr>
<tr>
<td>طول دانه</td>
<td>0.076</td>
<td>0.023</td>
<td>0.024</td>
<td>0.010</td>
<td>0.005</td>
</tr>
</tbody>
</table>

اثر باقی مانده = 0.31

از تاثیر فوق چنین به نظر می‌رسد که سرعت پر شدن دانه به شدت تحت تأثیر صفات و ابعاد به نظریت مخزن می‌باشد و در ارقامی که این لغات و ابعاد دانه بیشتر دارد، میزان نقش و ناپاتتا سرعت انتقال مواد پرورده به سمت مخزن افزایش یافته و بنابراین تجمع مواد پرورده در سطح‌های آندوسرم سریعتر می‌شود و در واقع سرعت پر شدن دانه تسریع می‌یابد. به طور کلی اگر در روند انتقال مواد فوتونیکی مشکل خاصی وجود ندناشته باشد عملکرد واقع به نظریت مخزن و یا کمپود شیره پرورده محدود می‌شود. و کانسپارالز از طریق کاهش عضود خشیق‌ها یک رقم تریال دریافت که اگر چه نظریت مخزن یک عامل مهم در تغییر عملکرد پرچم به‌شمار می‌آید، اما به نظر می‌رسد که محدودیت منبع نیز از اهمت بالایی در تغییر عملکرد برخورداری می‌باشد (24). فاکتور و همکاران اظهار داشتند که نظریت مخزن به تغییر در موجودی مواد پرورده از عواملی فنی حساس است، به‌طوری که کاهش در موجودی مواد پرورده از زمان گرفته شدن تا ایجاد دوره پر شدن دانه و یکی در ارقام بر محصول با تعداد دانه زیاد در خشون، باعث کاهش در دوست دانه‌های پر‌شده و عملکرد دانه می‌شود (8).

تحقیقات مطالعات زیادی در زمینه روابط سرعت و دوره پر شدن دانه بین برخی نیز با بررسی از صفات مورفولوژیک و جزئیات عملکرد انجام شده است و از آنجایی که در کلیه این مطالعات ورز دانه به عنوان یکی از اجزای مهم تغییر کندی متقین ورزنه‌کردن و دوره پر شدن دانه به دریافت امکان‌پذیر می‌باشد. قابل توجه است که هر گونه عملکرد انجام شده باید با آزمایشگری و جزئیات عملکرد انجام شده باشد.
در جهت افزایش سرعت پر شدن دانه، راهی برای رسیدن به ارقام پر محصول و زودرس می‌باشد. ضمن این که برای اینگونه مناطق اصلاح کردن نیت به دنبال ارقام ایدالی هستند که وزن دانه بالایی را همراه با طول دوره پر شدن کوتاه داشته باشند.

منابع مورد استفاده
1. آمارنامه کشاورزی ایران. 1380. انتشارات وزارت جهادکشاورزی، تهران.
2. درستی ح. 1379. برنج های پر محصول برتر (ترجمه). مؤسسه تحقیقات برنج کشور، رشت.