ارتباط قارچ‌های هم‌زیست اندوفاتی با زودرسی و صفات وابسته به آن در گیاه فسکیوی بلند (Festuca pratensis Huds.) و فسکیوی مرتعی (Festuca arundinacea Schreb.)

آقای‌آخور میرلورجی، محمد رضا سایعیان و محمد حسن اهتام‌ا

چکیده

به منظور بررسی نقش قارچ‌های هم‌زیست اندوفاتی (Neotyphodium coenophialum) در افزایش زودرسی چهار زنوبی فسکیوی بلند و دو زنوبی فسکیوی مرتعی در این آزمایش استفاده گردید. پس از انتخاب گیاهان زاگار با قارچ هم‌زیست اندوفاتی، پنج چهار هم زنوبی به دو نمونه تقسیم شد و نمونه اندوفاتی در یک بخش از پنج چهار با انتخاب از مخلوط قارچ گیاهی چپ گیاه کنگولوزول و فولیکولوزول حذف گردید. پنج چهار جدید از گیاهان حاوی اندوفاتی و بدون اندوفاتی در قابلیت یک طرح پایه کامل تصادفی درسه نکردن در مورد اکتشا کشت گردند. صفات تعداد روز تا ظهور اولین خوشه، تعداد روز تا 50 درصد گدگشته، تعداد روز تا شروع رشد گیاهی اندوفاتی تعداد خوشه در هر هفته، وزن کل بذر تولید شده، وزن بذر خالص و وزن بذر پوک در هر دو هفته یک بار روز گیاهان اندوزده‌گیوه و شدن. نتایج نشان داد که قارچ‌های هم‌زیست اندوفاتی قادرانه به حضور گیاهان مرتعی و فسکیوی مرتعی افزایش دهنده قارچ‌های اندوفاتی به طور متوسط ظهور اولین خوشه را 2 روز چند اندیدند. همچنین قارچ‌های هم‌زیست اندوفاتی، تاریخ 50 درصد گردگشته، تاریخ شروع رشد گیاهی چپ گیاه کنگولوزول را کاهش دادند. تعداد خوشه گیاهان حاوی اندوفاتی تیز در اندوفاتی و بیش از خوشه گیاهان بدون اندوفاتی بود. بررسی میزان معمول مرهچی از بذر گیاهان حاوی اندوفاتی و بدون اندوفاتی به وسیله به صورت معمول میزان بذر از گیاهان بدون اندوفاتی بود. همچنین قارچ‌های هم‌زیست اندوفاتی محیط میزان میزان بذر در هر مرحله، میزان بذر خالص و میزان بذر پوک را افزایش می‌دهد. ظاهار افزایش بذر خالص، نشان دهنده بزرگی تغییرات چپ گیاه کنگولوزول از جمله تغییرات احتمالی هورمون‌ها در گیاه است که شراط بیطری دانه‌بندی را فراهم می‌کند. بدین ترتیب برای حل در کاهش حاضر به نظر می‌رسد که قارچ‌های هم‌زیست اندوفاتی قادر باشند منجر به افزایش چپ گیاه کنگولوزول و فسکیوی مرتعی گردند.

واژه‌های کلیدی: اندوفاتی، زودرسی، فسکیوی بلند، فسکیوی مرتعی

مقدمه

هم‌زیست لگوم-رازرویوی شناخته شده‌ترين رابطه هم‌زیستی گياه-میکرواگانیسم است. هم‌زیستی ديگری بین گياه و 1. به ترتیب دانشيار، دانشجوی دکتری و مربی زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

277
کورنیکی به صورت یک گیاهی می‌باشد. این گیاه یکی از مهم‌ترین گیاهان سرده‌ای در ایالت‌های آمریکا می‌باشد که در سطحی معادل ۱۴ میلیون هکتار کشت می‌شود (۵). در سال ۱۹۷۷، بیکن و همکاران (۳۳) حضور این فریم در گیاه فیتکیکی به عنوان عامل پیشگیری در دام‌های چرای کندن‌کننده این پرورش هم‌زیستی این پرورش نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر نمک‌های Carbon و سپس به عنوان Epichloe typhina (نام Neotyphodium نمک زنده) را در طی فلورا بدون تغییر N
کشت بذرهای حاوی اندوافیات و تعیین سازگاری فارغ با گیاهان میزان

برای تعیین حضور قارچ‌های اندوافیات در بذر توده‌های گیاهی جمع‌آوری شده از روش پیشنهادی توسط سالما و همکاران (19) استفاده گردید. بدئهی هر توده به تعداد 20 رنگ 15 بذر و به صورت همزمان به مدت 15 ساعت در محلول فیلایی رنگ ریزبگن قرار گرفتند. وقتی بدئهی به میزان کافی به شدت داشتند، با آب جاری، شست و چید و به مدت 3 روز ساعت در محلول اسیدی رنگ ریزبگن قرار گرفتند. ردغی امریزی کامل گردید. بدئهی رنگ‌گیری شده سپس روز 6 استفاده گردید و با عدسی از 3/00 در زیر میکروسکوپ مورد مشاهده قرار گرفتند. پس از اطمینان از حضور اندوافیات در توده‌های مورد نظر، بدئهی هر توده به صورت همزمان در محلول گازهای مولتی 15 سانتی‌متری حاوی شکر لیمو- روی کشت شدند. سه ماه پس از رشد گیاهان و تولید پنجه کاذبی از غلاف‌های گیاه رشد یافته هر توده نمونه‌برداری صورت گرفت و به روش سالما و همکاران (19) بررسی شدند. برای رنگ امریزی غلاف برگ تازه، ابتدا در داخل برگ برش شده و روی لام میکروسکوپ قرار گرفته یک نتا دو طرفه محلول استاندارد محلول استاندارد حاوی 1/5 گرم زنگ گیاه به قاب‌گذاری در 100 میلی‌لیتر الکل 5 درصد است) روی نمونه کاذب‌شده شد و 30 ثانیه بعد به کاهن جذب بافت غلاف گردید، نمونه‌ها با پیک اصلاح یافته با دستگاه کاذب‌سازی گراف و نمونه‌ها با پرگامائی 40 در زیر میکروسکوپ مشاهده شدند. قارچ‌ها‌ی اندوافیات به صورت موادی با آنحوار غلاف برک مشاهده شدند. معمولاً قارچ‌های اندوافیات زنده که با گیاهان میزانی سازگاری دارند، دارای تراکم هیف‌هایی در کیویه‌ی میزان و در ضعیف برک هستند و کمترین مقاوم حیرت عرضی را دارند و برای بررسی نیز هستند.

مواد و روش‌ها

مواد گیاهی مورد استفاده در این تحقیق شامل سه زنوتیب گیاهی از توده 75 و 75B (75C و 75D) با زنوتیب از توده 75 و 75B (75C و 75D) و در زنوتیب از توده 75 و 75B (75C و 75D) این سن توده به ترتیب از روش‌های مختلف این گیاهان در کامپاران کرده‌اند. فرمول خرسان و بروجی استانچه‌ها و بخشی، جمع‌آوری گردیده‌اند و هم اکنون در بانک زن‌استگا تحقیقاتی شهید فرهنگ اصفهان نگهداری می‌شوند. تعداد 75 و 75B (75C و 75D)
نُمی‌شوند (7). با توجه به این خصوصیات و بررسی گیاهان مختلفی از هر سه، سه زنوتیپ از توده 15، یک زنوتیپ از توده 28 و دو زنوتیپ از توده 60 انتخاب گردیدند. زنوتیپ‌های انتخاب شده از طریق جداسازی ناحیه‌ها در گلدن‌های مجرا و در سه تکرار کلون گردیده و در گل‌شناسی نگهداری شدند.

تکثیر گیاهان حاوی اندوفیلات و بدون اندوفیلات

برای تولید گیاهان حاوی اندوفیلات و بدون اندوفیلات از یک زنوتیپ گاهی به‌کار گرفته شد. ابتدا ناحیه‌های موجود در همان مربوط به یک زنوتیپ به دو قسمت تقسیم گردید و سپس یک قسمت مخلوط و دیگری کشورهایی که بروپیکوکنوز و فولیوکور، اسیری و گردن. قارچ کش پروپیکوکنوز و فولیوکور با فلونوتیک و دیگر قارچ‌ها به دو بخش منطقی است. این بخش‌ها مورد تیمار می‌باشند. در پایان، سه از آخرین اسیری کردن، گیاهان مورد تیمار مورد بررسی مجدد برای تعیین حضور اندوفیلات قرار گرفتند و مشخص شد که اندوفیلات به طور کامل از یک گیاهان شده، حذف شده است. گیاهان نیز ۲۰۰۰ تیمار، هر ۱۰ زنوتیپ در گلدن‌های مجرای کار به مزیعه کشت گردیدند. خاک کرته، رسی، بود و هنگام کاشت به هر کرت با ابعاد ۱/۵ × ۲ متر، مربع، ۱۰ کیلو گرم کود دامی بیترای و ۵۰ کیلوگرم اضافه گردید. پنجمه‌ها جدیدی از گیاهان حاوی اندوفیلات و بدون اندوفیلات هر زنوتیپ به گلدن‌های متوسط ۲۰ × ۱۵ سانتی‌متری حاوی خاک‌لویی - رسی مشتی شدند و در گل‌شناسی نگهداری گردیدند. در زمستان سال ۱۳۸۱، گیاهان حاوی اندوفیلات و بدون اندوفیلات و در اندوفیلات حاوی زنوتیپ به صورت آزمایش فاکتوریل در قالب یک طرح پلک کامل تصادفی در سه تکرار در مزرعه‌ها تشت کرون گردیدند. تیمارهای شامل ۶ زنوتیپ و دو حالت حاوی اندوفیلات و بدون اندوفیلات بود و جمعاً ۱۲ تیمار ترکیب زنوتیپ -

نتایج و بحث

تاریخ خوش‌دیده

قارچ‌های اندوفیلات منجر به ظهور زودتر خوش‌دیده در گیاهان گرفتند. (جدول ۱). با این حال اختلاف بین گیاهان حاوی اندوفیلات بدون اندوفیلات نهایا روز بود (شکل ۳). همچنین زنوتیپ‌های مختلف نیز از نظر زودرسی منفعت بودند و زنوتیپ‌های مربوط به ۶۰ روز و زنوتیپ‌های در نزدیکی ساله ۰/۶ روز و زنوتیپ‌های از نظر زودرسی سریع‌تر داشتند. مقایسه معنی‌دار ترکیبات تیماری نشان داد که در میان زنوتیپ‌های مختلف زنوتیپ ۳۸ بیشترین اختلاف بین گیاهان حاوی اندوفیلات و بدون اندوفیلات با ۶ روز اختلاف در تاریخ خوش‌دیده را

اندوفیلات در هر تکرار قرار گرفت. یافته‌ها با ابعاد ۱/۵ × ۲ متر بود و طیه که در هر پلاک، ۶ بینه (هر بیونه حاوی ۵ از جمله یک زنوتیپ و ۵ ماسه اضافه گردید. مزرعه به دست نیافته‌ها هم‌کار آبیاری و دیگر و سپس از استقرار گیاه و شروع سیستم زایش گیاهی اطلاعات مورد نظر از گیاهان با دادن گردیده. بادادشته برداری از صفحات مصادف با بهار و تابستان سال ۱۳۸۲ بود.

صفات مورد بررسی و تجزیه آماری داده‌ها

صفات مورد بررسی در این تحقیق شامل تعداد روز از اول فورمون، تا ظهور اولین خوشه، تعداد روز از ۵۰۰۰ و به‌کارگیری از فیزیولوژیک (ایجاد خمیری نرم)، عناصر نهایی ساقه کلیده در زمان سیستمیک بدن، و زن کل بذر تولید شده، وزن خالص بذر و وزن متاف لیزری پیک و شکاف در هر دو هفته یک بار بود. در پایان MSTATC و SAS آبادانگی و تحمل آماری چار گرفتند.
جدول 1. جدول تجزیه واریانس مربوط به صفات مختلف زودرسی و اثر منابع مختلف

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه آزادی</th>
<th>عنصر تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاریخ ظهور خوشش</td>
<td>زنوتیب</td>
<td>238/177**</td>
</tr>
<tr>
<td>غربایی</td>
<td>21/88**</td>
<td></td>
</tr>
<tr>
<td>زنوتیب x غربایی</td>
<td>9/84**</td>
<td></td>
</tr>
<tr>
<td>تاریخ شروع رسیدگی فیزیولوژیک</td>
<td>زنوتیب</td>
<td>85/935 **</td>
</tr>
<tr>
<td>غربایی</td>
<td>51/78</td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td>22 **</td>
<td></td>
</tr>
</tbody>
</table>

** مبنی دار در سطح احتمال 1 درصد.

![نمودار]

شکل 1. مقایسه میانگین صفات مربوط با زودرسی در گیاهان حاوی اندولفاوت و بدون اندولفاوت

میانگین نشان که روز بود (شکل 1). در اینجا زنوتیب 3 که از نظر تاریخ ظهور خوشش حالت حد وسطی داشت، برترتر از بقیه VGC زنوتیب‌ها بوده و با تاریخ 50 درصد غربایی بوده و زنوتیب گردش‌فاسیائی رسمی از سایر زنوتیب‌ها جلوتر بوده و به شکل های VFA و VFB مشترکاً در رتبه بندی قرار داشتند. مقایسه میانگین تعدادی زنوتیب و غربایی هم نشان داد که در زنوتیب 4 و VGC بیشترین اختلاف بین گیاهان حاوی اندولفاوت و بدون اندولفاوت از این نظر وجود داشت. ولی این اختلاف به صورت بود که در زنوتیب 40 A گیاهان حاوی اندولفاوت 4 روز زودتر به 50 درصد گردش‌فاسیائی

داست. در مقابل زنوتیب‌های VGC و VFB که از این نظر اختلاف‌های قابل توجهی نشان دادند (جدول 2). با توجه به اینکه قارچ‌های اندولفاوت در هورمونی گیاه را تغییر می‌دهند (10) به نظر می‌رسد این عامل در پیش انتخابات تاریخ خوشش دهی مؤثر باشد. با این حال تحقیقات بیشتری برای درک این موضوع مورد نیاز است.

جدول 10 درصد گردش‌فاسیائی

از نظر تاریخ 50 درصد گردش‌فاسیائی نیز اثر حضور اندولفاوت و اثر زنوتیب‌های مختلف معمول دارد بود (جدول 1). با این حال اختلاف بین گیاهان حاوی اندولفاوت و بدون اندولفاوت به طور

221
جدول ۲ مقایسه میانگین تركیبات تیماری زنوتیپ انومافای در بررسی صفت تاریخ خوش‌دهی. تاریخ ۵۰ درصد گره افشانی و تاریخ شروع رسیدگی

<table>
<thead>
<tr>
<th>زنوتیپ</th>
<th>انومافایت</th>
<th>تاریخ خوش‌دهی (روز)</th>
<th>تاریخ ۵۰ درصد گره افشانی (روز)</th>
<th>تاریخ شروع رسیدگی (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۳۳<sup>c</sup></td>
<td>۸۱<sup>d</sup></td>
<td>۴۴<sup>b</sup></td>
<td>E+</td>
<td>۶<sub>۰</sub>A</td>
</tr>
<tr>
<td>۸۵<sup>c</sup></td>
<td>۸۵<sup>a</sup></td>
<td>۴۴<sup>a</sup></td>
<td>E-</td>
<td>۳<sub>۰</sub>B</td>
</tr>
<tr>
<td>۸۵<sup>b</sup></td>
<td>۸۱<sup>d</sup></td>
<td>۴۷<sup>a</sup></td>
<td>E+</td>
<td>۶<sub>۰</sub>B</td>
</tr>
<tr>
<td>۸۵<sup>a</sup></td>
<td>۸۱<sup>d</sup></td>
<td>۴۷<sup>a</sup></td>
<td>E-</td>
<td>۳<sub>۰</sub>B</td>
</tr>
<tr>
<td>۸۴<sup>c</sup></td>
<td>۵۴<sup>c</sup></td>
<td>۳۵<sup>d</sup></td>
<td>E+</td>
<td>۶<sub>۰</sub>A</td>
</tr>
<tr>
<td>۵۴<sup>c</sup></td>
<td>۵۴<sup>c</sup></td>
<td>۳۵<sup>d</sup></td>
<td>E-</td>
<td>۳<sub>۰</sub>B</td>
</tr>
<tr>
<td>۵۴<sup>b</sup></td>
<td>۵۴<sup>c</sup></td>
<td>۳۵<sup>d</sup></td>
<td>E+</td>
<td>۶<sub>۰</sub>B</td>
</tr>
<tr>
<td>۵۴<sup>a</sup></td>
<td>۵۴<sup>c</sup></td>
<td>۳۵<sup>d</sup></td>
<td>E-</td>
<td>۳<sub>۰</sub>B</td>
</tr>
<tr>
<td>۵۱<sup>b</sup></td>
<td>۵۱<sup>c</sup></td>
<td>۱۰<sup>c</sup></td>
<td>E+</td>
<td>۵۰۰C</td>
</tr>
<tr>
<td>۵۱<sup>a</sup></td>
<td>۵۱<sup>c</sup></td>
<td>۱۰<sup>c</sup></td>
<td>E-</td>
<td>۵۰۰B</td>
</tr>
<tr>
<td>۴۸<sup>b</sup></td>
<td>۴۸<sup>c</sup></td>
<td>۲۹<sup>c</sup></td>
<td>E+</td>
<td>۵۰۰C</td>
</tr>
<tr>
<td>۴۸<sup>a</sup></td>
<td>۴۸<sup>c</sup></td>
<td>۲۹<sup>c</sup></td>
<td>E-</td>
<td>۵۰۰B</td>
</tr>
<tr>
<td>۴۹<sup>b</sup></td>
<td>۵۲<sup>b</sup></td>
<td>۳۶<sup>c</sup></td>
<td>E+</td>
<td>۵۰۰C</td>
</tr>
<tr>
<td>۴۹<sup>a</sup></td>
<td>۵۲<sup>b</sup></td>
<td>۳۶<sup>c</sup></td>
<td>E-</td>
<td>۵۰۰B</td>
</tr>
<tr>
<td>۴۷<sup>b</sup></td>
<td>۵۱<sup>b</sup></td>
<td>۳۴<sup>c</sup></td>
<td>E+</td>
<td>۵۰۰C</td>
</tr>
<tr>
<td>۴۷<sup>a</sup></td>
<td>۵۱<sup>b</sup></td>
<td>۳۴<sup>c</sup></td>
<td>E-</td>
<td>۵۰۰B</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حرف مشترک از نظر آماری در سطح ۵ درصد اختلاف معنی‌دار ندارند.

اند که قرار انومافایت در برخی زنوتیپ‌ها تأثیر مثبتی در خصوصیات زایی گیاه نشان داده است.

تاریخ شروع رسیدگی فیزیولوژیک

از نظر تاریخ شروع رسیدگی فیزیولوژیک نبی اختلاف بین گیاهان حاوی انومافایت و بدون انومافایت به طور متوسط کمتر از یک روز بود با این وجود اثر مختلف بین گیاهان زنوتیپ‌های مختلف و حضور انومافایت از نظر آماری معنی‌دار بود.

جدول ۱ نشان می‌دهد که پیشرفت انومافایت در زنوتیپ ۵۵۰ با اختلاف ۳ روز بود و در زنوتیپ ۵۰۰ به صورت نسبی به انومافایت مجدد ۵ روز زودتر بود.

در میان زنوتیپ‌های مختلف نیز، زنوتیپ ۶۰۸ در اثر زنوتیپ ۵۵۰ کاهش رشد می‌شود و با رایس و همکاران (۱۱) گزارش کرده.
ارتباط قارچ‌های همزمان اندوفایت با زودرسی و صفافیت به آن در ...
جدول 3. تجزیه واریانس مربوط به صفات میانگین بذر پوک، میانگین بذر خالص و میانگین کل بذر در سه مرحله اول، سوم و پنجم

<table>
<thead>
<tr>
<th>میانگین بذر پوک</th>
<th>میانگین بذر خالص</th>
<th>میانگین کل بذر</th>
<th>منبع تغییرات</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>در هفته اول</td>
<td>در هفته سوم</td>
<td>در هفته پنجم</td>
<td>زنوتیب</td>
<td>5</td>
</tr>
<tr>
<td>15/10 **</td>
<td>11/10 **</td>
<td>8/6 **</td>
<td>اندولافیت</td>
<td>1</td>
</tr>
<tr>
<td>3/6 **</td>
<td>3/4 **</td>
<td>3/8 **</td>
<td>زنوتیب x اندولافیت</td>
<td>5</td>
</tr>
<tr>
<td>1/55</td>
<td>1/55</td>
<td>1/55</td>
<td>خطأ</td>
<td>24</td>
</tr>
</tbody>
</table>

میزان بذر، فارغ‌های همزیست اندولافیت اثر معنی‌دار در افزایش میزان بذر و میزان بذر خالص داشتند. (جدول 3، 4). همچنین براساس نتایج به دست‌آمده، اگرچه فارغ‌های همزیست اندولافیت به طور همزمان میزان کل بذر پوک و بقایای حاصل از تولید بذر را نیز نسبت به گاهان بدون فارغ‌های همزیست اندولافیت افزایش دادند، ولی زمانی که نسبت میزان بذر پوک و بقایای حاصل از تولید بذر به میزان داده شده محاسبه گردید، نتایج نشان داد که فارغ‌های همزیست اندولافیت درصد پوک و بقایای حاصل از بذر کاهش دادند. (جدول 4). افزایش میزان بقایای حاصل از تولید بذر مناسب با افزایش خصوصیات روستی و رشدی گیاه توسط اندولافیت است. که به وسیله محیط در گیاهان حاوی اندولافیت بهبود می‌یابد. جدول 4: همچنین نشان می‌دهد که پیشینه اختلاف بین گیاهان حاوی اندولافیت و بدون اندولافیت از نظر درصد پوک و بقایای بذر مربوط به مرحله اول برداشت بذر است و لی این اختلاف تولید بذر خالص میانگین حاوی اندولافیت و بدون اندولافیت معنی‌دار نبود و حداکثر اختلاف گیاهان حاوی اندولافیت و بدون اندولافیت در مرحله دوم و سوم برداشت بذر بوده است. بنابراین به نظر می‌رسد که کاهش درصد پوک بذر در بقایای حاصل از تولید بذر بهبود عمده آفایش عامل‌کننده بذر گیاهان حاوی اندولافیت نبست و عوامل
جدول 4: مقایسه گیاهان حاوی انذورافیت و بدون انذورافیت از نظر صفات میزان کل بذر، میزان بذر خالص، میانگین بذر پوک و
درصد بذر پوک

<table>
<thead>
<tr>
<th>درصد بذر پوک</th>
<th>میانگین بذر پوک (گرم)</th>
<th>میانگین بذر خالص (گرم)</th>
<th>انذورافیت</th>
<th>نمودن گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>28⁷</td>
<td>2/55⁴</td>
<td>5/79⁴</td>
<td>8/33⁴</td>
<td>E+</td>
</tr>
<tr>
<td>41⁷</td>
<td>2/17⁴</td>
<td>5/10⁴</td>
<td>7/22⁴</td>
<td>E-</td>
</tr>
<tr>
<td>48⁷</td>
<td>0/91⁴</td>
<td>3/15⁴</td>
<td>4/55⁴</td>
<td>E+</td>
</tr>
<tr>
<td>45⁷</td>
<td>0/48⁴</td>
<td>1/58⁴</td>
<td>2/06⁴</td>
<td>E-</td>
</tr>
<tr>
<td>70⁷</td>
<td>3/53⁴</td>
<td>1/24⁴</td>
<td>2/7⁴</td>
<td>E+</td>
</tr>
<tr>
<td>74⁷</td>
<td>1/12⁣</td>
<td>0/65⁴</td>
<td>2/7⁣</td>
<td>E-</td>
</tr>
<tr>
<td>95⁷</td>
<td>1/05⁴</td>
<td>11/27⁴</td>
<td>E+</td>
<td>دوهمه چهارم</td>
</tr>
<tr>
<td>95⁷</td>
<td>6/22⁣</td>
<td>0/43⁣</td>
<td>E-</td>
<td>دوهمه پنجم</td>
</tr>
<tr>
<td>100⁣</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100⁣</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82⁷</td>
<td>2/27⁣</td>
<td>10/59⁣</td>
<td>33/9⁣</td>
<td>E+</td>
</tr>
<tr>
<td>68⁷</td>
<td>1/42⁣</td>
<td>22/95⁣</td>
<td>7/11⁣</td>
<td>E-</td>
</tr>
</tbody>
</table>

میزان‌های دارای حرف مشترک در هر مرحله و هر ستون از نظر آماری در سطح 5 درصد اختلاف معنی‌دار ندارند.

تولید بذر و زنوتیپ 604 کمترین میزان بذر تولید شده را داشتند. در دو هفته پنجم زنوتیپ 758 بیشترین و زنوتیپ 468 کمترین میزان بذر تولید شده را داشتند. روند این نتایج دو نکته را نشان می‌دهد که اولاً زنوتیپ‌ها از نظر زمان رسیدگی بذر مرحله از برداشت بذر، روند و ترتیب زنوتیپ‌های تولید کننده بذر متغیر بود. با این حال وضعیت ترتیب زنوتیپ‌ها از نظر سه صفت میزان کل بذر، میزان بذر خالص و میزان بذر پوک و بقا در هر مرحله اکثراً تقریباً یکسانی داشت. در دو هفته اول زنوتیپ 475B بیشترین و زنوتیپ 758 کمترین بذر تولید شده را داشتند. در دو هفته بزرگترین زنوتیپ 468 کمترین بذر تولید شده را داشتند. در دو هفته سوم زنوتیپ 758B کمترین بذر تولید 604 حداکثر میزان تولید بذر و زنوتیپ 758B کمترین بذر تولید 468 شده را داشتند. در دو هفته چهارم زنوتیپ 468 حداکثر میزان

235
جدول ۵. مقایسه میانگین ترکیبات تیماری زنوتیپ و اندولفایت برای ونژون بذر خالص بر حسب گرم

| اندولفایت | زنوتیپ | در هفته اول | در هفته دوم | در هفته سوم | در هفته چهارم | در هفته پنجم *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰۸</td>
<td>E°</td>
<td>۳/۷۲۸۴</td>
<td>۳/۲۴۰۷</td>
<td>۲/۳۴۱۰</td>
<td>۱/۵۸۶۴</td>
<td>۱/۴۴۱۰</td>
</tr>
<tr>
<td>۶۰۸</td>
<td>E°</td>
<td>۲/۷۱۹۸</td>
<td>۰/۳۴۴۹</td>
<td>۰/۶۵۱۰</td>
<td>۰/۸۵۱۰</td>
<td>۰/۶۴۰۷</td>
</tr>
<tr>
<td>۶۲۰</td>
<td>E°</td>
<td>۶/۵۸۳۰</td>
<td>۲/۴۵۹۰</td>
<td>۲/۱۸۴۰</td>
<td>۱/۱۴۰۰</td>
<td>۱/۴۴۰۰</td>
</tr>
<tr>
<td>۶۲۰</td>
<td>E°</td>
<td>۲/۸۵۵۰</td>
<td>۲/۸۱۴۰</td>
<td>۲/۸۱۴۰</td>
<td>۲/۸۱۴۰</td>
<td>۲/۸۱۴۰</td>
</tr>
<tr>
<td>۷۶۸</td>
<td>E°</td>
<td>۱/۷۱۹۹</td>
<td>۱/۱۲۷۰</td>
<td>۰/۷۴۷۰</td>
<td>۰/۷۴۷۰</td>
<td>۰/۷۴۷۰</td>
</tr>
<tr>
<td>۷۶۸</td>
<td>E°</td>
<td>۲/۷۱۹۹</td>
<td>۱/۱۲۷۰</td>
<td>۰/۷۴۷۰</td>
<td>۰/۷۴۷۰</td>
<td>۰/۷۴۷۰</td>
</tr>
<tr>
<td>۷۵۰</td>
<td>E°</td>
<td>۲/۷۱۹۹</td>
<td>۱/۱۲۷۰</td>
<td>۰/۷۴۷۰</td>
<td>۰/۷۴۷۰</td>
<td>۰/۷۴۷۰</td>
</tr>
<tr>
<td>۷۵۰</td>
<td>E°</td>
<td>۱/۲۳۳۰</td>
<td>۱/۸۸۳۰</td>
<td>۰/۳۹۸۰</td>
<td>۰/۳۹۸۰</td>
<td>۰/۳۹۸۰</td>
</tr>
<tr>
<td>۸۳۰</td>
<td>E°</td>
<td>۳/۸۵۴۰</td>
<td>۲/۸۵۴۰</td>
<td>۲/۸۵۴۰</td>
<td>۲/۸۵۴۰</td>
<td>۲/۸۵۴۰</td>
</tr>
<tr>
<td>۸۳۰</td>
<td>E°</td>
<td>۱/۵۱۴۰</td>
<td>۱/۵۱۴۰</td>
<td>۱/۵۱۴۰</td>
<td>۱/۵۱۴۰</td>
<td>۱/۵۱۴۰</td>
</tr>
</tbody>
</table>

* در هفته پنجم بذری تشکیل نگذید.

اختلاف میان گیاهان حاوی اندولفایت و بدون اندولفایت از این نظر را ایجاد کرده‌اند. آثار مقایسه زنوتیپ × اندولفایت در مورد صفت ونژون بذر خالص نیز معنی‌دار بود. همان‌طور که از جدول ۵ ملاحظه می‌شود در موارد استثنایی، ونژون بذر خالص در گیاهان عابر از اندولفایت بیشتر از گیاهان حاوی اندولفایت، از همان زنوتیپ شده است. رایس و همکاران (۱۸۴) نیز مشاهده نمودند که در برخی زنوتیپ‌ها، ونژون بذر گیاهان عابر از اندولفایت بیش از گیاهان حاوی اندولفایت است. احتمالاً ین موضوع به سازگاری با عدم سازگاری گیاه با فارق اندولفایت مربوط می‌شود. در این تحکیم زنوتیپ‌های A۲۰ و B۲۳ شیب‌های گوناگونی در سازگاری و بدون اندولفایت را داشتند و زنوتیپ‌های B۲۰ و A۲۰ کمترین
جدول ۶ مقایسه میانگین ترکیبات تیماری زنوتیپ و انдоفاپت برای صفت نسبی یوگ

<table>
<thead>
<tr>
<th>اندازه</th>
<th>زنوتیپ</th>
<th>اندوفاپت</th>
<th>دو هفته اول</th>
<th>دو هفته دوم</th>
<th>دو هفته سوم</th>
<th>دو هفته چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰A</td>
<td>E</td>
<td>۰/۱۹</td>
<td>۰/۳۲</td>
<td>۰/۳۴</td>
<td>۰/۹۳</td>
<td>-</td>
</tr>
<tr>
<td>۶۰B</td>
<td>E</td>
<td>۰/۲۳</td>
<td>۰/۳۲</td>
<td>۰/۳۶</td>
<td>۰/۹۸</td>
<td>-</td>
</tr>
<tr>
<td>VQA</td>
<td>E</td>
<td>۰/۳۶</td>
<td>۰/۵۳</td>
<td>۰/۵۳</td>
<td>۰/۹۵</td>
<td>-</td>
</tr>
<tr>
<td>VQB</td>
<td>E</td>
<td>۰/۴۳</td>
<td>۰/۶۸</td>
<td>۰/۶۸</td>
<td>۰/۹۷</td>
<td>-</td>
</tr>
<tr>
<td>VVC</td>
<td>E</td>
<td>۰/۵۴</td>
<td>۰/۷۶</td>
<td>۰/۷۶</td>
<td>۰/۹۹</td>
<td>-</td>
</tr>
<tr>
<td>۸۰</td>
<td>E</td>
<td>۰/۶۷</td>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۰/۹۸</td>
<td>-</td>
</tr>
</tbody>
</table>

* در دو هفته پنج بذری تشکیل نگردید.

نتیجه گیری

به طور خلاصه این تحقیق نشان داد که فشارهای میزیست اندازه‌داران تیماری لطیف، رشد می‌کند و میزان عملکرد مرحله‌ای بذر در گیاه فسکویی بذری و فسکویی مرتعی افزایش دهنده افزایش عملکرد بذر در هر مرحله از برداشت می‌تواند ناشی از تعداد بذری بیشتر اندازه‌گیری شده و نیز افزایش احتمال تعداد دانه در خوشه و بذر اندازه و زن بذر باشد که باید مورد بررسی قرار گیرد. نتیجه‌ها آمده است که، تغییرات ایجاد شده در خصوصیات زبانی گیاه احتمالا به دلیل تغییر در تعادل هورمونی گیاه است که توسط فشارهای تیماری اعمال می‌گردد. چنین ارتباطی بخصوص بین زودرسی و تولید بذری هورمون‌ها به

میانگین‌های در هر سطح از نظر آماری در سطح ۵ درصد اختلاف معنی دار ندارند.