ارزیابی تحلیل به یخ زدگی زنوتیپهای نخود (Cicer arietinum L.) در شرایط کنترل شده

امام نظامی، عبدالرضا بایری، حمید رحمیان، محمد کافی و مهدی نصری محققی

چکیده
این آزمایش با هدف بررسی امکان ارزیابی تحلیل به یخ زدگی گیاه نخود در شرایط کنترل شده با استفاده از دو زنوتیپ متحمل به سرمایه (MCC 247 و MCC 246) و یک زنوتیپ حساس به سرمایه (MCC 253) اجرا گردید. تحقیق زنوتیپ و خورسماپی (خورسماپی در دمای تا 30 درجه سانتی‌گراد و عمدمند در دمای 20 درجه سانتی‌گراد با سرماهای زنجیره‌ای متحمل به بیماری انگوری) در شرایط کنترل شده انجام گرفت. در نتیجه این تحقیق مشاهده گردید که در شرایط کنترل شده، در دمای‌های صفر تا 10 درجه سانتی‌گراد و به نسبت بیشتر از دمای 20 درجه سانتی‌گراد در نتایج ثابت شد. در نتیجه این امر، باید توجه کرد که در شرایط سخت زستان متحمل به بیماری انگوری، با توجه به شرایط محیطی، امکان تولید نهایی بذر در محدوده محیطی، از نظر می‌توان برای گونه‌گری لاکچری و بافت آموزشی استفاده کرد.

واژه‌های کلیدی: تحلیل به یخ زدگی، خورسماپی، نخود، DMT 50 و LT 50

مقدمه
تجهیز گیاهان به شرایط سخت زستان ترکیبی از تحلیل به تنش‌های مختلف از جمله تحلیل به یخ زدگی، غربال، پس‌بندی و بیماری‌ها می‌باشد و لذا این تحلیل صفت پیچیده‌ای است که مسئول و ضعوف فرآیندهای متعدد شیمیایی به حساب می‌آورد.

1. به ترتیب استادی، استادانشیاران زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
2. استادان زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران

257
در این مطالعه که در دانشکده کشاورزی- اتیک دانشگاه فردوسی مشهد در سال 1380 انجام شد، دو آزمایش متولی به سرما و مکزیک (MCC) و یک آزمایش به سرما و بی‌سرما (MCC) در دو ترکیب مورد بررسی قرار گرفتند. آزمایش هایی بدرفتار به سرما در نواحی مدیریت‌های متغیر با سرما در توجه مدل‌تولیدی توسط ایکاردا معرفی شده‌اند (این بررسی ها توسط وزارت مهندسی در شرایط مزرعه و میزان وقوع سرما در شرایط مزرعه دارند (11). بررسی های انجام شده توسط ایکاردا در مناطق بیش از آب و هوای منجر به شناسایی تغییراتی در زنوتیپ‌های متحمل سرما جهت کاهش زمستان گیاه شده و همچنین در شرایط نشوی در مناطق گردد. این موضوع به است (14 و 15). در شرایط کشت زمستان ناپایدار، زنوتیپ‌های متحمل سرما از دیدگاه اقتصادی و گونه ای به عنوان گونه ژنتیکی زیست‌های نیز غالب در شرایط شرطی - حرارتی مناسبی قرار گرفته و در دوران گیاهان آنها نیز از نظر دیگری در شرایط کشت استفاده می‌کنند. در این ژن شکار که به دلیل تغییرات زونوتیپ‌های گیاه مورد نظر می‌باشد که به میانگین به دلیل تغییرات زونوتیپ‌های ژن‌های آنها نیز غالب در شرایط شرطی - حرارتی مناسبی قرار گرفته و در دوران گیاهان آنها نیز از نظر دیگری در شرایط کشت استفاده می‌کنند. در این ژن شکار که به دلیل تغییرات زونوتیپ‌های گیاه مورد نظر می‌باشد که به میانگین به دلیل تغییرات زونوتیپ‌های ژن‌های آنها نیز غالب در شرایط شرطی - حرارتی مناسبی قرار گرفته و در دوران گیاهان آنها نیز از نظر دیگری در شرایط کشت استفاده می‌کنند. در این ژن شکار که به دلیل تغییرات زونوتیپ‌های گیاه مورد نظر می‌باشد که به میانگین به دلیل تغییرات زونوتیپ‌های ژن‌های آنها نیز غالب در شرایط شرطی - حرارتی مناسبی قرار گرفته و در دوران گیاهان آنها نیز از نظر دیگری در شرایط کشت استفاده می‌کنند.
ارزیابی تخم‌بندی به یخ زدگی زننده‌های تخم‌خور (Cicer arietinum L.) در شرایط کنترل شده

روز بعد و قبل از اعمال تیمار یخ زدگی و به مقدار مشابه‌سازی با شرایط طبیعی، گل‌دانهای در داخل جمع‌های بیونولیت قرار داده شدند. قطر ورق‌های بیونولیت 1/5 سانتی‌متر بود. این جمع‌های میزان متقابلیکه از طرفین گل‌دانهای چوبی را یافت. گل‌دانه که با کاشت دما و جریان دچار یخ زدگی شوند، بند شده این که راه‌های دچار خسارت ناگهانی، شدید و غیر واچی کرده (5). در مرحله بعد گل‌دانه به فرایز ترو مراکزی مشابه کردند. در این فرآیند در شرایط آزمایشی از سه تا چهار دانه زننده‌ای که به سرتاسر کاهش یافته بودند، این وضعیت شرایط برای توزیع مجدد آب به بافت گیاه و جلوگیری از تشکیل یخ در داخل سلولها که در طیفبندی نور افزایش یافته این فرآیند کند (13). در دو-۳ درجه سانتی‌گراد به منظور جلوگیری از یاده‌داری و ایجاد مستقیم یخ در گیاه‌ها و طبیعت از این بماندن نسبت داشته شد و سپس از دو-۳ درجه سانتی‌گراد در ساعت کاهش یافته (10). در این آزمایش صفر در، 8 اول و 20 دهم ساعت سانتی‌گراد در نظر گرفته شد. به منظور ایجاد تعمید در دمای محیط در هر دو مورد نظار گیاه‌ها به مدت یک ساعت نگه داشته و سپس از فریزر خارج شدند (2). در منظور کاهش سرعت ذوب گل‌دانهای یافته در مشابه اتفاقی به دام از 2 درجه سانتی‌گراد متقل و به مدت ۲۴ ساعت از آنجا نگهداری شدید. سپس گل‌دانهها (مشابه شرایط قبل از خورسوماتی) متقل شدند و از ساعت 8 روز درصد بقای گیاهان در یک بازیافت (Recovery) که درصد بقای گیاهان از طریق شماره‌سنجی تعادل بونه زنده در اثر گل‌دانه و از طریق فرمول:

[۱۰۰× (عدد کل بقایان قبل از شهر بقایان زنده سه ماهه پس از شهر بقایان)]

محاسبه شد. جهت تعیین بازیافت گیاهان نیز ون خشک کیسه به تکیه گرفت و خشک کل ساچه و خشک کل کیسه به تکیه گرفت.

ایکادا غالباً در نواحی پست تا نیمه مرتفع مناطق مدیرانی که معمولاً زمستان بدون برف دارند و حداقل دمای نیز بالاتر از ۶۰–۱۰ درجه سانتی‌گراد می‌باشد، انجام شده است (15) و زننده‌ای ۲۴۶ MCC حاصل به گرچه از توده بومی قبایل می‌باشد که در آزمایش‌های انجام شده در شرایط زننده جزو ارقام بسیار متحمل به سرمای تنهار شده است (1).

ش رای د مشابه

این تқید یا انجام دادن در اینالو ۱۲ درصد به مدت ۳۰ ثانیه ضعف شد و سپس یا چگانه آنها بین یا دلیه پارچه‌ای خفنی شده مرطوب در شرایط آزمایشگاه بیماری‌های دار شدند. در مرحله بعد در گل‌دانه ۹ جوان دار در گل‌دانه چوبی به ابعاد ۱۲ ×۱۲ سانتی‌متر و در عمق ۲-۳ سانتی‌متری خاک کشت شدند. خاک گل‌دانه‌های یک سه متر از این بسوم. خاک بزرگ و یک سهوم خاک مرطوب به دانه گل‌دانه. دمای گل‌دانه به ۲۰/۱۶ درجه سانتی‌گراد (شب/روز) و فضای یخبرود ۲ ساعت در نظر گرفته شد. گیاهان تا نیمه که به ابعاد ۵-۲ بزرگی در شرایط فوق قبایلی شدند. پس از این مرحله گل‌دانه‌ها یا با لافالسه مورد تیمار یخ زدگی قرار گرفتن (تیمار عدم خورسوماتی) و یا به شرایط خورسوماتی متقل شدند.

خورسوماتی، تیمار یخ زدگی و یافته

به منظور ایجاد خورسوماتی، گیاهان به شرایط دمای ±۵ درجه سانتی‌گراد (بناهایی/شروع) متقل شدند. در این شرایط فتوپرویسیود ۱۰/۵ ساعت و شدت تشعشع فعال فتوئستی در ۸۰ میلی‌لیتر سطح خاک معدود در ۷۵-۷۵ میکرون ایدینان بر مهر ریزگنی به نظر گرفته شد. با روشنایی از طریق نور لامپ الکتریک ۲۰ وات و نگستن ۱۰۰ وات به نسبت به یک فراهم گردید. تیمار حاوی یک نور پیشرفته در تفاوت ناکامی و یک ذهن دفعه عامل می‌شود. طول مدت خورسوماتی سه هفته بر و گیاهان در موقعیت نیاز آبیاری شدند.

بهمگاه یک ساعت قبل از تیمار یخ زدگی آب‌زایی شدند. در
نمونه حساس به دمای میکروبا (MCC) درصد و در دمای 50 درصد LT50 MCC 226

\[\text{شایع‌‌های، طول ساقه و طول و تعداد شاخه‌‌ها اندازه‌گیری و ثبت شد.} \]

اين مطالعه به صورت آزمایش فاکتوریل اسپلنت 36 آن و در

قاب طرح کاملاً تصادفی با سه تکرار انجام گرفت. زنوتیپ و

‌خرسومایی به صورت فاکتوریل در پلات اصلی و درجه

حرارت به عنوان پلاک فری در نظر گرفته شدند. در مورد

داده‌های درصد و در مواردی که به دلیل عدم نقش بوده،

داده‌های حاصل نشده بود، نتیجه آخرین میزان اینجاش شد. درجه

حرارت کشته‌‌ها به رای 50 درصد زنوتیپ‌‌ها (LT50)

\[\text{درصد کاهش در وزن خشک گیاهی می‌شود (DMT50)} \]

زاویه و روز خشک آنها به داده‌های پرستش محاسبه و

سپس به صورت فاکتوریل تجزیه شدند. آنالیز واریانس بای

امتیاز از نرم‌افزار MSTAT-C صورت گرفت و جهت مقایسه

میانگین داده‌ها از آزمون LSD استفاده شد.

نتایج و بحث

درصد به و درجه حرارت کشته‌‌ها برای 50 درصد

زنوتیپ‌‌ها (LT50)

\[\text{زنوتیپ‌‌ها از نظر درصد به رای LT50 تفاوت معنی داری با} \]

پدیدگی داشتند (جدول 1). بررسی میانگین‌های داده‌های

قابل مواد (MCC) درصد و در مورد ارقام 246 (MCC

\[\text{رقم حساس به سرما} \]

\[\text{درصد به ترتیب} \]

\[\text{درصد به ترتیب} \]

\[\text{در صورت فاکتوریل} \]

\[\text{میزان به میزان LT50} \]

\[\text{درصد به میزان LT50} \]

\[\text{با وجود اینکه خرسومایی سبب} \]

\[\text{افراش درصد به راه سه زنوتیپ شد، و لیا این افزایش در} \]

\[\text{260} \]
جدول 1. منابع تغییر در درجات آزادی و میانگین مجددات درصد بقا، وزن خشک (گیاه، ساقه و شاخه)، طول (ساقه و شاخه) و تعداد شاخه در گیاه نخود

<table>
<thead>
<tr>
<th>میانگین مجددات</th>
<th>تعداد شاخه در گیاه</th>
<th>طول</th>
<th>وزن خشک</th>
<th>درصد بقا</th>
<th>درجات تغییر</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cicer arietinum L.</td>
<td>28/925 **</td>
<td>21/27/15 **</td>
<td>28/925 **</td>
<td>49/6527/7 **</td>
<td>49/6512 **</td>
<td>28/9287/3 **</td>
</tr>
<tr>
<td></td>
<td>1/554 ns</td>
<td>22/77/12 **</td>
<td>1/554 ns</td>
<td>22/77/12 **</td>
<td>1/554 ns</td>
<td>22/77/12 **</td>
</tr>
<tr>
<td></td>
<td>0/2868 ns</td>
<td>9/676 **</td>
<td>0/2868 ns</td>
<td>9/676 **</td>
<td>0/2868 ns</td>
<td>9/676 **</td>
</tr>
<tr>
<td></td>
<td>0/2730</td>
<td>7/30</td>
<td>0/2730</td>
<td>7/30</td>
<td>0/2730</td>
<td>7/30</td>
</tr>
<tr>
<td></td>
<td>13/657/42 **</td>
<td>12/657/42 **</td>
<td>13/657/42 **</td>
<td>12/657/42 **</td>
<td>13/657/42 **</td>
<td>12/657/42 **</td>
</tr>
<tr>
<td></td>
<td>19/492 **</td>
<td>19/492 **</td>
<td>19/492 **</td>
<td>19/492 **</td>
<td>19/492 **</td>
<td>19/492 **</td>
</tr>
<tr>
<td></td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
</tr>
<tr>
<td></td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
<td>1/657/42 ns</td>
</tr>
<tr>
<td></td>
<td>1/2868 ns</td>
<td>21/2868 ns</td>
<td>1/2868 ns</td>
<td>21/2868 ns</td>
<td>1/2868 ns</td>
<td>21/2868 ns</td>
</tr>
<tr>
<td></td>
<td>2/42/103 **</td>
<td>2/42/103 **</td>
<td>2/42/103 **</td>
<td>2/42/103 **</td>
<td>2/42/103 **</td>
<td>2/42/103 **</td>
</tr>
<tr>
<td></td>
<td>1/42/103 ns</td>
<td>1/42/103 ns</td>
<td>1/42/103 ns</td>
<td>1/42/103 ns</td>
<td>1/42/103 ns</td>
<td>1/42/103 ns</td>
</tr>
<tr>
<td></td>
<td>1/2868 ns</td>
<td>1/2868 ns</td>
<td>1/2868 ns</td>
<td>1/2868 ns</td>
<td>1/2868 ns</td>
<td>1/2868 ns</td>
</tr>
<tr>
<td></td>
<td>0/230</td>
<td>8/81</td>
<td>0/230</td>
<td>8/81</td>
<td>0/230</td>
<td>8/81</td>
</tr>
</tbody>
</table>

** نتایج پایدار و دو نتایج معنی‌داری است.
ns نتایج معنی‌ناپذیر است.

خطای اتصال خودکار، زنوتیپ، دما × خودکار، دما × زنوتیپ، دما × دما × خودکار و دما × دما × دما × خودکار می‌توانند باعث تغییر در درصد بقا و وزن خشک گیاه، ساقه و شاخه شوند.
جدول 2. منابع تغییر، درجات آزادی و میانگین مجدوزاری DMT50 و LT50 در زنوتیب های نخود مورد مطالعه

<table>
<thead>
<tr>
<th>میانگین مجدوزاری</th>
<th>درجات آزادی</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMT50</td>
<td>1</td>
<td>خورسماسی</td>
</tr>
<tr>
<td>LT50</td>
<td>2</td>
<td>زنوتیب</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>خورسماسی × زنوتیب</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>خطا</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td>کل</td>
</tr>
</tbody>
</table>

جدول 3. اثرات زنوتیب، خورسماسی و خورسماسی × زنوتیب بر درصد بقای DMT50 و ۱۰/۰۵% از پایاها در برشابگاه‌های مختلف

<table>
<thead>
<tr>
<th>طول (سانتی متر)</th>
<th>تعداد شاخه</th>
<th>وزن خشک (میلی گرم)</th>
<th>خورسماسی G1</th>
<th>خورسماسی H1</th>
<th>خورسماسی × H1</th>
<th>خورسماسی G2</th>
<th>خورسماسی H2</th>
<th>خورسماسی × H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/0</td>
<td>1/2</td>
<td>17/5</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>0/2</td>
<td>0/2</td>
<td>8/3</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>12/8</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>0/3</td>
<td>0/3</td>
<td>6/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>0/4</td>
<td>0/4</td>
<td>1/8</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>

MCC = G3 , MCC 505 = G2 , MCC 446 = G1

- ۱) زنوتیب H1 = خورسماسی G1
- ۲) خورسماسی H2 = عدم خورسماسی
جدول 2. اثرات دماهای بیض زدگی و دماهای بیض زدگی × خورسماپی بر درصد بقای و وزن خشک گیاه های نخود سه هفته پس از ازایبافت

تیمار	درصد بقای گیاه	وزن خشک (میلی گرم)	تعداد شاهدگی در کیلومتر	حاشیه
دما بیض زدگی (درج سانتی‌گراد)				
2/1	100/0	244	317	561
1/9	100/0	234	234	577
2/2	100/0	175	175	350
4/3	100/0	79	79	217
0/2	100/0	3	3	0
1/1	100/0	13	13	0
0/1	100/0	0	0	0
LSD(0/05)		20/2	47	5/3

خورسماپی × دما

تیمار	درصد بقای گیاه	وزن خشک (میلی گرم)	تعداد شاهدگی در کیلومتر	حاشیه
2/1	100/0	254	229	587
1/8	100/0	241	231	572
4/6	100/0	183	183	474
2/3	100/0	195	195	396
0/0	100/0	6	6	0
0/1	100/0	0	0	0
0/1	100/0	0	0	0
LSD(0/05)		1/9	3/0	1/9

حجم خورسماپی

تیمار	درصد بقای گیاه	وزن خشک (میلی گرم)	تعداد شاهدگی در کیلومتر	حاشیه
2/1	100/0	306	297	349
1/7	100/0	195	195	396
3/2	100/0	31	31	0
0/0	100/0	0	0	0
0/0	100/0	0	0	0
LSD(0/05)		1/9	3/0	1/9

این مقابله دما بیض خورسماپی بر دمای بقای گیاه های مطابق به بقای گیاه در شرایط خورسماپی، نسبت به تیمار عدم بیض زده در درجه سانتی‌گراد بر از سانتی‌گراد شرایط است. در شرایط عدم بقای گیاه در درجه سانتی‌گراد، نتایج نشان دهنده اثر بیشتر بر اثر در شرایط عدم بقای خورسماپی بوده است.
جدول 5. اثرات متقابل دما × زنوتیپ بر درصد بالای و وزن‌های رشدی گیاه نخود سه هفته پس از بذارفته در شرایط گلخانه

<table>
<thead>
<tr>
<th>درصد بالای گیاه</th>
<th>وزن نخود (میله گرم)</th>
<th>تعداد شاخه در طول (سانتی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC 446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>صفر (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>48</td>
<td>375</td>
</tr>
<tr>
<td>2/2</td>
<td>27</td>
<td>298</td>
</tr>
<tr>
<td>2/3</td>
<td>7</td>
<td>192</td>
</tr>
<tr>
<td>MCC 505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>صفر (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>48</td>
<td>375</td>
</tr>
<tr>
<td>2/2</td>
<td>27</td>
<td>298</td>
</tr>
<tr>
<td>2/3</td>
<td>7</td>
<td>192</td>
</tr>
<tr>
<td>MCC 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>صفر (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>48</td>
<td>375</td>
</tr>
<tr>
<td>2/2</td>
<td>27</td>
<td>298</td>
</tr>
<tr>
<td>2/3</td>
<td>7</td>
<td>192</td>
</tr>
</tbody>
</table>

1. درجه سانتی‌گراد

بررسی اثر متقابل دما × زنوتیپ نشان داد که بقای دو زنوتیپ متحمل به سرما تا دما 8- درجه سانتی‌گراد چندان نتایجی تأثیر قرار نگرفته است. درصد بالای هر دو زنوتیپ در این دما حدود 8/0 درصد نمونه حساس بوده است (جدول 5). در صورتی که تیمار دمایی 12- درجه سانتی‌گراد سبب 88/3 درصد تلفات در زنوتیپ MCC 505 یا به ترتیب 53/0 و 45/7 درصد تلفات در زنوتیپ‌های MCC 246 یا MCC 252 شده است.

264
سرما این شاخه ۲ درجه سانتی‌گراد پایین‌تر از زنوتیبر حساس به سرما است (جدول ۳).

در بررسی اجزای وزن خشک گیاه (وزن خشک ساقه و شاخه) مشاهده شد (جدول ۳) که وزن خشک شاخه (شمل وزن خشک شاخه‌ها و برگ‌های شاخه) در رقم حساس به مکروک MCC۲۴۶ به ترتیب معادل ۵۵ و ۶ درصد وزن‌زنیتیبرهای مذکور بود. علاوه براین مقایسه سایر اجزای روشی گیاه شامل طول ساقه و طول و تعداد شاخه در گیاه نیز نشان داد (جدول ۳) که از بین صفات مذکور رشد اعضا و ساقه است. به عنوان مثال در حالت که طول ساقه در زنوتیبر منکور به ترتیب معادل ۹۷ و ۹۵ درصد وزن‌زنیتیبرهای مکروک MCC۲۴۶ و MCC۲۳۴ به ترتیب معادل ۱۹ و ۱۴ درصد طول شاخه زنوتیبرهای فوق رشد است.

در مورد اغلب صفات مورد بررسی اثر خورسورما و قرنیل زنوتیبر × خورسورما بر رشد مجدد گیاه پس از اعمال تیمارهای یخ زدگی معنی دار بود (جدول ۱). براساس میانگین داده‌های حاصل از هر رقم‌های گیاه خود را به ترتیب معادل ۹۳ و ۸۸ درصد کاهش شد (جدول ۳). به عنوان نمونه در بررسی DMT۵۰ MCC وضعیت زنوتیبر‌ها مشاهده شد که در زنوتیبر MCC۲۴۶ مکروک بیش از ۶۳ درصد بهبود در شده است. در صورتی که در زنوتیبر MCC۲۴۶ این بهبود به ترتیب معادل ۹۵ و ۷۵ درصد بود است (جدول ۳). خورسورما بیش از ۴۰ درصد طول و وزن شاخه‌ها شد در حالتی که این افرایش در مورد صفات مانند وزن خشک گیاه و وزن خشک ساقه و طول آن به ترتیب معادل ۴۴ و ۱۰ درصد بود.

در بررسی اثر مقایسه زنوتیبر × خورسورما مشاهده می‌شود که اثر خورسورما بر افرایش رشد اجزای روشی بهبود اتفاقات بوده است. به عنوان مثال اثر خورسورما بر افرایش طول ساقه و وزن خشک آن در رقم MCC۵۰۵ بیش از ۲۳ و
جدول 6 دامهای و مقدار کاهش اجزای گیاهی نجوک (میلیگرم سه زنوتیپ) به ارزیابی درجه سانتی گراد کاهش دما در محدوده دماهای آزمایش

<table>
<thead>
<tr>
<th>محدوده دمایی</th>
<th>کاهش طول</th>
<th>کاهش وزن خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>ساعت</td>
<td>میلی گرم</td>
</tr>
<tr>
<td>4-8</td>
<td>5/8</td>
<td>12</td>
</tr>
<tr>
<td>8-12</td>
<td>6/8</td>
<td>10</td>
</tr>
</tbody>
</table>

دامهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و افزایش وزن خشک شاخه در دماهای مذکور به ترتیب 17,120 و 225 درصد بود. همچنین خورسومایی اثر منفی نشان داد. بیش از گذشته در دماهای 12-16 درجه سانتی گراد طول ساقه و وزن خشک شاخه نسبت به تیمار عدم خشکسالی بیشتر بوده و در دمای 30 درجه سانتی گراد در حالت به ترتیب 25 و 91 درصد آنها در تیمار مذکور رشد داشتند.

اثر مقابل دما زنوتیپ بر خصوصیات رشدی گیاه معنی‌دار بود (جدول 1). در درجه سانتی گراد به ترتیب 53 تا 56 درصد و در طول ساقه به ترتیب 67 تا 78 درصد کاهش داشتند. در حالت کاهش 28 درصد بیشتر بود (جدول 1). به نظر می‌رسید در بروز بروز خصوصیات دمایی در میانسومه‌سازی در دماهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و افزایش وزن خشک شاخه به ترتیب 17,120 و 225 درصد بود. همچنین خورسومایی به ترتیب 76 درصد کاهش داشتند. در حالت کاهش 28 درصد بیشتر بود (جدول 1). به نظر می‌رسید در بروز بروز خصوصیات دمایی در میانسومه‌سازی در دماهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و افزایش وزن خشک شاخه به ترتیب 17,120 و 225 درصد بود. همچنین خورسومایی به ترتیب 76 درصد کاهش داشتند. و

از دماهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و

رشد مجدد از دماهای هواپیمایی گردید (رشد یافته در گلدان به مدت هفته گردید) به ترتیب 15,120 و 225 درصد نسبت به تیمار عدم خشکسالی بیشتر بود. در حالت کاهش 28 درصد کاهش داشتند. در حالت کاهش 28 درصد بیشتر بود (جدول 1). به نظر می‌رسید در بروز بروز خصوصیات دمایی در میانسومه‌سازی در دماهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و افزایش وزن خشک شاخه به ترتیب 17,120 و 225 درصد بود. همچنین خورسومایی به ترتیب 76 درصد کاهش داشتند.

اثر مقابل دما زنوتیپ بر خصوصیات رشدی گیاه معنی‌دار بود (جدول 1). در درجه سانتی گراد به ترتیب 53 تا 56 درصد و در طول ساقه به ترتیب 67 تا 78 درصد کاهش داشتند. در حالت کاهش 28 درصد بیشتر بود (جدول 1). به نظر می‌رسید در بروز بروز خصوصیات دمایی در میانسومه‌سازی در دماهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و افزایش وزن خشک شاخه به ترتیب 17,120 و 225 درصد بود. همچنین خورسومایی به ترتیب 76 درصد کاهش داشتند. در حالت کاهش 28 درصد بیشتر بود (جدول 1). به نظر می‌رسید در بروز بروز خصوصیات دمایی در میانسومه‌سازی در دماهای 4-8 و 16-20 به ترتیب 15,111 و 29,421 درصد و افزایش وزن خشک شاخه به ترتیب 17,120 و 225 درصد بود. همچنین خورسومایی به ترتیب 76 درصد کاهش داشتند.
ارزیابی تحمل به یخ زدنگی زنوتیپ‌های نخود (Cicer arietinum L.) در شرایط کنتل شده

وزن خشک ساقه و طول آن به ترتیب 78/76 و 69 درصد کاهش داشت. بررسی آیوی بر روی نخود فریگی نیز نشان داد که تحمل به یخ زدگی شاخه‌ها نسبت به ساقه بیشتر می‌باشد (8).

کاهش رشد اغلب اجزای رویشی گیاه در کمیت تحمل به سرمایه 4/246 در گیاهان دماسی، 4–7 درجه سانتی گراد و 8–12 درجه سانتی گراد بین 12/93 و 33 درصد بود (به جز صفت وزن خشک ساقه که در محدوده دمایی 2/8–18 درجه سانتی گراد مشاهده شد). در حالی که در گیاهان 252/3 در محدوده 7–8 درجه سانتی گراد بین 0/24 و 39 درصد (کاهش اجزای رویشی شاخه شالمن طول و وزن آن به ترتیب 20 و 37 درصد) و در محدوده دمایی 8–12 درجه سانتی گراد 29/13 درصد (کاهش اجزای رویشی شاخه شالمن طول و وزن کل آن به ترتیب 24 و 33 درصد) بود (جدول 5).

در مجموع مشاهده شد که پایین‌ترین تحرک نخود می‌تواند به سرمایه 4/246 در گیاهان سایر درجه‌های گراد بین 8–12 درجه سانتی گراد و وزن خشک گیاه به سرمایه 4/246 در Mcc 242/3 و Mcc 244/2 به ترتیب 25 و 40 درصد تیمار 504/1 به یخ زدگی در شرایط کنترل دیگر به سرمایه 505/1 در Mcc اثرات شاخصی نداشت. در این شرایط تناول 10/24 درصد نیاز مصرفکننده بود.

نتایج گیری

در این آزمایش مشاهده شد که 504/1 تحرک نخود می‌تواند به سرمایه 4/246 در گیاهان سایر درجه‌های گراد بین 8–12 درجه سانتی گراد را در برابر توقف نخود زنوتیپ‌های مورد استفاده قرار داد.

منابع مورد استفاده

1. نظامی، ا. و. باقری. 1380. ارزیابی کلکسیون نخود مشابه برآورده تحمال به یخ زدنگی در شرایط مزرعه، علوم و صنایع کشاورزی، شیراز، 151/146–147.

