تأثیر مدیریت کوددهی نیتروژن بر عملکرد برنج (رقم خزر) و اجزای آن در یک خاک شالیزاری استان گیلان

حمیدرضا علی عباسی، مسعود اصفهانی، بابک رعیعی و سعید کاوشی

چکیده

به منظور بررسی تأثیر مقادیر و ترتیب بندی کود نیتروژن بر عملکرد دانه و اجزای عملکرد برنج (Oryza sativa L.) (رقم خزر) آزمایشی در سال 1392 در یک خاک شالیزاری با تاکستانی در استان گیلان، در قالب طرح بلوک‌های کامل احتمالی با تکرار اجرا شد. در این آزمایش، شش تیمار شامل: شاهد (بدون استفاده از کود نیتروژن)، تیمار 200 کیلوگرم نیتروژن در هکتار در زمان ناشرکاری، تیمار سوم (60 کیلوگرم نیتروژن در هکتار در زمان ناشرکاری و 200 کیلوگرم نیتروژن در هکتار در زمان ناشرکاری و پنج‌زنجی) تیمار چهارم (60 کیلوگرم نیتروژن در هکتار در زمان ناشرکاری و پنج‌زنجی) و آغاز رشد زانی، تیمار پنجم (120 کیلوگرم نیتروژن در هکتار در زمان ناشرکاری و پنج‌زنجی) و تیمار ششم (120 کیلوگرم نیتروژن در هکتار در زمان ناشرکاری، پنج‌زنجی و آغاز رشد زانی) مورد مطالعه قرار گرفتند. نتایج نشان داد که بالاترین تعداد پنج‌های سالار در تیمارهای پنجم و ششم با مصرف 120 کیلوگرم نیتروژن در هکتار و سوم در مرحله تخم‌گذاری داشت. بالاترین تعداد دانه‌های پر (84/88 درصد) و وزن هزار دانه (47/66 گرم) و عملکرد دانه (38/83 گرم در هکتار) به تیمار پنجم تعلق داشت. این نتایج نشان داد که بهترین عملکرد و وزن هزار دانه، تیمارهای چهارم و پنجم با استفاده از کود نیتروژن بهتر اتفاق می‌افتد. این موضوع می‌تواند از تأثیر مصرف نیتروژن سایر معنی‌داری باشد. نتایج نشان داد که تعداد سهبیگانی در تیمارهای فراوان باشد. در تعداد گرگاور که سپریگانی گرگ در 5 روز بعد از گل‌دهی و میزان نیتروژن در هکتار برای رقیق برنج خزر پیشنهاد می‌شود، یک روش می‌توان به عملکرد مشابهی با مصرف 120 کیلوگرم نیتروژن در هکتار دست یافت.

واژه‌های کلیدی: برنج، نیتروژن، عملکرد، اجزای عملکرد

مقدمه

تأثیر میزان دسترسی آنها به منابع کودی به ویژه کود نیتروژن

می‌باشد(8). مصرف نیتروژن نه تنها موجب افزایش سطح

ویژگی‌های مورفولوژیک و فیتولوژیک گیاهان، اغلب تحت

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیاران زراعت و اصلاح نباتات، دانشگاه علوم کشاورزی، دانشگاه گیلان

2. استادیار پژوهش مؤسسه تحقیقات برنج کشور، رشت

293
فوتون کنده (افزایش تعداد پنجه و توزیع سطح برگ) می‌شود. بیشتر فعالیت آنزیم ریبولوز-و-۵-فسفات کربوکسیلات را افزایش می‌دهد. این آنزیم به‌طوری‌ای به یک درصد پرتوی‌های حاوی نیتروژن برگ را تنشیک می‌دهد. بنابراین، انتظار می‌رود که هم‌سویی بالای رابطه بین مقدار جذب و ساخت دی اسید کربن و غلظت نیتروژن با پرتوی‌های برگ وجود داشته باشد (۲). به علاوه، مصرف نیتروژن با تأثیرگذاری بر افزایش آنزیم‌های فوتوناتی و غلظت کارفوئل در مراکز واکنش (Photosynthetic Reaction Centers) فوتوناتی بر مقدار فوتونات در واحد سطح برگ، رشد و عملکرد گیاهی در داده‌های (۸) په و همکاران (۱۲) گزارش کردند که در گیاه برخی بین مقدار فوتونات در واحد سطح برگ و غلظت نیتروژن برحسب واحد سطح برگ ارتباط خلوت وجود دارد. بر اساس تحقیقات انجام شده توسط ایستیهیاسارو و همکاران (۴) تیپ مشخص شد که غلظت نیتروژن برگ هم‌سویی مثبتی را با مقدار انزیم روبسیکوئی (Bravo) در برگ دارد. به طوری که کاهش غلظت نیتروژن گیاه موجب کاهش فوتونات و مقدار آنزیم روبسیکوئی می‌شود. بنابراین، به نظر می‌رسد که بیان نیتروژن در گیاه به طور مستقیم با بیان دلایل اکسید کردن در ارتباط است.

یک بنگ و همکاران (۴۶) گزارش کردند که مصرف نیتروژن بعد از مرحله گرده‌افشانی در برگ، موجب تحکیم رشد بینی شده. افزایش ساخت سبک‌ها (Pin) به طوری که تأثیر طوری و مناسبی به در برگ و افزایش نسبی به سبک‌ها افزایش یافته‌است. می‌شود که این موضوع با افزایش ساخت سبک‌ها جذب و ساخت اکسید کردن ایجاد نهایت ای با بیان افزایش در مرحله بر شدن مصرف بسیاری باید با تأثیر گازدانه بر تولید نیتروژن (توپوراه) نیتروژن در مرحله شروع و اول باید با نیتروژن نیتروژن در جهت برگ و حفظ شدت فوتونات در مرحله بر کربن بنگ و همکاران (۸) گزارش کردند که در دو نیتروژن همبستی مصرف نیتروژن در سه پایینتر

مواد و روش

این تحقیق در سال ۱۳۸۲ در یک مزرعه بالارزی شرکتی به یک مزرعه بالارزی شخصی با خاک شنی (جدول) در آبکار از توابع شهرستان بند انزلی با عرض جغرافیایی ۳۷ درجه و ۲۸ دقیقه شمالی، طول جغرافیایی ۴۹ درجه و ۲۸ دقیقه شرقی و با ارتفاع ۲۰۳ متر پایین‌تر از مورد و روش همکاران (۴۶) گزارش کردند که مصرف نیتروژن برگ و شانیول ۰۱۰۷ و Shantyol63

۲۹۲
تایید مدیریت کودهه‌ی نیترژن بر عملکرد بذری (رقم خور) و اجرای آن در یک حاکم...

جدول 1. مشخصات خاک محل آزمایش

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>درصد دیده برنج</th>
<th>جدب سنبل</th>
<th>ظرف‌گذاری قابل</th>
<th>سطح جدب</th>
<th>درصد کربن</th>
<th>اسیدهای الکتریکی</th>
<th>نمونه باری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>درصد نیترژن</td>
<td></td>
<td>mg.kg(^{-1})</td>
<td>mg.kg(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>بلوک 1</td>
<td>33</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>بلوک 2</td>
<td>44</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>بلوک 3</td>
<td>49</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td></td>
</tr>
</tbody>
</table>

={SPAD-502, Minolta Co. Japan}

سطح دریای آزاد اجرا شد. سه ماه قبل از اجرای آزمایش صبح 100 کیلوگرم در هکتار فسفر از منبع سوپرفساتاس تریپل و 100 کیلوگرم در هکتار تنشیم از منبع سولفات لناسیم به صورت مخلوط با خاک سطحی به زمین اصلی اضافه شد. در اواست مرحله پنج‌ژنی (24) روی با نازک‌واری (26، 27) کیلوگرم از هکتار به بیماری‌های میوه، چهار، پنبه و شاکی در مرحله آغاز رشد زایی، بینعی به هنگام تغییر شکل بی‌ریسمین خودش از شکل گیاهی به شکل سنتوی (35) روی با نازک‌واری (26) کیلوگرم از هکتار به تری‌تای 200 کیلوگرم نیترژن در هکتار به بیماری‌های پنجه به صورت پخش سطحی اضافه شد (جدول 2).

درجه سیرنگی بالاترین بکر بوته در اواست و اواست مرحله پنج‌ژنی، بیش‌تر از پنج‌ژنی (ب) از پنج‌ژنی بکر (ب) از پنج‌ژنی (b)
جدول 2. تیمارهای کود نیتروژن

<table>
<thead>
<tr>
<th>تیمار</th>
<th>ابتدا رشد زایشی</th>
<th>اوتسط نهایی</th>
<th>پایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>T₁</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>T₂</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>40</td>
<td>T₃</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>40</td>
<td>T₄</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>T₅</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>T₆</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>T₇</td>
<td></td>
</tr>
</tbody>
</table>

رطوبت 14 درصد دانه محاسبه شد.
برای ابتدا رشد زایشی و باریزی، مقدارهای میانگین ها از ترم افزار برای محاسبه ضرایب همبستگی و روابط رگرسیونی از نرم افزار SAS برای رسم کردن از ترم افزار EXCEL و برای مقایسه میانگین ها از آزمون دانکن و آزمون مقایسه‌هاي گروهی (مستقل) در سطح احتمال پنج درصد در صورت معنی‌داری بودن اثر عامل آزمایش استفاده شد.

نتایج و بحث
رگ. غلفت نیتروژن و مصالح برگ در ابتدا مرحله زایشی

بر اساس نتایج حاصل از مقایسه میانگین‌ها مشخص شد که در 59 روز بعد از نشانگر معنی‌دار است و در نتیجه، 120 کیلوگرم نیتروژن در هر کیلوگرم در مقدار به شاهد موجب افزایش معنی‌داری در سطح احتمال یک درصد (سیستمیک رنگ برگ (مقدار کارول فیلد متراً)، مصالح بالاترین برگ بوته، غلفت نیتروژن بر حسب سطح و وزن برگ شد (جدول 3)، مقایسه‌های گروهی (مستقل). دانش داد که مصالح بالاترین برگ و غلفت نیتروژن بر حسب وزن برگ در تیمارهای سوم و دوم بالاتر از تیمارهای چهارم و ششم بود (جدول 4). با توجه به این که در اواست مرحله پنج‌تایی (5 روز قبل از این مرحله) تیمارهای سوم و پنج در مقایسه به تیمارهای چهارم و ششم مقدار کم‌تری از همان تیمارها نشان دادند و به دلیل علائم خشکی شدن و بعد از روز 70، عملکرد دانه در واحد سطح بر اساس

کنکالی و هضم ماده خشک گیاهی (30 گرم) با استفاده از اسید نتوفن، اسید سالیسیلیک و آب آکسیژن(9) در آزمایشگاه یک خاك و آب موسسه تحقیقات زیربخش تروش نوع آب و مصالح برگ غلفت نیتروژن بر حسب واحد سطح برگ تیمار محاسبه شد.
برای محاسبه تعداد نیتروژن در واحد سطح، در زمان رسیدگی در هر کرت سه ناحیه با مساحت یک متر مربع به طور تصادفی انتخاب و تعداد نیتروژن بارور و غیر بارور در هر ناحیه به طور جدایی شمارش شدند. پس از محاسبه تعداد کل نیتروژن در واحده سطح از تعداد بین تعداد نیتروژن بارور و تعداد کل نیتروژن در واحده سطح به روشی تعیین تعداد نیتروژن در واحد سطح، تعداد 10 کیلوگرم نیتروژن در هر سطح در بهره‌وری خورشید در هر کرت انتخاب شدند. سپس خورشیدها از ناحیه کردن جدا و تعداد کل خورشید معرفی شدید. پس از اینکه در خورشید با طول جدایی، هم‌اکنون و ژن هر یک در خورشید رونمایی برای خورشید با طول جدایی شمارش شد. از نسبيت دانه‌ها بر په کل خورشید در هر خورشید درصد دانه‌ها بر به دست آمد. پس از نهایت درنده، در خورشیدتیم و تا گردونی در تمام در سطح 5 متر مربع در هر کرت، خیلی کمی و چند کرت دانه‌ها از اندام هوابی، دانه‌ها در دمای 70 درجه سلسوس در خشکی خشکی شدن و بعد از روز 70، عملکرد دانه در واحد سطح بر اساس

296
جدول ۳ تجزیه و ارایه و مقایسه عادی گروهی ماسحات برگ و مقادیر کلروفیلت (SPAD)، غلظت نیتروژن در سطح (Na) و وزن بالاترین برگ بوته در ۵۹ و برای برگ پرچم در ۷۹ روز بعد از نشان کی در تیمارهای کودتزرن (Ndw)

<table>
<thead>
<tr>
<th>میانگین مربوط به</th>
<th>مساحت برگ</th>
<th>Ndw 79</th>
<th>Na 79</th>
<th>SPAD 79</th>
<th>Ndw 59</th>
<th>Na 59</th>
<th>SPAD 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>برهم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بالکر</td>
<td>۲</td>
<td>۳۴/۵۹</td>
<td>۱/۷۲</td>
<td>۱/۵۹</td>
<td>۱/۵۹</td>
<td>۱/۷۲</td>
<td></td>
</tr>
<tr>
<td>تیمار</td>
<td>۴</td>
<td>۳۴/۵۹</td>
<td>۱/۷۲</td>
<td>۱/۵۹</td>
<td>۱/۵۹</td>
<td>۱/۷۲</td>
<td></td>
</tr>
<tr>
<td>T۱ T۲ vs. T۳ T۵</td>
<td>۴</td>
<td>۳۴/۵۹</td>
<td>۱/۷۲</td>
<td>۱/۵۹</td>
<td>۱/۵۹</td>
<td>۱/۷۲</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴ مقایسه میانگین ماسحات برگ و مقادیر کلروفیلت (SPAD)، غلظت نیتروژن در سطح (Na) و وزن (Ndw) بالاترین برگ بوته در ۵۹ و برای برگ پرچم در ۷۹ روز بعد از نشان کی در تیمارهای کودتزرن (Ndw)

<table>
<thead>
<tr>
<th>مساحت برگ (Cm²)</th>
<th>Ndw 79 (g/kg)</th>
<th>Na 79 (g/m²)</th>
<th>SPAD 79 (بدون واحد)</th>
<th>Ndw 59 (g/kg)</th>
<th>Na 59 (g/m²)</th>
<th>SPAD 59 (بدون واحد)</th>
<th>نماد</th>
</tr>
</thead>
<tbody>
<tr>
<td>برهم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>چهار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای هر مقدار در ستون از نظر آماری بر اساس آزمون دانکن در سطح احتمال ۵٪ درصد اختلاف معنی‌دار ندارند.

شداجدول ۴: اما بعد از مصرف کود سرک اول بیش از احتمال زیاد به علت سبک بودن بافت خاک مزرعه به تدریج نیتروژن از دسترس گیری خارج شد که این موضوع موجب عدم قطعیت معنی‌داری غلظت نیتروژن بر حسب سطح برگ (شکل ۱) و سبزدانگ رنگ برگ (شکل ۲) و احتمال کم ماسحات و غلظت نیتروژن بر حسب وزن برگ بین تیمارهای سوم تا ششم شد (جدول ۴).

پیامدها: از کود نیتروژن را دریافت کردن به دست آورده (۱۰۴) هر میلی‌گرم در هکتار، به نظر می‌رسد که ماسحات و غلظت نیتروژن در حسب وزن برگ در این مرحله زیب تنگ‌تر مصرف کود سرک اول قرار گرفته است. به طوری که حتی مصرف مداوم بالاترین کود نیتروژن در تیمار پنجم در مقایسه با تیمار سوم موجب افزایش ماسحات بالاترین برگ بوته

۲۹۷
رنگ، غلظت نیتروژن برگ و مساحت برگ پرچم در ۵ روز
بعد از مرحله گل‌دهی
بر اساس نتایج به دست آمده از تجربیات واریانس داده مشخص شد که نبودن مصرف کود نیتروژن در سطح احتمال پی کردن تأثیر معنی‌داری را بر سپرینگی رنگ برگ، غلظت نیتروژن بر حسب سطح و وزن برگ در ۷۹ روز بعد از نشاکاری داشت (جدول ۳). مقایسه میانگین‌ها نشان داد که سپرینگی رنگ برگ، غلظت نیتروژن بر حسب وزن و سطح برگ در تیمارهای چهارم و ششم با سه نبود مصرف کود نیتروژن بالاتر از تیمارهای سوم و پنجم با دو نبود کوددهی بود. جدول‌های ۳ و ۴ که به احتمال زاید این موضوع به علت مصرف کود سرک در دو تیمارهای چهارم و ششم می‌باشد.
مقایسه گروه‌های میانگین‌ها نشان داد که نبودن کود نیتروژن در سطح مصرف و افزایش مصرف آن ساحات برگ پرچم را به طور معنی‌داری در سطح احتمال پی کردن در افزایش داد (جدول ۳). بنابراین کود باید به نبود مصرف برگ پرچم در تیمارهای ۸۰ کیلوگرم بود، ولی بالاترین مساحت برگ پرچم در تیمار ششم و چهارم بی‌حال (سیستم ۷) کوددهی با سه نبود مصرف کود به عنوان م射手اند. شکل ۱ این معیار را به طور معنی‌داری در سطح احتمال پی کردن در افزایش داد (جدول ۳). بنابراین با کوددهی در تیمارهای سوم و پنجم (سیستم ۷) بهترین مساحت برگ پرچم در تیمار ششم و چهارم بی‌حال شد.

شکل ۱. تغییرات غلظت نیتروژن برگ با افزایش مصرف کود نیتروژن در ۵ روز پس از نشاکاری در تیمارهای کود نیتروژن

شکل ۲. تغییرات مساحت کلیویل برگ پس از نشاکاری در تیمارهای کود نیتروژن

تنابنده داده‌ها نشان داد که افزایش مصرف کود نیتروژن از ۸۰ به ۲۰۰ کیلوگرم باعث افزایش مصرف کود نیتروژن در سطح احتمال پی کردن در افزایش معنی‌داری تعداد ن максاقداری کلیویل برگ و مساحت برگ پرچم شد.
تأثیر مدیریت کودکتی نیتروزن بر عملکرد برج (رقم خر) و اجزای آن در یک خاک...
جدول 5. هیپستگی پنج‌های پر بی‌پر یا مساحت بالاترین برگ در بوته (La). مقایسه کلروفیل (SPAD) و لیزر نیتروژن برگ (La) به ترتیب در 29 و 39 روز بعد از شناکاری

<table>
<thead>
<tr>
<th>Ndw (g/kg)</th>
<th>Na (g/m²)</th>
<th>SPAD</th>
<th>La (Cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
</tr>
</tbody>
</table>

تعداد پنج‌های پاربور

<table>
<thead>
<tr>
<th>تعداد پنج‌های پاربور</th>
<th>29 روز بعد از شناکاری</th>
<th>39 روز بعد از شناکاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
</tr>
<tr>
<td>2</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
</tr>
<tr>
<td>3</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
</tr>
<tr>
<td>4</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
</tr>
<tr>
<td>5</td>
<td>0.08/0.96</td>
<td>0.08/0.96</td>
</tr>
</tbody>
</table>

جدول 6. جنبه‌های واریانس و مقایسه‌های گروهی تعداد پنج‌های پاربور، تعداد پنج‌های ناپاربور، درصد پنج‌های پاربور، تعداد کل خوش‌چش، تعداد دانه پر درصد دانه، وزن هزار دانه و عملکرد دانه

<table>
<thead>
<tr>
<th>تعداد پنج‌های پاربور</th>
<th>درصد پنج‌های ناپاربور</th>
<th>تعداد کل خوش‌چش</th>
<th>تعداد دانه پر</th>
<th>وزن هزار دانه</th>
<th>عملکرد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تبلیغ</td>
<td>2</td>
<td>10</td>
<td>30</td>
<td>2.0</td>
<td>30</td>
</tr>
<tr>
<td>تیمار</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>2.0</td>
<td>30</td>
</tr>
</tbody>
</table>

مقدار : مقایسه تیمارهای دو و سه نوتی مصرف نیتروژن

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نکات</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 vs. T2</td>
<td>1</td>
</tr>
<tr>
<td>T3 vs. T2</td>
<td>2</td>
</tr>
<tr>
<td>T4 vs. T2</td>
<td>3</td>
</tr>
<tr>
<td>T5 vs. T2</td>
<td>4</td>
</tr>
</tbody>
</table>

جدول 7. مقایسه میانگین تعداد پنج‌های پاربور، تعداد پنج‌های ناپاربور، درصد پنج‌های پاربور، تعداد کل خوش‌چش، تعداد دانه پر، درصد دانه، وزن هزار دانه و عملکرد دانه

<table>
<thead>
<tr>
<th>میانگین</th>
<th>وزن هزار دانه</th>
<th>عملکرد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>(g)</td>
<td>(l/ha)</td>
</tr>
<tr>
<td>پاربور</td>
<td>135/20</td>
<td>3/10</td>
</tr>
<tr>
<td>ناپاربور</td>
<td>123/20</td>
<td>3/10</td>
</tr>
</tbody>
</table>

میانگین های دارای حروف مشترک در هر ستون از نظر آماری براساس آزمون دانکن در سطح احتمال 5% دارای اختلاف معنی‌داری ندارند.
تأثیر مدیریت کودک‌های نیتروژن در عملکرد پرینگ (قلم زرخ) و اجزای آن در یک خاک ...

پنج‌های دیر گاهی و نیتروژن شود(جدول ۴). در این مورد آسیف و همکاران (۶) و فلزی و میلوری (۳) گروه کردن که سطح ۴۸ و مصرف زیاد کود سرک نیتروژن در مرحله پنج‌هایی، رشد رویشی و تعداد پنجه در واحد سطح را افزایش می‌دهد. ولی در زمان نهایی انگل‌های خوش‌بزنی به علت ناکافی بودن تعشیش عورت‌های و مواضع غذایی در پنج‌های دیر گاهی تعداد خوش‌بزنی و درصد پنجه‌های باور به طور معنی‌داری کاهش می‌یافت. در حالی که مصرف کود سرک نیتروژن در اولی رشد زایشی می‌تواند به حفظ درصد بالاتری از پنج‌های باور منجر شود (۲۱).

تعداد کل خوش‌بزنی در واحد سطح
بر اساس نتایج حاصل از تجربه و ارایاس، مقدار نیتروژن مصرفی تأثیر معنی‌داری را (در سطح احتمال بک درصد) بر تعداد کل خوش‌بزنی در واحد سطح (جدول ۴) می‌کند.

مقایسه میانگین ها نشان داد که مصرف ۸۰ و ۱۲۰ کیلوگرم نیتروژن در فاکتور بود در سطح مثبت و به طور معنی‌داری افزایش گرفت (در سطح احتمال بک درصد) تعداد دانه‌های پر در واحد سطح در مقایسه با تیمار کنترل (مصرف نیتروژن در هر کیلوگرم نیتروژن در تیمار تأثیر معنی‌داری نبود) دانه‌های پر در واحد سطح نسبت به تیمار کنترل (نبح ۱) بود (جدول ۴).

برخلاف تعداد دانه‌های پر، نتایج چنین کود نیتروژن تأثیر معنی‌داری را بر درصد دانه‌پر در واحد سطح به طوری که بالاترین درصد دانه پر در تیمارهای ششم و چهارم (با نبود مصرف نیتروژن مشاهده شد که در طور معنی‌داری (در سطح احتمال بک درصد) عالی‌تر از تیمارهای با دو نبود کوددهی بود(جدول ۴). بهبود درصد دانه پر نیز مربوط به تیمار شاهد بود، اگر چه اختلاف معنی‌داری بین تیمار شاهد و تیمار دوم و نیز دیده نشده (جدول ۴).

در این آزمایش تعداد دانه‌های پر در تیمارهای باه و نبود
کوددهی نیتروژن در محدوده بین ۲۰ تا ۸۵ درصد بود. به نظر می‌رسد که در این تعداد بین مخزنه و منبع تأمین خوراکی وجود دارد (۲۷). لیلی این توان مناسبی به احتمال زیاد در عفاف کود سرک دوم در ابتدا رشد زایشی و فراهم بودن کود

کلرولیفیل، مساحت و میزان فتوسنتز بزرگ و چهارم (۲۸).

اختلاف عدم معنی‌داری خیلی نیتروژن برحسب سطح بک (شکل ۱) و سرک‌های رنگ بک (شکل ۲) و همچنین اختلاف کم میزان بک و غلظت نیتروژن برحسب وزن بزرگ در تیمارهای سوم نیز شامل تعداد باشند. در ابتدا مرحله رشد زایشی (جدول ۴) می‌تواند موجب دسترسی به مقدار تقریباً یکسانی از سرک‌های فتوسنتزی در مرحله نمایش

خوش‌بزنی و اختلاف عدم معنی‌داری پنجه در این تیمارهای شاهد بود. در این مورد گزارش کرد که مصرف کود سرک دوم نیتروژن کمی قبل از شروع رشد زایشی به تجربه بود.

۲۰۱
اختلاف معنی داری را با ورز هزار دانه تیمار دوم نشان نداد،
وی به طور مناسب دارای پایین تر از سایر تیمارها بود.(جدول 7)

تولید هر دانه تیمار به مقدار مناسب در طول دوره پر شدن دانه به دو تیمارها نشان داد از جمله
موجب افزایش نتیجه تیمار(مشکل 1)، کارولفیل(مشکل 2) و
مساحت بارچ پرچ(جدول 3) و همچنین افزایش
فعالیت آزمایش فتوسنتزی شده است و در پی آن فرویت
فتوسنتز بالای گیاه موجب افزایش درصد دانه های پر شده
است(24). با توجه به این که در سایر تیمارها درصد دانه پر شده
پایین تر از 80 درصد است به نظر می رسد که در این تیمارها
منع عامل محدود کننده بوده است(27).

لبانگ و همکاران(17) گزارش کرده که با کاهش
فرآورده فتوسنتزی، تعداد دانه های پر کاهش و فراکن
پر شدن دانه به تأخیر می یابد. آنها معتقدند که فرویت منع
عامل محدود کننده در پر شدن دانه است. و کاشتارو(23)
تیز این انتظار آن است که تعداد فلوش های بسیار رفع بر
گزارش کرده، با این که فرآورده های مخزن یک عامل مهم در تیمات
عملکرد بیمار به شمار می آید. ولی محدودیت منع در پر شدن از
همیشته بهترین در تیمات عملکرد بیمار برخورد پایدار است.

بتراگانه، می توان یاد کرد که درصد دانه های پر می گذشته زیادی
به شرایط تغذیه ی و فتوسنتز گیاه پس از مرحله کلیه
دارد(24).

وزن هزار دانه

نتایج به دست آمده از تجزیه و ارتباطات دانه داده های مربوط به عملکرد
کود نیتروژن و نیتریس با آن در سه نیبرت برون ورز هزار دانه در
سطح احتمال برن داد از معنی داری داشت (جدول 6). با
توجه به این که فرآورده مصرف نیتروژن از 80 به 120 کیلوگرم
در هکتار موجب افزایش معنی داری در سطح احتمال برن
درصد هزار دانه شد، ولی به تیمارچه هر ششم (مصرف 160 کیلوگرم نیتروژن در
هکتار طی سه نیبرت) به دست آمد که اختلاف معنی داری را
تیمار چهارم(مصرف 80 کیلوگرم نیتروژن در هکتار طی سه
نبیت) نشان داد، ولی به توجه از سایر تیمارها با دو
نیبرت کوده های اختلاف معنی داری درد دیده، ولی عملکرد
این دو تیمار به طور معنی داری پایین تر از

302
تأثیر مدیریت کوددهی نیتروژن بر عملکرد برنج (رقم خور) و اجزای آن در یک حاک...
نتیجه‌گیری

نتایج حاصل از این تحقیق نشان داد که علائم بی‌ارتباط معنی‌داری باعث می‌گردد که مصرف 80 کیلوگرم نیتروژن در هر هکتار برای خزر بیشتر به مصرف 120 کیلوگرم نیتروژن در هر هکتار دست‌یافته باشد.
Nummerical optimization of

