یزیست شناسی شیپک استرالیایی (Icerya purchasi Mask. (Hom.: Margarodidae)

در شرایط آزمایشگاهی و نوسانات فصلی آن در باغ‌های مرکبات شمال خوزستان

مهدی اسفندیاری ۱، محمد سعید مصدق و رحیم اسلامی زاده ۲

چکیده

شیپک استرالیایی Icerya purchasi Mask. به بیش از دویست گونه گیاهی حمله می‌کند. زیست شناسی این حشره در شرایط آزمایشگاهی در داخل انکوباتور در سه دمای ۱۷±۲، ۲۷±۴ و ۳۷±۵ درجه سانتی‌گراد رطوبت نسبی ۵۰±۵ درصد و به ۱۰ ساعت (روشنایی به‌شناسی) بررسی شد. در دمای ۱۷±۲ درجه سانتی‌گراد میانگین طول دوره دورگی، دوره زده، مانی بالغ و طول مدت یک نسل حشره ماده به ترتیب ۸۳/۵۰، ۳۸/۴۵ و ۷۴/۳۴ زوج تعمیدی بود. در دمای ۲۷±۴ درجه سانتی‌گراد این مقادیر به ترتیب ۵۴/۲۳، ۱۱/۶۸ و ۸۲/۶۷ بود. میانگین طول دوره ییدگی و طول مدت یک نسل حشره ماده در دمای ۱۷±۲ درجه سانتی‌گراد به ترتیب ۵۹/۴۷، ۳۸/۴۲ و ۴۰/۷۱ زوج محاسبه شد. در شرایط طبیعی، از پانزدهم تیرماه ۱۳۸۲ تا پانزدهم تیرماه ۱۳۸۳ حشرات در دشت‌های گیاهی گرفت. بدون منظر ۵ اصل درخت پرتنگ سیاورز به‌طور تصادفی در این باغ انتخاب و در ۱۰ روز یکبار از چهار جهت جغرافیایی و نیز داخل ناحیه درختان در سه ارتفاع مختلف در مجموع ۷۵ نمونه ۱۵ سانتی‌متری به‌طور تصادفی تطعیق و مراحل مختلف سنی آنها شمارش و به‌طور کلی تیپ گردید. نتایج نشان داد که در ده نمونه ۶ نسل شماره ۱۲۸۸ شیپک استرالیایی در دسته بالا بود. به‌طور کلی نسل سوم زمستانگذاران در بالادست بالا و نور زمستانگذاران آفت به صورت مراحل مختلف سنی روز و میزان‌های مختلف پیش‌بینی، سن دوم پروری بیشترین جمعیت زمستانگذاران را تشکیل می‌دهد. این شیپک در خوزستان علاوه بر ارتفاع مختلف مرکبات به ۴۱ گونه متعلق به ۲۲ خانواده مختلف از گیاهان حمله می‌کند.

واژه‌های کلیدی: شیپک استرالیایی، یزیست شناسی، مرکبات، شمال خوزستان

مقدمه

به سرعت گسترش یافته که صندوق مرکبات کالیفرنیا را تامرز نابودی پیش برده. روشهای مختلف مبارزه از جمله مبارزه شیمیایی مؤثر نبود. تا این که سرانجام دشمنان طبیعی آفت Icerya purchasi Mask. در حدود سال ۱۸۶۸، شیپک استرالیایی

در بقای و نگهداری بار در کالیفرنیا می‌تواند به یکی از بهترین درمان‌هایی هستند که برای نخستین بار در پارک‌های کالیفرنیا دیده شد و چنان که در کشورمونیروای که این تحقیقات به‌کار و افتاده‌اند نشان داده‌اند، استفاده پژوهش مركب تحقیقاتی خاصی به‌پایان دست خواهد گذاشت.

۱. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد حشره‌شناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

۲. استادیار پژوهش مرکب تحقیقاتی کشاورزی صنفی آباد درویش
کفشدوزک استراطبعی Rodolia cardinalis Mul. P G *
پارازیتولد. یک نسل در سرزمین مادی
آن (استرالیا) کشف و به کالفاریا وارد گردید. گروه کفشدوزک استراطبعی کفشدوزک استداوم مورد فقیح
کفشدوزک استراطبعی همراه سایر آفات
پیوسته کاسپیکی یک ماده غیر بومی در جهان می‌باشد. کشف
این حالت طبیعی کفشدوزک استراطبعی در مناطق که سهپاشی
(به‌روز کاربرد تنظیم کننده‌های زرد خشونت) به سایر آفات
مرکبات منجر به مرگ دشمنان طبیعی آن شده، به کرات گزارش
گردیده است (12).

این آفت همراه به‌نیازهای مربکات از ایتالیا به ایران وارد
و اولین بار در آمریکایی اولیه مشاهده گردیده. سال‌های ۱۳۵۴
و ۱۳۵۷ و ۱۳۶۰ به عنوان سال ود شیبکش به ایران ذکر شده است (1,
۲، ۳) در سال ۱۳۶۰ کفشدوزک استراطبعی
فرانسه به ایران آورده شد و قادر به کنترل آفت وارد است. (7)

استان فارس راه یافته (3 و 4) شیپشک استراطبعی عینه بر همه
جبهه است. این آفت بسیار بلافاصله و عالعه بر انواع مربکات
به بسیاری از گیاهان زینتی حمله می‌نماید. تعداً دیزیانهای
ثبت شده آفت بسیار زیاد بوده و در بین این گیاهان بسیاری که
همیشه افتراضیدارند. باید می‌شود (۱۳، ۱۴ و ۱۷). این
حشره در ایران به عنوان آفت مهم مربکات مشهور است اما به
گیاهان متعددی از حاوی‌هاهای مختلف گیاه حمله می‌نماید.
توجه کردنی است نه غیر غیرانی آن نمی‌شود. این حشره
حتی قادر است که در داخل میوه سردمی متعلق به خانواده
رژاس نیز حمله کرده و خسارت قابل توجهی وارد نماید (6).

۱. زیست شناسی آزمایشگاه
الف) قفس‌های
در این آزمایش از پوره‌های خزنده به سینکسان و برگ برتنکال
سیب‌آور و از قفس‌های (رقم م الحق دوبل) در نفس ناشی (16) استفاده شد.
برای بهبود آوردین پوره‌های خزنده به سینکسان تعدادی
شیپشک ماده که همه از آنها کامل دار پرده بود از اطراف
جمع آوری و درون ظرف پنیر به فطر و از مرات
مت قرار داده شدند. سپس خزنده‌های که طی
۲۴ ساعت از
کیسه‌های تخم خارج شدند به قلم وی طرفی
جمع آوری و روی سطح زیری برگ برتنکال در هر نفس متقل و به
منطقه‌های جلوگیری از قرار آنها در نفس‌های با توزیع طریقی
مسدود گردید. در نفس دوم شیپشک (در مجموع
۱۰۰ تکرار)
تهرازی و روزانه تغییرات رشدی آنها ثبت گردید. این آزمایش
در دوام ± 1 درجه سانتی گراد، رطوبت نسبی ± 5 درصد و دوره نوری 14 ساعت روشانی و 10 ساعت تاریکی
انجام گردید.

(ب) نهال مرکبات
در این آزمایش از نهال‌های برتقال سیاپورز استفاده شد. خاک بکار رفته در گلدان‌ها، خاک زراعی منطقه بوده و در طول آزمایش از هیچ کودی استفاده نشد. آبیاری گلدان‌ها هر سه روز
یکبار انجام می‌شد. با الگه‌ای از روشی‌هایی (13) پس از انفاق
پوشه‌های خزندگی با سن یکسال روز و انجام برتقال، به‌دست آن که پوشه‌های خزندگی بسیار متحرک می‌باشد و به منظور
اطمینان از استقرار و جلوگیری از پراکندگی نهال آنها، از چندین
برگ این استفاده شد. سپس آنها کامپس پنک نسل دراز، روزانه
تغییرات رشدی و نیز تغییر مکان آنها به‌دست جلوگیری از
اشتباهات ناشی از جابجایی شبکه‌ها ثبت گردید. شبکه‌ای
استرالیایی بخصوص از سر به بعد محلی به جابجایی شدن
روی گیاه را دارد، بنابراین پس از طی سه‌ماه، در دو، طبق
برگی پرداشته شد و شاخص‌های جابجایی شبکه‌ها به کیفی‌ساز
پارچه‌های طریفی محرک گردید. تا از خروج و پراکندگی
شبکه‌ها از روز گیاه جلوگیری شود و فضای کافی برای
جابجایی شبکه روز گیاه و جامدات را جابجایی کنند. دیما شرور

در خصوص مسئله ترجیح کیسه تخم‌یاری یافت. پس از تکمیل
کیسه تخم شبکه‌ها، به لطف موتیفی اماکن به خالی کردن آن
و شمارش تخم‌ها گردید. این آزمایش داخل انکوباتور در دو دما
(21 ± 1 درجه سانتی گراد، رطوبت نسبی ± 85 درصد و دوره نوری 14 ساعت روشانی و
10 ساعت تاریکی) انجام گردید.

(پ) نهال‌های برتقال سیاپورز
برای پرداختن به اختلاف بین طول مراحل مختلف سنتی در
dو دماهای 17 ± 1 درجه سانتی گراد (از آزمایش در محل
5 درصد (نرم افزار SAS و برای تمام کردن داده‌ها از
تبدیل لگاریتمی آنها استفاده شد.)
جدول ۱: میانگین طول مراحل مختلف سنی (بر حسب روز) حشره نر شیشک استرالیایی سانیتی گراد، رژه‌بندی (۷۵ درصد و ۱۴ ساعت) (روش‌نامه به تاریکی)

<table>
<thead>
<tr>
<th></th>
<th>حداکثر</th>
<th>حداقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>مراحل سنی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>جنینی</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>سن پیک</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>سن دو</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>شفیره</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>بالغ</td>
<td>۳۹</td>
<td>۳۹</td>
</tr>
<tr>
<td>مجموع</td>
<td>۹۰</td>
<td>۹۰</td>
</tr>
</tbody>
</table>

ج) دشتستان طبیعی
برای شناسایی دشتستان طبیعی احتمالی شیشک استرالیایی، نمونه‌هایی از مناطق مختلف جمع‌آوری و به‌مدت ۲-۳ هفته در دمای اناث تغازداری و روزانه بررسی شد.

نتایج

الف) باوروری
به روش پژوهشی (۱۰) در انتخاب فصل بهار اقدام به جمع‌آوری ۳۰ عدد شیشک ماده با کناره تخم کامل از روی هر بکس از ارقام پربینجالی، تاریک‌گیری و تاریک‌گرد و شمارش تخم (و نیز پروپه‌های خزنده) موجود در کیسه‌ها و اندازه‌گیری طول کیسه‌ها گردید. تجزیه و تحلیل داده‌ها از طريق آزمون چند دامنه دانکن و توسط نرم‌افزار SAS انجام شد.

ب) پراکنش و میزان‌ها
شیشک استرالیایی به تازگی در منطقه گزارش شده بود و هنگام اطلاعاتی راجع به انتشار جغرافیایی آن وجود نداشت. بنابراین جهت تعیین مناطق آلوده اقدام به‌پارسی و نمونه‌برداری صادقی از یک‌ها جبهه‌های مرکزی درختان و نیز سایر مناطق مربوط به خیر زوستون از جمله ایده، باشگاه، بهبهان و شوشتر گردید. برای تعیین میزان‌های شیشک‌ها تا حد امکان انواع درختان، علف‌های برزه‌ها و نیز گیاهان رزاعی زندیکه به یک‌ها آلوده بررسی و کیهان آلوده جهت تشخیص گونه گیاهی جمع‌آوری گردید.

شامل تفاوت‌ها از شیشک پاک شده و مجدد اقدام به‌پارسی شیشک گردید.

ملاحظه مصرف نیست.

۳۹۶
جدول 2. میانگین طول مراحل مختلف سه (بر حسب روز) ماده شیپک استرالیایی روی نهال پرتقال سیاواز در دو دمای 176 و 174 درجه سانتی‌گراد، و رطوبت نسبی 65 درصد و 14% ساعت (روسیه به تاریکی)

<table>
<thead>
<tr>
<th>P</th>
<th>t</th>
<th>df</th>
<th>G°C ±1</th>
<th>n</th>
<th>17°C ±1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(خطای معیار ± میانگین)</td>
<td></td>
<td>(خطای معیار ± میانگین)</td>
<td></td>
</tr>
<tr>
<td>0/001</td>
<td>0/27</td>
<td>10/01</td>
<td>5/80</td>
<td>0/27</td>
<td>0/4/001</td>
<td>6/27</td>
</tr>
<tr>
<td>0/01</td>
<td>0/32</td>
<td>15/00</td>
<td>1/57</td>
<td>0/27</td>
<td>0/3/007</td>
<td>3/27</td>
</tr>
<tr>
<td>0/02</td>
<td>0/28</td>
<td>10/01</td>
<td>2/07</td>
<td>0/27</td>
<td>0/2/013</td>
<td>5/27</td>
</tr>
<tr>
<td>0/03</td>
<td>0/29</td>
<td>17/00</td>
<td>1/72</td>
<td>0/27</td>
<td>0/3/007</td>
<td>7/27</td>
</tr>
<tr>
<td>0/04</td>
<td>0/24</td>
<td>2/07</td>
<td>1/07</td>
<td>0/27</td>
<td>0/2/013</td>
<td>5/27</td>
</tr>
<tr>
<td>0/05</td>
<td>0/18</td>
<td>1/07</td>
<td>0/82</td>
<td>0/27</td>
<td>0/2/013</td>
<td>5/27</td>
</tr>
<tr>
<td>0/06</td>
<td>0/11</td>
<td>0/01</td>
<td>0/54</td>
<td>0/27</td>
<td>0/2/013</td>
<td>5/27</td>
</tr>
</tbody>
</table>

ب) نهال مركبات
میانگین (خطای معیار) طول یک نسل شیپک در دمای 176 درجه سانتی‌گراد 3/7/174/07 روز و تعداد نتمی گذارده شده به‌عنوان 6/07/16/02 عدد محسوب گردید. این مقدار در دمای 174 درجه سانتی‌گراد 3/7/174/07 و 6/07/16/02 بود (جدول 2). در دمای 174 درجه سانتی‌گراد پوره‌های سن یک تلفات نامانشی متحمل شدند و امکان مطالعه میسر گردید.

شروع نسل اول به ظهور پوره‌های سن یک در فروردین ماه بود. پوره‌های سن یک غالبی در پشت پرگاه و در انتهاد رگ‌گیر میانی مستقر شده و شروع به تغذیه می‌کنند. پوره‌های سن دوم نیز غالبی در زیر پرگاه‌ها مستقر بودند. جمعیت شیپک در سطح روبی پرگاه‌ها ناجی بود و به‌ندرت روی میوه‌ها مشاهده شد. شیپک از سوم سوم به بعد عموماً به شاخه‌های قطع‌تر و سرانجام به دام افتاده و تا پایان عمر در این مناطق می‌باید. در تحقیق در انتهای نسل انتهای شیپک‌های بالغی که به دست رفتند را سطح‌بر گردیدند و به‌ندرت مشاهده گردید. همچنین پوره‌های سن سوم به تنهایی درختان و نیز رشته شدید عملکرد از اواخر خرداد ماه شروع شده و در ادامه به اوج خود رسید.

2. زیست شناسی در طبیعت
تغییرات جمعیت شیپک استرالیایی در شکل‌ها و ۱ نهال داده شده است. شیپک زمستانی را در حال‌های مختلف رشدی سیری نمود و پوره‌های سن دوم پس از گذاردن در زمستان گذاران را تکنیک دادند (شکل 1). تخم‌بریزی آفت از اواخر استفاده‌های پایین و در انتهای استفاده‌های مهیج این آفت به اوج خود رسید.
این زمان به‌تدریج جمعیت بالغین نیز افزایش یافت. زمان بلندی نسل اول در دهه آخر خردادماه و دهه اول تیرماه بود. نسل دوم شیپک استرالیایی از اواخر تیرماه شروع شد و تا سپتامبرماه و بعد از دهه اول آن به سبب بلندی رسید. سپس به‌تدریج نسل سوم ظاهر شد که پس از طی سه‌ماه اول و دوم پورگی در آذرماه جمعیت سن سه روي شاخه‌ها و نوزادانی روی نه دختران ظاهر گردید. تعدادی از پوره‌ها سمن نیز با گذشت زمان بالغ شدند. اما رشد و نمایان در این دوره جامعه به‌دست کاهش می‌یافت. زمان‌ها در این زمان کندان شد و تشکیل کم‌ال حمایت نیز این نا آوازی اس‌پوراژ به‌تدریج افتاد. بدن ترتیب دوره قبل از نازک‌گذاری تا دوماه به‌طور انجامید.

شکل 2. روند تخم‌گذاری شیپک استرالیایی I. purchasi روي پرتنگ سپاروز طی سال‌های 1382-1383 در شریف آباد دزفول

شکل 1. تغییرات جمعیت مرحله‌ای مختلف سنی (به‌جز تخم) شیپک استرالیایی I. purchasi روي پرتنگ سیاوزش طی سال‌های 1382-1383 در شریف آباد دزفول

از اولین به‌هم‌سازی هجوم پوره‌های سن‌سوم و بالغین جوان به روی شاخه‌های فورتر و هنگام درختان پیشرفت شد و تشکیل کیسه تخم این شیپک‌ها در اواخر استفاده شد. تخم رزی بسبار زیاد نسل زمستانی که از اسفند ماه آغاز گردید موجب جمعیت زیبای نسل جدید در ابتدا فصل بهار شد (شکل 1). به همین دلیل بیشترین خسارت و شدت آفت در این زمان دیده شد. تفاوت بسبار زیاد بین حداکثر تعداد تخم (حدود 6000 عدد) و نزدیک حداکثر تعداد پوره سن یک (حدود 2500 عدد) می‌تواند نشانگر تلفات بالای پوره‌های خنده‌بر اثر شراط نامساعد آب و هوایی و نزدیکی قایه‌های مسیان باشد (شکل 1).
زیست شناسی شیشک استرالیایی (I. punctatus)

جدول 3. زمان آغاز و پایان شیشک استرالیایی I. punctatus طی سالهای 1382-1383 در شرف آباد دزفول

<table>
<thead>
<tr>
<th>شیشک استرالیایی</th>
<th>زمان پایان</th>
<th>نسل</th>
<th>زمان آغاز</th>
<th>اواخر خرداد تا اوایل تیر</th>
<th>شهریور</th>
<th>اوايل فروردین</th>
<th>اول</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌گیری

در نمونه‌های جمع‌آوری شده به‌خصوص نمونه‌های نگهداری شده در نرخ‌های مشاهده شده در فصول صحرای نر شیشک استرالیایی مشاهده گردید. در طبیعت نتیجه‌های درختان مربوط به کرات مشاهده شد. همچنین شکارگران حشره نرکه به‌طور دست‌هم‌کشی زیر برگ‌ها را به‌عنوان یاهعگاه برای شیرین‌سازی انتخاب کردند. بوینگ روی مورد احتمال حذف 50 عدد شیرین‌نر (نر) مشاهده گردید. میانگین (5طاقی معبار) طول و عرض شیرین به ترتیب 36/27 و 26/140±44/28 میلی‌متر بود. در نمونه‌های جمع‌آوری شده از استان فارس نیز در فصول مختلف سال حشره‌های نر دیده شد.

الف) باروری

پیش‌ترین تعداد نحوه رشد و نارنجی پر یا پرست آمد. طول کیسه‌های جنین این رود یا نر رود نارنجی پر یا پرست در طبیعت 4 میلی‌متر بود. در طبیعت 8 میلی‌متر از انتهای گیر رشد. از نظر این نژاد داده که قدرت باروری شیشک استرالیایی در فصول مختلف سال می‌باشد.

نتایج بی‌دست‌آمده نشان داد که در سطح 5 درصد ارتباط معنی‌داری بین تراکم جمعیت شیشک و عوامل محيطی ذکر وجود ندارد (F = 0/7, df = 3, 27, p = 9/5). لذا تصور بر این است که عواملی از تغییرات آب و هوای‌ها مانند تغییرات احتمالی کیفیت گیاه میزان در تغییرات تراکم جمعیت این قطع دارد. با این حال، تغییرات دما ممکن است طول مدت رشد و نحوه تراکم متأثر سازد. چنین در پاییز و زمستان نکمی نسبت به تراکم شیشک می‌باشد به طول انجامید. نتایج حاصل از نمونه‌های تحت باکش زمان آغاز و پایان نسل‌های شیشک استرالیایی حاصل نشده است و تا زمان آغاز شیشک فرمی این نشده است. شیشک استرالیایی در طبیعت نیز مطابقت دارد (جدول 3).

به‌دلیل نتایج حاصل از نمونه‌های برداری (فصل بهار) در بافت مادرگاه کثرتی گیاهی رهاسازی گردید. با وجود اینکه کثرتی گیاهی در سطح به‌طور متوسط مواجهه ۱۳۸۸ می‌باشد. برخی‌ها در ابعاد می‌باشند و این باعث جمع‌آوری انتخابی شیرین شده‌است. آفت را به‌طور پیوست و رشد درختان مربوط به نمونه‌برداری کاهش داد. چنین انبوه آفت از اواسط تیرماه که صرف رسم و پس از آن نیز در همین حدود توان نداشت. بنابراین با وجود انجام نمونه‌برداری در ۱۵ شهریور ماه نمودارهای نشان داده‌است (شكل‌های ۲و۴)
جدول 4. میانگین تعداد تخم و طول کیسه تخم (به میلی‌متر) شیشک استرالیایی در سال 1383 در دزفول

طول کیسه تخم (میلی‌متر)	تعداد تخم (میلی‌متر*میانگین)	ارقام مربوط به
5/6 ± 0.2/19	15 ± 5.6	ناحیه
7/9 ± 0.3/36	30 ± 7.5	پرتاب سیلار
9/4 ± 0.7/37	32 ± 6.9	نارنگی پنل
8/8 ± 0.5/88	30 ± 4.2	گریب فروت

میانگین‌های یا حروف مشترک در هر ستون با استفاده از آزمون دانک در سطح 5 درصد اختلاف معنی داری با هم ندارند.

(شکل 20 و روی ارقام مختلف مركبات (جدول 5) و کل روزی میزبانی مختلف منفعت است.

(پ) پراکنش و میزبانی

انتشار چهارفیاچیی آفت علاوه بر مناطق مختلف دزفول در روستای شنک از تابعی باغ‌منک، روستای سمالی از منطقه عفیقیشور و گروهی از مناطق گردید. آلودگی در دزفول احتمالاً از طریق استفاده مجدد و نگهداری جمع‌بهر میکرات شمال شهر به باعثه راه یافته است. زیرا آلودگی در باعث‌های که از جمع‌بهرهای نم استفاده می‌کنند، مشاهده نگردید. به توجه به سرعت گسترش آلودگی به نظر می‌رسد باید از مهم‌ترین عوامل مؤثر در پراکنش آفت باشد.

مشاهده ایالی‌های خونده شیشک در تابستان روی بدن زنبوران عمل که در تمام دوره جایی‌نشینش با جمعیت زیادی عسلک شیشک را جمع آوری می‌کردند و همچنین آفت پروره‌های شیشک توسط خاک روی است. در این بررسی شیشک استرالیایی در خوزستان علاوه بر ارقام مختلف مركبات روی 41 گونه مختلف به 22 خانواده مختلفی از گیاهان دیگر به شرح زیر جمع آوری کرد:

داما طول دوره زندگی شیکش استرالیایی می‌باشد (۰.۱۰)، ترتیب این تحقیق نیز از آغاز طول دوره زندگی شیکش را با کاهش می‌کند که در پاییز و زمستان دوره زندگی حشره را تا ۶ ماه افزایش داد.

تا این تحقیق نتایج اندازه‌گیری نسبت ۳ نسل در سال تعبیه‌گرده که با تغییر وسایل از مخفی‌ترین (۵) و (۰.۱۰) مطلاقات دارد. زمان وقف نسل‌ها از آنجا که می‌تواند از سواده و لبه‌گزار شکر لیست هم‌خوانی دارد. تعداد نسل‌های شیکش استرالیایی در معادل ۱/۳ نسل گزارش شده است (۱). با توجه به پایین‌تر بودن دمای سالهای در فارس نسبت به خوزستان، وقوع در میان استان در پاییز ۳ نسل در خوزستان مورد سوال است. شباهت به عقیده بودن‌هاینر (۱۰) می‌تواند نسبت نسل در برخی سال‌ها بین ۳ و ۴ نسل نوسان کند. گرچه شیکش را در زیستگاه‌های گرم‌سیر بیش از ۴ نسل در سال ندارد. جانکهک دکتر گردید با مقایسه تفاوت‌های زیستگاه گرم‌سیر که در حد بالایی از تلفات روی پهنه‌های خشکه بوده که با تغییر بودن‌هاینر (۱۰) و کوزنادا و دیام (۱۴) مطلقات دارد.

در مورد ترجمه میزانی این آفت تحقیقات صورت نگرفته است. تفاوت بین نسبت به حساس دانستن نیز درک که شیکش استرالیایی به درختانی که روند بازیابی لیموپریل پیوند داده‌اند نسبت به آنها که روند بازیابی لیموپریل پیوند داده‌اند که شباهت نسبت به درک که شیکش استرالیایی به درختانی که روند بازیابی لیموپریل پیوند داده‌اند.

با غیرنظامی بودن‌هاینر (۱۰) این تحقیق به درختانی که روند بازیابی لیموپریل پیوند داده‌اند از آنها که روند بازیابی لیموپریل پیوند داده‌اند که شباهت نسبت به درختانی که روند بازیابی لیموپریل پیوند داده‌اند.

با گاهی به بودن‌هاینر (۱۰) این تحقیق به درختانی که روند بازیابی لیموپریل پیوند داده‌اند از آنها که روند بازیابی لیموپریل پیوند داده‌اند که شباهت نسبت به درختانی که روند بازیابی لیموپریل پیوند داده‌اند.

با غیرنظامی بودن‌هاینر (۱۰) این تحقیق به درختانی که روند بازیابی لیموپریل پیوند داده‌اند از آنها که روند بازیابی لیموپریل پیوند داده‌اند.

با غیرنظامی بودن‌هاینر (۱۰) این تحقیق به درختانی که روند بازیابی لیموپریل پیوند داده‌اند از آنها که روند بازیابی لیموپریل پیوند داده‌اند.

با غیرنظامی بودن‌هاینر (۱۰) این تحقیق به درختانی که روند بازیابی لیموپریل پیوند داده‌اند از آنها که روند بازیابی لیموپریل پیوند داده‌اند.