بررسی اثر ریسک تولید بر پذیرش فناوری‌های نوین: مطالعه موردی بر گندم در استان فارس

چکیده

هدف از انجام این مطالعه بررسی اثرات ریسک تولید گندم و دیگر عوامل اقتصادی-اجتماعی بر احتمال پذیرش فناوری‌های جدید بذر گندم می‌باشد. افزون بر آن، اثر استفاده از نهاده‌های جدید. باید به توجه قرار گیرد که این نهاده‌های جدید از این نظر باید به عنوان گونه از نهاده‌های کهن تلقی شوند که دارای روش‌هایی متفاوت از روش‌های پیشین هستند. مطالعه شکل‌گیری مدل رفتاری که برای ارائه نقش‌های در رفتارهای داشتن عمکبرد بالاتر، دارای ریسک بالاتر نیز می‌باشد. این ریسک تولید پایین‌تر نیز نیست. به کاهش ارقان سنی هستند.

واژه‌های کلیدی: تابع تولید، تصادفی، نمایان، ریسک تولید، پذیرش فناوری

مقدمه

فعالیت‌های کشاورزی به دلایل مختلف از جمله تغییر در شرایط آب و هوا، آفات و بیماری‌های گیاهی، نوسانات پیش‌بینی نشده در قیمت محصولات و نهاده‌ها، عدم استفاده کافی و مناسب از فناوری نوین تا نمایی با مخاطرات گوناگون است. نتایج مطالعات مختلف نیز نشان می‌دهد که در روش‌های ریسک‌برداری که در این مقاله ارائه شده‌اند، باید به توجه قرار گیرد که در این روش‌ها می‌تواند به طور همزمان موجب اضطراب نوسانات

1. به ترتیب دانشیار و دانشجوی دکتری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

هارداک و همکاران (6) و ترکمانی (16) یکی از مهم‌ترین عوامل مؤثر بر انجام نوسان در تولید محصولات کشاورزی میزان استفاده از نهاده‌های مختلف به ویژه نهاده‌های جدید است. این نهاده‌ها، از جمله بیشتر ارقام پر محصول، کودها، شیمیاپی و آفت فکر که از اجزای اصلی در استفاده از فناوری ارقام برمی‌خوریم هستند. موجب افزایش بهرهوری و احتمالی کشاورزی می‌شوند. این در حالی است که استفاده از این تولید پایین‌تر نیز نیست که به کاهش ارقان سنی هستند.
متفقین بین دیدگاه‌های ریسکی بهره‌برداران و چگونگی استفاده از نهاده‌ای از استفاده از فناوری نوین در تولید ذرت در آیوز توسط روس و هنستی (11) نشان داده رابطه بین تجربه‌ی گراش بهره‌برداران و ریسک و میزان استفاده آنها از نهایت‌های مختلف است. نتایج حاصل از مطالعه ایسک و خان (7) نشان داد، عدم تجربه می تواند زارعین ریسک گریز را تغییر به استفاده بیشتر از کود شبیه‌سی و ایجاد آلودگی بستر، نسبت به حالت وجود کمتر تحمیل، در حین آنها عدم توجه به مخاطرات موجود در فعالیت‌های کشاورزی و همچنین روحی‌های بهره‌برداران در برخورد با این مخاطرات می تواند منجر به تخمین‌های بیش از اندازه و غیر واقع مانه اقتصادی و مزیت فناوری‌ها از دید مقاله تخمین‌های کمتر از حد واقعی بایان مورد نیاز برای ایجاد اثرات در بهره‌برداران رای شرایط فناوری‌های نوین گردد.

نتایج مطالعات فوکو تیوان به دلیل آن یافته که بررسی چگونگی تأثیر استفاده از نهایت‌های مختلف و کاربرد فناوری‌های نوین بر ریسک تولید مستقل از عوامل فنی تولید و بدون توجه به شرایط تولید و روش‌های زراعی حاکم در مرزهٔ و همچنین چگونگی استفاده از دیگر نهایت‌های تولید انجام شده است. لذا در این مطالعه تأثیر استفاده از نهایت‌ها و شرایط تولید بر معمولی و ریسک تولید گند بررسی گردید. همچنین، بررسی نسبی حاصل از استفاده از ارقام مختلفی بر مبنای شرایط حالت درخت سرپوش‌های مختلف شرایط تولید مورد بررسی قرار گرفته است. در نهایت اثر ریسک تولید گند و دیگر عوامل اقتصادی-اجتماعی بر احتمال بهتر فناوری‌های نوین بذر در استان فارس مورد بررسی قرار گرفت.

مواد و روش‌ها

جامعه و پایپ (8) نشان داده که در صورت استفاده از تواضع تولید معولی با فرم‌های مختلف، از جمله کتاب-داگلام و تراستدانل، اثر اثرات از یک نهاد به واریانس تولید مشابه تأثیر آن بر میانگین تولید است و این دو اثر به یکدیگر

تولید و در نتیجه، افزایش ریسک تولید نیز شود (9، 10، 13 و 15). بهاری پدیدارش تکنولوژی و وجود کشاورزی کشورهای در حال توسعه به دلیل نانو فیس و عدم تمایل عفونی از تویولیکن الکان به تطبیق سطح تهاده‌ها بعلت آشنا نیا نیز افستارهای کشاورزی سنی و همچنین وجود محدودیت‌های نهادی و فرهنگی در این کشورها و در نتیجه، انگرایش ریسک تولید یک مسئله اساسی است (15).

در رابطه با اثر نهادها و پدیداری فناوری‌های جدید بر ریسک تولید، نتایج گوناگونی در مطالعات متنوع ارائه داده است. نتایج حاصل از مطالعه تکمیلی و فرایندی (1) نشان داد که تا بقدر نیروی کار تأثیر مستقیم و معنی داری بر ریسک تولید گند کاران شهروند سایر داستی و مردم، تکمیلی و زیباپین (2) با تخمین استفاده ممکن است ریسک کاران ممکنه رامآفرین استفاده از عوامل ریسک گریزی مطلی این است که کاران مورد مطالعه ریسک گریز می‌باشد. مطالعه سلامی و خانمی (3) در رابطه با پدیداری فناوری مزایا پیژوندیکی به آن کریم ساقه خوار بزیر نشان داد که پدیداری فناوری نوین می‌باشد. با آن رابطه منفی و معنی داری با میزان کاربرد سوم شیبیپین دارد. نتایج حاصل از مطالعه جاسمت و پاب (8) نشان داد که استفاده از نهایت‌های مختلف بر میانگین و واریانس تولید محقق‌شد چه در دور فصل خشک و برخوران در باغ‌گری دور دارد. در این رابطه در هر دو، کود شبیه‌سی اثر مثبتی دارد بر ریسک تولید نداشته و که کمیت بدتر اثر کاهشی ضعیفی بر ریسک تولید داشته است. از طرفی نتایج مطالعه سما (13) نشان داد که کشت ارتفاع محصول دریای میانگین مشترک و ریسک بالا نسبت به بذر نشست است. همچنین نتایج مطالعه اثرات
تا نودی تا در صورت استفاده از تابع تویلد (Additive Error) مختلف مورد استفاده قرار گرفت (۱۱ و ۱۲). با این حال، به باور ساها (۱۳) عوامل تولید کننده در اثر تویلد گردید و ریکس نسبی برای معادله مدل از مدل پرپایت و بکارگیری شده‌اند. به‌طور مثال، از نظر روش‌های تولید X و Y به‌طور مشابه است. با توجه به این امر، می‌توان به‌طور مشابه این است. از این‌رو، تابع تویلد گرفته می‌شود:

\[f(x) = a_0 + \sum a_i z_i + \sum a_i z_i^2 + \sum a_i D_i \]

که \(y \) ترتیب به‌طور مثالهای کمیت ضروری و نهایت‌هایی ضروری \(D_i \) منتیب‌های مجزا است. کشن تویلد به‌طور مشابه تابع تویلد بسیاری می‌شود.

همچنین، اگر تابع تویلد تصادفی زیر را در نظر بگیریم:

\[Y = f(x) + c \cdot h(x/2) \cdot \varepsilon \]

که میزان عامل‌کننده (CES) X، بردار به‌طور مشابه \(y \) به‌طور مشابه است. تابع تویلد تصادفی فوق در اثر جدایی دو جزء قطعی و تصادفی به‌طور مشابه کشن تویلد از اینجاست. در این رابطه، \(h(x/2) \) تابع قطعی و تصادفی، به‌طور مشابه اینجا لازم است با استفاده از شرایط متغیرها مورد نظر، با استفاده از توابع CES توان قابل استفاده با استفاده از تابع تویلد نهاده‌هایی کمیت ضروری (کشته گرایشی ناب) نهاده‌هایی می‌ماند. اما یک تابع تویلد در فکری نهاده‌ها به ضروری و کمیت ضروری نهادن است. به یک دلیل که در این نون توی budon صفر و کمیت ضروری محصول، میزان استفاده از نهاده‌هایی‌انهایی (اعم از ضروری) با کمیت ضروری) می‌تواند صفر شود. لذا در این مطالعه از تابع پیشنهادی ساها (۱۳) به منظور تولید عوامل تویلد به‌طور مشابه ضروری و کمیت ضروری استفاده شد.
میزان مترکی در تابع فوق، Y نمایانگر مقدار عملکرد گندم به عنوان متغیر وابسته است. نهاده‌های ضروری شامل X_{11} و X_{12} مقدار ذب گندم مصرفی در هکتار مزرعه و Z_{11} تعداد دفعات این گندم است. در مورد گندم Z_{11} حکمیت کمتر ضروری با Z_{12} مقدار کود از مصرفی در هکتار Z_{12} میان از این خاک مزرعه گندم ام از Z_{12} مقدار کود از سرپاش در هکتار در مزرعه گندم ام Z_{13} تعداد دفعات سرپاش در مزرعه گندم و Z_{13} میزان پس‌سپاری خاک مزرعه گندم ام و Z_{13} میزان دفعات خاک مزرعه گندم ام کنترلی خاک مزرعه گندم ام Z_{13}.
جدول ۱: مقایسه نگرانی بهره‌برداری از تهادها و میانج نزدیک و یوزیست مقدم کاران گروه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>آنالیز واریانس</th>
<th>تحقیقات</th>
<th>مقدار F</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشت ارقام گندم خارج از مقدار</td>
<td>۱۰/۸۲</td>
<td>۰/۹۳</td>
<td>۰/۵۳</td>
<td>۱۰/۸۲</td>
<td>۰/۹۳</td>
<td>۰/۵۳</td>
<td></td>
</tr>
<tr>
<td>کشت ارقام گندم توصیه‌ای</td>
<td>۸/۳۵</td>
<td>۰/۸۷</td>
<td>۰/۷۸</td>
<td>۸/۳۵</td>
<td>۰/۸۷</td>
<td>۰/۷۸</td>
<td></td>
</tr>
<tr>
<td>عامل‌های کاربرد</td>
<td>۲۷/۱۵</td>
<td>۰/۲۱</td>
<td>۰/۱۶</td>
<td>۲۷/۱۵</td>
<td>۰/۲۱</td>
<td>۰/۱۶</td>
<td></td>
</tr>
<tr>
<td>مقدار کاربرد</td>
<td>۱۱/۰۹</td>
<td>۰/۸۴</td>
<td>۰/۸۰</td>
<td>۱۱/۰۹</td>
<td>۰/۸۴</td>
<td>۰/۸۰</td>
<td></td>
</tr>
<tr>
<td>مقدار کاربرد روش آماری مدرن</td>
<td>۸/۳۵</td>
<td>۰/۹۳</td>
<td>۰/۷۸</td>
<td>۸/۳۵</td>
<td>۰/۹۳</td>
<td>۰/۷۸</td>
<td></td>
</tr>
<tr>
<td>مقدار کود فسفات</td>
<td>۶/۱۲</td>
<td>۰/۷۱</td>
<td>۰/۶۹</td>
<td>۶/۱۲</td>
<td>۰/۷۱</td>
<td>۰/۶۹</td>
<td></td>
</tr>
<tr>
<td>مقدار کود اتصال</td>
<td>۵/۱۴</td>
<td>۰/۶۶</td>
<td>۰/۶۳</td>
<td>۵/۱۴</td>
<td>۰/۶۶</td>
<td>۰/۶۳</td>
<td></td>
</tr>
<tr>
<td>مقدار کود اوره سریال</td>
<td>۴/۸۷</td>
<td>۰/۹۳</td>
<td>۰/۸۹</td>
<td>۴/۸۷</td>
<td>۰/۹۳</td>
<td>۰/۸۹</td>
<td></td>
</tr>
<tr>
<td>مقدار کود پتاس</td>
<td>۲/۹۲</td>
<td>۰/۷۱</td>
<td>۰/۶۸</td>
<td>۲/۹۲</td>
<td>۰/۷۱</td>
<td>۰/۶۸</td>
<td></td>
</tr>
<tr>
<td>تعداد تستی ارور</td>
<td>۱/۸۱</td>
<td>۰/۹۱</td>
<td>۰/۸۴</td>
<td>۱/۸۱</td>
<td>۰/۹۱</td>
<td>۰/۸۴</td>
<td></td>
</tr>
<tr>
<td>تعداد وضعیت</td>
<td>۱/۸۱</td>
<td>۰/۹۱</td>
<td>۰/۸۴</td>
<td>۱/۸۱</td>
<td>۰/۹۱</td>
<td>۰/۸۴</td>
<td></td>
</tr>
<tr>
<td>درصد منطقی خاک</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد دسترسی به مانشین آلات</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد ترانسمی زمین</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد کاربرد علف کشت باریک برگ</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد کاربرد علف کشت پهن برگ</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد کاربرد علف</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد کاربرد علف کشت باریک برگ</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
<tr>
<td>درصد کاربرد علف کشت پهن برگ</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td>۴/۱۵</td>
<td>۰/۷۸</td>
<td>۰/۷۴</td>
<td></td>
</tr>
</tbody>
</table>

مآخذ: پانه‌هاي تحقیق
آمار و اطلاعات مورد نیاز این مطالعه با استفاده از روش سطحی (Multi Stage Smapling Method) انتخاب شدند. از طریق مصاحبه حضوری با زارعین و تکمیل بررسی‌ها و برنامه نویسی برای هر شهرستان‌های لازم از خانواده‌گرایی های از مزایای مناسب جمع آوری گردیده است. برای این که شهرستان‌های مورد بررسی، مردمنشین و اکیالی، به طوری که شهرستان‌های داراب، مرودشت و فاریاب، مردمشین و اکیالی، کم، معادل و بزرگ، به دو داشت مخصوص به سطح زیر کشت کنند، مشخص گردید. افزون بر آن، شهرستان‌های فسا با توجه به داشتن بالاترین علائم تولید کننده در استان و به‌خشن سطح، برای ضمانت معادل شدن و شور انتخاب شدند. در مراحل دیگر، با استفاده از روش نمونه‌گیری که تصادفی نظام (Systematic Sampling Method) به استفاده گذار کرد. در نتیجه، ۴۵ نفر در شهرستان‌های ۳۵ نفر در شهرستان‌های مرودشت و شهرستان‌های ۳۲ نفر در شهرستان داراب، ۲۱ نفر در شهرستان فسا، ۲۷ نفر در منطقه سوسن، ۳۴ نفر در شهرستان‌های مختلف با توجه به پیوسته‌می‌باشد. انتخاب کشتن، این کشت از عوامل‌های توزیعی، که از عوامل از عوامل اثرگذاری گردیده‌اند، همچنین با توجه به پیوسته‌می‌باشد (۱۲) ریسک نسبی ارقام مختلف با توجه به منظور مقایسه میزان ریسک فاصله‌های مختلف بذر در شرایط مختلف تولید به صورت زیر محاسبه شد.

\[h^{1/2}(X) \frac{\sigma}{E(y)} \]

\[\text{محاسبه قرار گرفتن ارقام ارقای از (پنجم ۷۵ / ۵۰) که در محل پر放大 جهت بررسی عوامل مؤثر بر متغیرهای که در محل پر放大 جهت بررسی عوامل مؤثر بر باعث شد که این داده به مدت ۳۰ دقیقه از (پنجم ۷۵ / ۵۰) زایمانه شده‌اند. در این داده، ضریب بیشتر شدند. انتخاب معیار بر مبنای این تغییرات با توجه به معیارهای که در محل پر放大 جهت بررسی عوامل مؤثر بر داده. این داده به مدت ۳۰ دقیقه از (پنجم ۷۵ / ۵۰) زایمانه شده‌اند. در این داده، ضریب بیشتر شدند. انتخاب معیار بر مبنای این تغییرات با توجه به معیارهای که در محل پر放大 جهت بررسی عوامل مؤثر بر کشت ارگچه گذار کننده و خارج از توصیه تحقیقات با استفاده از آزمون‌های آماری و آماری به‌طور گفته (ONEWAY ANOVA) نشان داده می‌باشد.

برای تولید علائم متوسط با توجه به تغییرات جانبی f(x) از مراحل سوم تخمین در جدول شماره ۲ ارائه شده است. براساس

\[\text{برای تولید علائم متوسط با توجه به تغییرات جانبی f(x) از مراحل سوم تخمین در جدول شماره ۲ ارائه شده است. براساس} \]
جدول 2 پارامترهای برآورد شده تابع عملکرد متوسط (مرحله سوم)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ارقام توصیه‌ی تحقیقات</th>
<th>ضریب</th>
<th>T- ratio</th>
<th>Std. Error</th>
<th>ضریب Tابث</th>
<th>T- ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z4</td>
<td>0.007/0.0007/0.0008</td>
<td>0.74</td>
<td>2/2/2</td>
<td>0.0008</td>
<td>0.0007</td>
<td>0.0007</td>
</tr>
<tr>
<td>Z5</td>
<td>0.003/0.0003/0.0003</td>
<td>0.52</td>
<td>2/2/2</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>Z6</td>
<td>0.002/0.0002/0.0002</td>
<td>0.52</td>
<td>2/2/2</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>Z7</td>
<td>0.002/0.0002/0.0002</td>
<td>0.52</td>
<td>2/2/2</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>Z8</td>
<td>0.002/0.0002/0.0002</td>
<td>0.52</td>
<td>2/2/2</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>Z9</td>
<td>0.002/0.0002/0.0002</td>
<td>0.52</td>
<td>2/2/2</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>X1</td>
<td>0.05/0.05/0.05</td>
<td>1.05</td>
<td>2/2/3</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>X2</td>
<td>0.05/0.05/0.05</td>
<td>1.05</td>
<td>2/2/3</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>D12</td>
<td>0.03/0.03/0.03</td>
<td>1.03</td>
<td>2/2/3</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>D13</td>
<td>0.03/0.03/0.03</td>
<td>1.03</td>
<td>2/2/3</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>R²</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.74/0.74/0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(3,15)</td>
<td>9.55/9.55/9.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.W.</td>
<td>2/2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3 در گروه کشتر ارقام گندم خارج از توصیه تحقیقات

هیچ‌چیز در گروه ارقام گندم توصیه‌ای تحقیقات ضریب

ثبت و ضرایب مربوط به مقادیر کود ازته مصرفی در

هکان، مقادیر کود ازته سرشاخ مصرفی در هکان، مقادیر زیر

سوم علف کش بهبود بگر، سطح زیر کشت گندم، تعداد دفعات

آبیاری و متغیرهای مجزا منطقه‌ای مربوط به شهرستان

مرودشت و شهرستان فسا معنی‌دار شدند.

جدول 4 در گروه کشتر ارقام گندم خارج از توصیه تحقیقات

ضریب

ثبت و ضرایب مربوط به مقادیر کود ازته مصرفی در

هکان، مقادیر کود ازته سرشاخ مصرفی در هکان، مقادیر مصرف

سوم علف کش باریک بگر، سطح زیر کشت گندم، تعداد

دفعات آبیاری، متغیر مجزا مربوط به بیمه محصول گندم و

متغیرهای مجزا منطقه‌ای مربوط به شهرستان مرودشت و

شهرستان فسا معنی‌دار شدند.

495
جدول 3 عوامل مؤثر بر ریسک تولید گندم (پارامترهای بیان سه در مرحله دوم)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ارقام خارج از توصیه تحقیقات</th>
<th>ارقام توصیه تحقیقات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std. Error</td>
<td>T-ratio</td>
</tr>
<tr>
<td></td>
<td>0/97</td>
<td>1/77</td>
</tr>
<tr>
<td></td>
<td>0/16</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2/05</td>
<td>0/11</td>
</tr>
<tr>
<td></td>
<td>2/23</td>
<td>0/13</td>
</tr>
<tr>
<td></td>
<td>0/24</td>
<td>0/10</td>
</tr>
<tr>
<td>Z_{10}</td>
<td>0/10</td>
<td>1-05</td>
</tr>
<tr>
<td>X_{2}</td>
<td>0/15</td>
<td>1-07</td>
</tr>
<tr>
<td>D_{1}</td>
<td>0/16</td>
<td>1-05</td>
</tr>
<tr>
<td>D_{3}</td>
<td>0/18</td>
<td>1-07</td>
</tr>
<tr>
<td>D_{4}</td>
<td>0/17</td>
<td>1-06</td>
</tr>
<tr>
<td>D_{10}</td>
<td>0/15</td>
<td>1-05</td>
</tr>
<tr>
<td>D_{12}</td>
<td>0/14</td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 0/39$ Adjusted $R^2 = 0/32$

$R^2 = 0/35$ Adjusted $R^2 = 0/28$

مآخذ: پایه‌های تحقیق

**3. سطح معنی‌دار در سطح 10 درصد

**4. سطح معنی‌دار در سطح 5 درصد

 عدم حتمیت عملکرد در فناوری‌های نوین بذر و ریسک نسبی در کشت گندم

برآورد ریسک عملکرد پارامترهای بیان سه در مرحله دوم در $h(X)$)زمانی که به ترتیب نیشی در آماده است. نتایج نشان می‌دهد که پیشرفت‌های زمانی مقدار ضریب تعیین نشان می‌دهد که با وجود در نظر گرفتن مگر عوامل تأثیرگذار بر نتایج حاصل می‌گردد. در دوره کشت اینکه نشان می‌دهد که در دوره کشت کشت گندم خارج از توصیه تحقیقات دارای ریسک تولید پایین‌تر می‌باشد. همچنین، میزان دسترسی به مانند آلات و اقدام به بهره محصول کنند در دوره ارقام توصیه تحقیقات اثر متفاوت بر ریسک تولید کنند داشته است.

نتایج اینکه نشان می‌دهد که در دوره ارقام کنند، سطح استفاده از نهاده‌ها علی‌عده عدم حتمیت عملکرد محصولی نیست.

ریسک نسبی ارقام مختلف گندم

در قسمت گزین عوامل مؤثر بر عدم حتمیت عملکرد در فناوری‌های نوین بذر در کشت گندم مورد بررسی قرار گرفت.
جدول 4. ریسک نسبی ارقام مختلف گندم

<table>
<thead>
<tr>
<th>متغیر</th>
<th>متغیر</th>
<th>متغیر</th>
<th>متغیر</th>
<th>ستاره‌ی نوع بذر</th>
</tr>
</thead>
<tbody>
<tr>
<td>h(X)σ</td>
<td>h(X)/h(Y)σ^2</td>
<td>E(y)</td>
<td>h(X)^2</td>
<td></td>
</tr>
<tr>
<td>0.358</td>
<td>0.372</td>
<td>0.714</td>
<td>2/0.1</td>
<td>D_1=1, X_2=186.18, Z_{10}=1.94</td>
</tr>
<tr>
<td>0.333</td>
<td>0.329</td>
<td>0.714</td>
<td>2/0.1</td>
<td>D_1=0, X_2=186.18, Z_{10}=1.94</td>
</tr>
<tr>
<td>0.385</td>
<td>0.411</td>
<td>0.714</td>
<td>2/0.1</td>
<td>D_3=1, X_2=186.18, Z_{10}=1.94</td>
</tr>
<tr>
<td>0.330</td>
<td>0.365</td>
<td>0.714</td>
<td>2/0.1</td>
<td>D_3=0, X_2=186.18, Z_{10}=1.94</td>
</tr>
<tr>
<td>0.580</td>
<td>0.622</td>
<td>0.5</td>
<td>0/1</td>
<td>D_{12} D_3=1, X_2=186.18, Z_{10}=1.94</td>
</tr>
<tr>
<td>0.638</td>
<td>0.635</td>
<td>0.5</td>
<td>0/1</td>
<td>D_{12}=0, X_2=186.18, Z_{10}=1.94</td>
</tr>
</tbody>
</table>

شماره: محقق‌های تحقیق

اما آیا کشت ارقام گندم غیر توصیه‌ای از مراجعه‌های مختلف، در مقایسه با کشت ارقام گندم توصیه‌ای دارای عدم حمیطت بیشتری است؟ عدم حمیطت محصول بستگی به سطح استفاده از نهادها، منطقه، نوع فناوری و... دارد و پاسخ به این سوال مشکل است. برای این منظور چندین ستاره‌ی بر اساس ترتیب جدول 3 (در ستاره‌ی ارقام غیر توصیه‌ای از مراجعه‌های عاملی مانند روش آبیاری، تاریخ کاشت، و متغیر منطقه‌ای و در ستاره‌ی ارقام توصیه‌ای از مراجعه‌های عاملی مانند روش آبیاری، تاریخ کاشت، میزان دسترسی به ماهیت آلات و بیمه محصول گندم) در نظر گرفته شد. در این رابطه، یکدیگر نهایت به یکدیگر مشابه، محقق‌های یکسان نمی‌باشند.
جدول ۴ اثرات نهایی عوامل مؤثر بر احتمال پذیرش فناوری‌های جدید در داده‌های استاندارد

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ریسک تولید</th>
<th>سطح زیر کشت گندم</th>
<th>نسبت بذره</th>
<th>سن زراع</th>
<th>میزان تحقیقات زراع</th>
<th>شرکت در کلاس‌های تربیتی</th>
<th>عضویت در تعاونی تولید</th>
<th>دسترسی به بذرهای جدید</th>
<th>بیمه محصول گندم</th>
<th>D15</th>
<th>McFadden R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>0.32</td>
<td>0.58</td>
<td>0.67</td>
<td>0.7</td>
<td>0.15</td>
<td>0.19</td>
<td>0.26</td>
<td>0.33</td>
<td>0.27</td>
<td>0.21</td>
<td>0.42</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
<td>0.50</td>
<td>0.55</td>
<td>0.6</td>
<td>0.10</td>
<td>0.14</td>
<td>0.21</td>
<td>0.31</td>
<td>0.23</td>
<td>0.20</td>
<td>0.39</td>
</tr>
<tr>
<td>0.45</td>
<td>0.18</td>
<td>0.45</td>
<td>0.48</td>
<td>0.5</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>0.29</td>
<td>0.20</td>
<td>0.18</td>
<td>0.35</td>
</tr>
<tr>
<td>0.40</td>
<td>0.08</td>
<td>0.40</td>
<td>0.40</td>
<td>0.5</td>
<td>0.00</td>
<td>0.08</td>
<td>0.18</td>
<td>0.28</td>
<td>0.20</td>
<td>0.16</td>
<td>0.32</td>
</tr>
</tbody>
</table>

* سطح معنی‌داری ۱۰ درصد، ** سطح معنی‌داری ۵ درصد.

این نتیجه با این ادعا که فناوری‌های بذرهای جدید در مقایسه با کشت سنی است سازگار می‌باشد. اما در صورت استفاده از روش آبیاری مدرن (خطی‌های با پیمان) و رعایت تاریخ کشت مناسب، کشت ارقام توسیعی‌های دارای ریسک پایین‌تری (واریانس و ضریب تغییر پایین‌تر) نسبت به کشت ارقام غیر توسیعی‌های تحقیقات می‌شود. در گروه کشت ارقام گندم غیر توسیعی‌های تحقیقات، شرکت‌نمره‌شان نسبت به مناطق دیگر موردن مطالعه دارای ریسک تولید پایین‌تری می‌باشد. همچنین، در گروه کشت ارقام گندم غیر توسیعی‌های تحقیقات میزان استفاده به واسطه تلاش‌ها و اقدام به بیمه محصول گندم منجر به کاهش ریسک تولید گردیده است. همچنین سیستم مربوط به واریانس پیش‌بینی در این جدول نشان می‌دهد که نسبت پایین‌تری ریسک تولید وضوح متغیری معرفی شده در قسمت قبل تو ضیح داده می‌شود.

عوامل مؤثر بر احتمال پذیرش فناوری‌های جدید بذر

جدول (۵) و (۶) عوامل مؤثر بر احتمال پذیرش فناوری‌های جدید بذر را نشان می‌دهند.
نتایج: تفاوت گسترده‌ای که در کیفیت زمین (بافت و ساختار خاک، بیشتر، بیشتر و...) و آب‌میان‌مراعات وجود دارد پس می‌تواند می‌تواند برای عدم توزیع واریانس عملکرد گندم باشد.

در هردو کروه ارقام گندم توصیه ای و غیر توصیه ای تحقیقات، نهاده بر زیستی عملکرد محصول گندم را افزایش داده است. در واقع این استفاده مطلوب از میزان بر همراه برای ویژگی‌های نامطلوب دیگری از جمله میزان عمل کاشت، نوع شرمن (مرطوب یا خشک) کیفیت نهایی برزید، کاشت و... این کاشت خاصی را و برای ریسک تولید گردیده است. ماصعک اینکه استفاده بیش از حد بذرهای بعضی منجر به یک گردیده است که گند کاران کمک‌کننده مورد نیاز را (نسبت به بر زیستی اینجاست) هم به کاهش گرمی و سطح تولید شده است.

در هردو کروه ارقام گندم توصیه‌ای و غیر توصیه‌ای تحقیقات کاربرد روش آب‌یابی سنی (غرفه‌ای) نوشتاری تولید گندم را افزایش داده است. با توجه به اینکه اینجا فضاهای جزء مانع خشک کردن و عوامل محصول می‌شود و آن توجه به شرایط طبیعی رشد گندم در مانع مختلف ممکن انجام آب‌یابی در موقعیت دره و آب‌یابی ضروری است. روش‌های آب‌یابی مدل‌های دو دیلی نازار به آب‌یابی و کارگر آب‌یابی این امکان را به‌صورت می‌سازد که کناره‌های به روش‌های آب‌یابی سنی زمان آب‌یابی را به هنگام ساخته و در نتیجه از نوشتاری تولید گندم می‌تواند به‌کار آید.

همچنین در هردو کروه ارقام گندم تاریخ کاشت نامناسب کاربرد روش آب‌یابی گردیده است. همچنین در بعضی از مناطق عدم سخت‌سازی مجموعه بی‌ریسک و عملیات بازسازی تأثیر انجام شده و منابع انجام به موقع عملکرد کشت گندم گردیده است و همه این مواد قطعاً بر عملکرد تولید عامل بوده‌اند.

بحث

نتایج حاصل از این مطالعه نشان می‌دهد که سطح استفاده از نهاده‌ها در هیچ یک از گروه‌های کشت گندم دلیل اصلی وجود ریسک تولید نمی‌باشد. در رابطه با این نوع ریسک موارد زیر اهمیت ویژه‌ای برخوردار است:

1. اولین این نتایج به‌اساس بر حسب رقم ذهنی در داخل هر یک از دو گروه کشت ارقام گندم توصیه‌ای تحقیقات و ارقام غیر توصیه‌ای تحقیقات وجود دارد. کنترل کشت ارقام بنابراین هر گروه با پایین‌ترین مناطق عملکرد محصول است. بیشتری به شرایط آب و هوایی آن مناطق دارد و احتمال ایجاد علت بخش مرگی از عدم توضیح ریسک بر واریانس عملکرد گندم (پایین‌تر) در برابر نتایج تاخیری مرحله دوم در جدول‌های می‌باشد.
گنبد در واحد سطح و توزیع‌های آن تأثیر گذار است.

مقایسه ریسک نسبی در گروه کشت ارقام گنبد محصولات و غیر محصولات تحقیقات نشان می‌دهد که در صورت فراهم نبودن شرایط مطلوب تولید در سازوارهای پیکان در مردود گروه کشت ارقام گنبد از جمله حالاتی که روش آبیاری تصویر غرفه‌ای و تاریخ کاشت نامحسوس می‌باشد کشت ارقام گنبد توصیه‌ای از مقایسه با کشت ارقام غیر توصیه‌ای تحقیقات علی رغم داشتن عملکرد تولید بالاتر دارای ریسک بالاتر (واریانس و صورت تغییر بیشتر) است و این تنها به یک تصور از میزان و اندسون (4)، جامع و داروکا (5) سامسال (14)، سیاهه و داروکا (10)، هارداک و همکاران (6) که نمونه برداری ریسک بیشتری در مقایسه با کشت سنی است سازگار می‌باشد. اما در صورت فراهم شدن شرایط مطلوب تولید از جمله رعایت تاریخ کاشت مناسب و روش آبیاری خالی یا پایدار، کشت ارقام گنبد توصیه‌ای عادی بر داشتن میزان عملکرد بالاتر دارای ریسک تولید بالاتر پایین تری نسبت به کشت ارقام گنبد سنی می‌باشد.

با توجه به موارد مذکور به نظر می‌رسد در مطالعات پایه شده فاکتوری یاد ارقام بر محصول مستقل از عوامل متغیر بنا گردیده‌ای که می‌تواند در نظر گرفته شود و چگونگی کاربرد فناوری‌های جدید بر محصول عمد نظام دهنده و خرده (شای این ترین بهره برداری کارآفرینی در ایران) می‌باشد بنابراین نظام تحقیقی - ترویجی می‌پایست روند فعالیت‌های خوش را گونه‌های جهت دهد که اجرای طرح‌های تحقیقاتی و ترویج دستاورددهای پژوهشی و انتقال فناوری مناسب با در نظر گرفتن مفاهیم جغرافیایی برای این گروه از بهره برداری که اکثریت کشاورزان کشور را شامل می‌شود بذر بهبرایان باشد.

۱- از آنجا که عمده اطلاعات کشاورزان از چگونگی کاربرد فناوری‌های جدید بر محصول معمولاً نظام دهنده و خرده (شای این ترین بهره برداری کارآفرینی در ایران) می‌باشد بنابراین نظام تحقیقی - ترویجی می‌پایست روند فعالیت‌های خوش را گونه‌های جهت دهد که اجرای طرح‌های تحقیقاتی و ترویج دستاورددهای پژوهشی و انتقال فناوری مناسب با در نظر گرفتن مفاهیم جغرافیایی برای این گروه از بهره برداری که اکثریت کشاورزان کشور را شامل می‌شود بذر بهبرایان باشد.

۲- از طریق گسترش و ترویج عامل اعمال شده در مزرعه بیشتر و گسترش داشت مدل‌بندی در مزارع زراعت انجام شد و گسترش کلاس‌های آموزشی و خدمات ترویجی و بیمه محصولات کننده ابجات شرایط مطلوب تولید در تولید
دریافت و پذیرش فناوری‌های نوین: مطالعه موردی بذر گندم در استان فارس

ارقام گندم توزیعی ای تحقیقات و در نتیجه کاهش نوسانات و ریسک تولید را فراهم نمود.

3- با توجه به تأثیر روش آبیاری مناسب در کاهش ریسک تولید گندم توجه به به‌خشنده‌هایی از جمله سابقه‌های انقلا و توزیع آب و تسویج اراضی را جدای می‌نماید.

منابع مورد استفاده

2. ترکمنی ج. و.زبانی. ۱۳۸۲. تخمین ساختاری نمایشگری ریسک کمی کننده رامجرد علوم کشاورزی ایران ۲۴ (۱): ۱۰۱-۱۱۸.
3. سلیمانی ج. و.م. خالدی. ۱۳۸۰. تأثیر فناوری میانه بیولوژیکی با آفات در کمک به بر اندازه کاهش با استفاده از آفت‌کش‌ها. مطالعه موردی: استان مازندران. اقتصاد کشاورزی و توزیع ۹ (۳۳): ۲۴۶-۲۴۸.