اثر اختلاف سه نوع ماده آلی با خاک بر خاک بر حداکثر چگالی ویژه ظاهري خشک و گنجايش رطوبت بحراني خاک در طول فشردگي

پیام سيزي آزمایش و فیزیولوژی

چگالی

تاثير سه نوع ماده آلی بر حداکثر چگالی ظاهري خشک خاک (CMC) و گنجايش رطوبت بحراني (MDBD) خاک های مورد آزمایيش (Coarse Loamy, Mesic, Typic Xerochrepts, Calcicxerolllic, Xerochrepts) عميق 0-20 سانتیمتر نمونه برداري شده و درصد ماده آلي و باند آلي، و تعاليم گرديه، سه نوع ماده آلی شامل خاکبرنگ، کود ديتي و تقطيع شباعات سيب با خاک های مورد آزمایيش به نسبت های صفر (0)، و 12 درصد مخلوط، و 12 درصد مخلوط شد. مخلوط خاک و ماده آلی تا مقايد منتظمي مرتوب، و سپس با مخلوط یک پرلاکترنیر کشن در سه سطح 10، 20 و 30 پریت، فشرده شدند. آزمایيش با استفاده از مرطوب، و سپس با مخلوط یک پرلاکترنیر کشن دار در سه سطح 10، 20 و 30 پریت، فشرده شدند. آزمایيش با استفاده از طرح فاکتور دو، و سپس با مخلوط یک پرلاکترنیر کشن دار در سه سطح 10، 20 و 30 پریت، فشرده شدند.

چارچوب بلوک هاي كاملا تصادفي در سه تكرار اجرا شد.

نتياج آزمایيش گروه هاي كاملا مختصر ظهاري (MADB) از 1/35 تا 15/768 g cm می كنند. میانگين گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگین گنجايش و رطوبت بحراني (CMC) بهراني (MADB) از 1/35 تا 15/768 g cm می کنند. میانگی
علوم و فناوندهای کشاورزی و منابع طبیعی/جلد اول: یادگیری
شماره سوم/پاییز 1380

کاتیهای رسی و مقدار ماده آلی موجود در خاک است (۲۲ و ۳۳). مهم‌ترین عامل مؤثر بر فشارگذار خاک، رطوبت آن در موقع خاک‌وزیری و رفت و آمد ماسیون های کشاورزی در مزرعه می‌باشد (۵ و ۲۸). با اعتبار رفتاری و همکاران (۲۶)، رطوبت مولکول براي خاکوزری، اولیه از انگیزه‌های رطوبت بیرونی (CMC) است، و از این رو نیز به انجام انجام آزمایش از مقادیر فشارگذار و متقابلی تعیین می‌شود. است. CMC به نوعی سطح خاک و سطح‌های خاکوزری به وجود آمده (۲۹)، به‌معنا است که به مقدار و نوع رطوبت‌های قابل تعیین، گنجایش و سطح‌های خاک و سطح‌های خاکوزری به موجود آمده (۹)، گزارش‌های نسبت به راحتی نمی‌توانند رطوبت و فشارگذار خاک را توصیف کنند. در این نقطه، تأثیر ماده آلی بر کاهش فشارگذار خاکوزری و تغییرات پایداری خاک‌های خاکوزری چگالی و داشتن دارای تغییر می‌باشد (۹). ماده آلی سمپر افزایش رطوبت خاک می‌سوزد، و مقاومت خاک را در پایداری فشارده شدن افزایش می‌دهد (۲۳). با افزایش رطوبت خاک، چگالی ظاهری خاک در حالت فشارده شدن تا حداقل افزایش پیدا می‌کند، سپس کاهش می‌یابد.

در اینها قرار دارد، اما وجود آب ساپیا و آکاسیا داده و چگالی ظاهری خاک را افزایش می‌دهد. این حالات نیز یک حداکثر اکثراً به پزشکان نیست، بنابراین فضا را از نظر می‌کند (۲ و ۳۳).

از کربونیزهای آلی می‌تواند به طور معمول و پیش‌گویی فیزیکی خاک را به‌صورت میدان‌هایی در مثلث که اضافه کردن ماده آلی از جنس کربن (۱۱)، کربن دامی (۱۷)، کاه و کلکس (۲۰)، ضایعات چغندرتند از کارخانه (۳۳)، و کربن سیستمی (۲۸) به‌گذرگذار شده است. از آن جایی که ماده‌های آلی در اطراف چگالی ظاهری مخصوص به خود می‌باشد، از این رو تأثیر هر ماده آلی در پایداری خاکدانه می‌باشد، و به کام در کاهش فشارگذار

1. Critical moisture content

50
اثر اختلاط سه نوع ماده آلی با خاک برم صفاریشگر نهایی خشک و...

Coarse Loamy, Mesic Typic Xerofluvents and Fine
(Mixed, Calciexerolic Xerochrepts
پس از خشک کردن در هوای آزاد و توسط پاش کننده نمونه‌های خاک
از کد میلی متری عبور داده شد، و برای تعیین دو عدد دیت
تشکیل دهند، و مقدار خاک روش هیدر متری (19) به کار
رفت، و مقدار ماده آلی سیر خاک‌ها روش واکلی و بایک
(143) تعیین گردید (جدول 1).
در این آزمایش از سه نوع ماده آلی (خاک‌برگ، کود دامی و
ضایعات سبیب) استفاده شد. چگالی ظاهری خشک نهایی یک این ماده بوده که کمک استفاده از جمع مشخص، از روی وزن
خاک آنها تعیین گردید (94). به هنگام، این ماده‌های آلی مقدار
زیادی خار و خشک کاهش یافت. درصد خاک و
خاک‌یکی که قطرشان از 0.۱ میلی متر بیشتر بود از روی وزن
خشک تعیین شد (15 و 16) (جدول 2). ضایعات سبیب، که
تغذیه زمین و مربوط به آن، از کاربردهای کنسنتره سپر از روش
تیه گردید. این ضایعات احتمالاً محصول کلسیم، نیتروژن، پاتاسیم،
mوم، ازت، هلولوز، پتین و... بود. چنین محتوایی را پایال
(34) هم در بررسی های خود گزارش کرده است.

خاک‌های مورد آزمایش، پس از آن که به سبب‌های صفر، ۴،۸ و ۱۲ درصد ماده آلی مخلوط شد، در لوله‌های ثابت به
با قطر ۱۹ سانتی‌متر و طول ۴۰ سانتی‌متر قرار گرفتند، و به طور
مکانیکی مراکم شد. فشردگی با ضرایب کنونده بود که از یک
ارتفاع و با یک شدت مشخص و معنی بر خاک‌ها وارد می‌شد.
ابن فشردگی در سطح ۱۰ و ۳۰ ضریه (۴ و ۲۴)، و در
مدادر س برخی از این آزمایشات، برای کنترل
تراکم و رطوبت، به شکل یک استوانه‌ای شبیه به قطر بند و ارتفاع
پنج سانتی‌متر، نمونه‌برداری از عمق ۳۵ سانتی‌متری صورت
گرفت، و چگالی ظاهری درصد رطوبت و وزنی و
حججی مخلوط ماده آلی و خاک تعیین گردید (۴3 و ۴۲).

آزمایش‌ها با طرح فاکتوریل در چارچوب بلوک‌های کاملاً
tصادفی بسا تکرار اجرا گردید، و میانگین‌های اعداد با استفاده

1. Maximum dry bulk density
جدول 1. میانگین و انحراف معیار درصد ماده آلی و درصد ذرات خاک‌های مورد آزمایش

<table>
<thead>
<tr>
<th>ماده خاک</th>
<th>درصد ماده آلی</th>
<th>درصد ذرات</th>
<th>درصد مس</th>
<th>درصد رس</th>
<th>درصد رس</th>
<th>درصد رس</th>
</tr>
</thead>
<tbody>
<tr>
<td>ولاشن</td>
<td>15/7/8±0/3</td>
<td>34/6±0/1</td>
<td>59/6±0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>باروق</td>
<td>32/5/6±0/3</td>
<td>44/3±0/2</td>
<td>27/2±0/5</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

جدول 2. درصد خاک و خاک‌های ماده‌های آلی و چگالی ظاهری خاک آنها

ماده آلی	چگالی ظاهری خاک (g.cm⁻³)	شاخص بایناری تغییرات ظاهری خاک	ضایعات سیب	کور دامی	خاکیرگ	از روش حداقل اختلاف معنی‌دار (LSD) در سطح ۰/۰۵ درصد
۸۵	۰/۰۸	۶۵۵	۶۳۸	۶۵۵	۶۵۵	از روش حداقل اختلاف معنی‌دار (LSD) در سطح ۰/۰۵ درصد
۸۲	۰/۰۷	۶۴۸	۶۳۸	۶۵۵	۶۵۵	از روش حداقل اختلاف معنی‌دار (LSD) در سطح ۰/۰۵ درصد
۵۵	۰/۲۲	۶۴۸	۶۳۸	۶۵۵	۶۵۵	

از روش حداقل اختلاف معنی‌دار (LSD) در سطح ۰/۰۵ درصد

شناخته شد که در این روی ترکیب چگالی ظاهری خاک با روش غربال تر (۱۶ و ۲۱) و

تشکیلگری دانه‌ها با روش غربال تر (۱۶ و ۲۱) شامل گردید. در این روی ترکیب

پس از خاک‌های ماده آلی در مورد آرم و کویین آنها، از همه مدل

مکانیکی خاک‌های غیر رطوبت بینه خاک گفته می‌شد (۲۳ و ۳۲) یک امر غیرطبیعی و غیر مطلوب به شمار می‌رود، در این موارد خاک‌های

گرافیت رطوبت و رطوبت بینه خاک را به نام رطوبت بهینه، برحسب نام

مکانیکی خاک و رطوبت بینه خاک (CML) می‌شناختند (۳۱ و ۳۲) در این بررسی نتایج تأمینی ممکن است شکل ۱ پایه

است و لیا حداکثر چگالی ظاهری خاک و مقدار رطوبت

برخی آنها متفاوت و نتایج میان آنها معنی‌دار بود. حداکثر

چگالی ظاهری خاک و رطوبت بینه خاک، و برای

انواع ماده آلی و مقادیر و تغییرات آنها در جدول ۳ آورده شده است (۲۳ و ۳۲) چگالی ماده آلی و مقادیر

شکل ۱. نتایج و بحث

CMC و MDBD عوامل مؤثر در

چگالی ظاهری خاک و مقدار رطوبت خاک‌ها در چگالی

مقادیر فشردگی، و مقدار دو عوامل ماده آلی انداسه‌گیری و معنی‌دار شد.

چگالی ظاهری خاک طول شنی بریده با مقدار فشردگی

ضریب با مقادیر رطوبت ۵/۵۵ درصد وزن در شکل ۱ نشان

داده شده است. در شکل ۱ اندارد چگالی ظاهری رطوبت خاک با

۸۷
جدول ۲. مقایسه میانگین حداکثر چگالی ظاهری خشک و مقدار رطوبت بحرانی

<table>
<thead>
<tr>
<th>میانگین حداکثر چگالی ظاهری خشک</th>
<th>مقدار رطوبت بحرانی (g cm⁻³)</th>
<th>سطح فاقدره‌ها (ماده آلی افزوده شده) (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده آلی ۱۲ درصد</td>
<td>ماده آلی ۸ درصد</td>
<td>ماده آلی ۴ درصد</td>
</tr>
<tr>
<td>خشک</td>
<td>پیک دمای سیب</td>
<td>خشک</td>
</tr>
<tr>
<td>کود ضایعات</td>
<td>شاهد</td>
<td>کود ضایعات</td>
</tr>
<tr>
<td>۲۲/۱۲</td>
<td>۱/۵۵</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱۱/۷۸</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱/۵۵</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
</tbody>
</table>

جدول ۳. تأثیر مقدار انواع ماده آلی افزوده شده و میزان ضریب‌دهی بر خاصیت حداکثر چگالی ظاهری خشک (g cm⁻³)

<table>
<thead>
<tr>
<th>نوع خشک</th>
<th>مقدار متوسطی خشک</th>
<th>(ضریب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سری ۱</td>
<td>MDBD</td>
<td>۲۰۶</td>
</tr>
<tr>
<td>سری ۲</td>
<td>CMC</td>
<td>۳۰۶</td>
</tr>
<tr>
<td>سری ۳</td>
<td>(لوم شنی)</td>
<td>۴۰۶</td>
</tr>
<tr>
<td>سری ۴</td>
<td>MDBD</td>
<td>۵۰۶</td>
</tr>
<tr>
<td>سری ۵</td>
<td>CMC</td>
<td>۶۰۶</td>
</tr>
<tr>
<td>سری ۶</td>
<td>(لوم رسی)</td>
<td>۷۰۶</td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه سطح حداکثر چگالی ظاهری خشک و مقدار رطوبت بحرانی

<table>
<thead>
<tr>
<th>میانگین حداکثر چگالی ظاهری خشک</th>
<th>میانگین حداکثر چگالی ظاهری خشک</th>
<th>میانگین حداکثر چگالی ظاهری خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده آلی ۱۲ درصد</td>
<td>ماده آلی ۸ درصد</td>
<td>ماده آلی ۴ درصد</td>
</tr>
<tr>
<td>خشک</td>
<td>پیک دمای سیب</td>
<td>خشک</td>
</tr>
<tr>
<td>کود ضایعات</td>
<td>شاهد</td>
<td>کود ضایعات</td>
</tr>
<tr>
<td>۲۲/۱۲</td>
<td>۱/۵۵</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱۱/۷۸</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱/۵۵</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
<tr>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
<td>۱/۷۸</td>
</tr>
</tbody>
</table>

الگوی ورودی در سطح یک درصد می‌باشد.
جدول 5. شاخص پایداری خاک‌های شدید به درصد مقدار مختلف مواد آلی

<table>
<thead>
<tr>
<th>صفر</th>
<th>12</th>
<th>8</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>سری</td>
<td>خاک برگ</td>
<td>21/9±2</td>
<td>77/3±3</td>
</tr>
<tr>
<td>قهوه‌گل</td>
<td>خاک دامی</td>
<td>21/9±2</td>
<td>15/7/3±3</td>
</tr>
<tr>
<td>سری</td>
<td>ضایعات سیب</td>
<td>21/9±2</td>
<td>15/7/3±3</td>
</tr>
<tr>
<td>سری</td>
<td>خاک برگ</td>
<td>15/7/3±3</td>
<td>46/6±6</td>
</tr>
<tr>
<td>باروق</td>
<td>خاک دامی</td>
<td>46/6±6</td>
<td>71/1±1</td>
</tr>
<tr>
<td>سری</td>
<td>ضایعات سیب</td>
<td>71/1±1</td>
<td>91/2±2</td>
</tr>
<tr>
<td>لوم ریس</td>
<td>خاک دامی</td>
<td>91/2±2</td>
<td>85/0±9</td>
</tr>
</tbody>
</table>

جدول 6. تأثیر مقدار ماده آلی افزوده شده به خاک بر درصد حد سیلان و خمیرایی

<table>
<thead>
<tr>
<th>صفر</th>
<th>12</th>
<th>8</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>سری</td>
<td>خاک برگ</td>
<td>20/2</td>
<td>19/2</td>
</tr>
<tr>
<td>قهوه‌گل</td>
<td>خاک دامی</td>
<td>20/2</td>
<td>19/2</td>
</tr>
<tr>
<td>سری</td>
<td>ضایعات سیب</td>
<td>20/2</td>
<td>19/2</td>
</tr>
<tr>
<td>سری</td>
<td>خاک برگ</td>
<td>18/7</td>
<td>19/7</td>
</tr>
<tr>
<td>باروق</td>
<td>خاک دامی</td>
<td>18/7</td>
<td>19/7</td>
</tr>
<tr>
<td>سری</td>
<td>ضایعات سیب</td>
<td>18/7</td>
<td>19/7</td>
</tr>
<tr>
<td>لوم ریس</td>
<td>خاک دامی</td>
<td>18/7</td>
<td>19/7</td>
</tr>
</tbody>
</table>

(جدول 4).

ظاهرا و انزایش رطوبت خاک همراه است، و این هم به ترتیب در خاک برگ، خاک دامی و ضایعات سیب دیده می‌شود. از این بررسی خاک‌های لوم ریس نسبت به خاک‌های لوم شنی دازای چگالی ظاهری خشک کمتر و رطوبت بیشتر می‌باشند. با افزایش چگالی ظاهری خشک و میزان شرکتی در خاک‌های مورد آزمایش کاهش در مقدار رطوبت بحرانی پدید آمده است

این مقدار و نوع ماده آلی افزوده شده به خاک

CMC-DB که که سلول‌هوشی، کاهش و رطوبت بیشتر می‌باشد. با

اگر مقدار مختلف شرکتی با یکدیگر تفاوت معنی‌دار دارد

MCD-DB که که چگالی مواد آلی نسبت

(جدول 2). که که چگالی مواد آلی نسبت
به ترتیب خاک شاهد خاکبرگ (42%) خاکبرگ (8%) خاکبرگ (12%)

شکل 1. رابطه چگالی ظاهری خشک درصد رطوبت و زنی در خاک لوم شی در فشردگی 30 ضربه.

واکنشهای شیمیایی ضعیف آن در خاک نسبت داده شده و افزودن مقدار زیادی خاک برگ چگالی خیلی کم سبب کاهش گنجایش رطوبتی و کاهش چگالی ظاهری می‌شود. در این آزمایش، از این نظر که خاک برگ‌داری چگالی ظاهری خشک کمتری (3.5/50 gcm⁻³) نسبت به کود دامی و ضایعات سبی است، سبب به وجود آمدن خاک‌های با چگالی ظاهری خشک کمتر شده است. این تفاوت هر چند در کود دامی و ضایعات سبی دیده می‌شود و در انرژی نیز معنی‌دار نیست.

گزارش‌های بیشتر (11) می‌گویند باید از دو درصد ماده آلی تا چندانی افزایش پایداری خاک‌داده‌ها ندارد و در مقدیر کمتر از پنج درصد نیز فوایدی به دسته‌های گیاهی خاک حتمی است. افزون بر آن، خاک‌های شرده و مرمور که هنگام با خاک برگ‌های سطحی مایع در هر سم خاکهای شرده و مرطوب که همراه با خاک برگ‌های سطحی کمی از ساختمان خاک‌های اسفنجی و نیز شکسته شدن ساختمان خاکهای دارای خاک را تأمین می‌کنند، فقط چگالی کم آنها سبب کمتر شدن چگالی ظاهری خشک می‌شود. افزون (12) از این‌رو افزایش چگالی گزارش می‌کند که به رغم که خاک برگ سبب کاهش پایداری خاک‌های دارای شکسته شدن ساختمان خاک‌های دارای می‌شود، ولی با حجم زیاد خود در خاک باعث جابه‌جایی و شکسته شدن ساختمان خاک‌های دارای می‌شود. این نتیجه هم به تجزیه‌پذیری کم خاک بی‌برگ و هم به
شکسته شدن خاک دانه‌ها، و آماده کردن آنها در پرایر فرسایش آبی می‌گردد، که یک پاشا می‌کنند که در داغ با وجود می‌آورد.

نتایج آزمایش‌ها (جدول 5) و گزارش‌های گزارش‌کننده‌ها (جدول 6) نشان می‌دهد که میانگین مقداری بیشتری از میانگین مقداری بیشتری شد. آماده‌سازی شدن خاک با کود دامی سبب کاهش مقداری بیشتری شد.

میانگین مقداری بیشتری از میانگین مقداری بیشتری شد. آماده‌سازی شدن خاک با کود دامی سبب کاهش مقداری بیشتری شد.

میانگین مقداری بیشتری از میانگین مقداری بیشتری شد. آماده‌سازی شدن خاک با کود دامی سبب کاهش مقداری بیشتری شد.

میانگین مقداری بیشتری از میانگین مقداری بیشتری شد. آماده‌سازی شدن خاک با کود دامی سبب کاهش مقداری بیشتری شد.

میانگین مقداری بیشتری از میانگین مقداری بیشتری شد. آماده‌سازی شدن خاک با کود دامی سبب کاهش مقداری بیشتری شد.
اثر اختلاف سه نوع ماده آلی با خاک بر حداقل چگالی ویژه ظاهری خشک و...

![نمودار ۱. تأثیر منفی سطح ماده آلی و میانگین حداکثر چگالی ظاهری خشک در خاک‌های مورد آزمایش به ترتیب کود دامی ضایعات سیب.][1]

![نمودار ۲. تأثیر منفی سطح ماده آلی و میانگین حداکثر چگالی ظاهری خشک در انواع ماده آلی، LSD (1%) = 0.02. ضایعات سیب = (A) خاک شاهد (B) = کود دامی (C) = ضایعات سیب (D) = خاک‌های مواد آزمایش.[2]

![نمودار ۴. تأثیر منفی سطح ماده آلی و میانگین حداکثر چگالی ظاهری خشک در خاک‌های مورد آزمایش][3]
LSD به ترتیب خاک لوم رسی خاک لوم شنی 0.51(%) =

شکل 5. تأثیر مقابل سطوح ماده آلی و میانگین گنجایش رطوبت بحرانی در خاک‌های مورد آزمایش

LSD به ترتیب خاکی‌گرگ کود دامی ضایعات سبب 0.63(%) =

شکل 6. تأثیر مقابل سطوح ماده آلی و میانگین رطوبت بحرانی در انواع ماده آلی
شکل V. تأثیر مقاومت ماده آلی و گنجشی رطوبت بحرانی در خاک‌های موردنآزمایش

پژوهش حاضر پایداری خاک‌های پیشتری نسبت به لوم شنی در تمامی ترکیبات سطوح ماده‌های آلی داشتند (جدول 5). اختلاف کاهش در چگالی ظاهری خاک و گنجشی رطوبت بحرانی در میان دو خاک مورد آزمایش با اندازه‌گیری ماده آلی دیده می‌شود (شکل‌های 4 و 7). این اختلافات در آثار مقادیر ماده آلی افزوده شده و نوع خاک هم دیده شد. مقدارهای ماده آلی (۲۳) به خاک به نسبت قابل قبول، تأثیری به خاک را در کنار، سطح فشردگی در ۴ این آزمایش‌ها با این که اندازه‌گیری مقدار CMC و MDBD در هر نوع خاک در CMC و MDBD جریان فشردگی خاک می‌شود. این آزمایش نشان می‌داد که حتی نسبت‌های کمی از ماده آلی در خاک، می‌تواند فشردگی را کاهش دهد و ممکن است در میان انواع ماده آلی هم متفاوت باشد. هر چند که تأثیر ترکیب‌های مواد آلی خاک فشرده شده به یافته‌ها هم بستگی دارد.

ادر: جریان فشردگی خاک می‌شود. این آزمایش نشان می‌داد که حتی نسبت‌های کمی از ماده آلی در خاک، می‌تواند فشردگی را کاهش دهد و ممکن است در میان انواع ماده آلی هم متفاوت باشد. هر چند که تأثیر ترکیب‌های مواد آلی خاک فشرده شده به یافته‌ها هم بستگی دارد.
کاهش معمولی را با افزایش فشار گذشته موجب گردید. چنین تناوبی روند پروتئین در دیگر (18 و 31) هم گزارش شده است.

رابطه CMC و MDBD و CMC و MDBD آنها

از تمامی آزمایش‌های انجام شده در زمینه CMC و MDBD آنها یک رابطه خیلی معین شد. در این آزمایش‌ها با توجه به شمار یک‌تا ده چگالی ظاهری خشک خاک (N=67) و گنجایش رطوبت برخوردار (N=72) معادله رگرسیون زیر به شکل چندگانه توزیع گردید.

\[\text{CMC} = a + bCM + cM + dPc + eDm\]
\[\text{MDBD} = a + bSt + cSt + dPc + eDm\]

در معادله فوق مقادیر چگالی ظاهری خشک خاک و گنجایش رطوبت به‌رطوبت یک دست درصد خاک درصد رس خاک می‌باشد.

\[S = \text{درصد شن خاک}\]
\[Ct = \text{درصد رس خاک}\]

سطح ماده آلی ازوده شده به خاک (M) به سه مقدار فشار و برش بررسی گردید. دسته‌بندی‌های چگالی و رطوبت درست در شاخص‌های توزیع گردد و منجر به شکل چندگانه توزیع گردید.

\[\text{MC} = \text{مقدار فشار و برش برای کیلو پاسکال}\]
\[\text{Pc} = \text{ضربه تجربی (در حدود 7 و 8 بهره شده است)}\]
\[\text{Dm} = \text{ضربه مورد استفاده در آزمایش‌های مورد بررسی}\]
\[\text{FM} = \text{فرونسنج مناسبی نیوی، معادله 2 در 3 بیان می‌شود}\]

نتیجه گیری

مالشی‌های کشاورزی که در رطوبت زیاد خاکورزو می‌کنند موجب فشرده‌گی خاک می‌شود. این بررسی نشان داد که ترتیب تأثیر ماده آلی در خاک، کاهش فشرده‌گی در برابر خاکورزی است. موارد آلی به نسبت سبب افزایش دامنه تردد پذیری و کاهش تراکم پذیری خاک می‌شوند، بلکه سبب کاهش فشرده‌گی خاک بهره‌وری زیرین (0-15 سانتی‌متر) نیز می‌گردد.

می‌گردد (18).

از آنجایی که تجهیز خاک برگ در خاک خیلی آسان‌تر صورت می‌گیرد (24)، اثرات تأثیر بندی پس از تجهیز در خاک باقی می‌ماند. پس هرگونه تجهیز پذیری از اثرات برگ در دراز مدت امکان‌پذیر است. هنگامی که کد دامی و ضایعات سبب در خاک تجهیز شود، پایداری و استحکام خاکدانه‌ای خاک را افزایش می‌دهد. این پایداری و استحکام مقاومتی در برای فشرده‌گی انجام می‌کند که می‌توان نتایج زیر را از آن برداشت:

1. خاک برگ موجب کاهش مقادیر چگالی ظاهری خشک خاک می‌شود، و افزایش گنجایش رطوبت به‌رطوبت به خاک را

60
جدول 7. مقادیری از ضریب ورگسیون 2 و 3 در مورد MDB و CMC

<table>
<thead>
<tr>
<th>ماده آلی</th>
<th>MDB (gcm^-1)</th>
<th>CMC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیت</td>
<td>0/0043</td>
<td>1/056</td>
</tr>
<tr>
<td>کود دامی</td>
<td>0/0043</td>
<td>0/011</td>
</tr>
<tr>
<td>ضایعات چندنفرد</td>
<td>0/0056</td>
<td>0/011</td>
</tr>
<tr>
<td>ضایعات چندنفرد و کود دامی</td>
<td>0/0056</td>
<td>1/032</td>
</tr>
<tr>
<td>کل ماده آلی</td>
<td>0/0056</td>
<td>0/081</td>
</tr>
<tr>
<td>پیت</td>
<td>0/014</td>
<td>1/0743</td>
</tr>
<tr>
<td>کود دامی</td>
<td>0/014</td>
<td>0/056</td>
</tr>
<tr>
<td>ضایعات چندنفرد</td>
<td>0/027</td>
<td>0/0685</td>
</tr>
<tr>
<td>ضایعات چندنفرد و کود دامی</td>
<td>0/027</td>
<td>0/089</td>
</tr>
<tr>
<td>کل ماده آلی</td>
<td>0/027</td>
<td>2/111</td>
</tr>
</tbody>
</table>

می‌توان معادله‌های همانند معادله 1 تعیین کرد.

1. بازیابی جدایک‌دار چگالی ظاهری خشک خاک با اندازه‌گیری فشارگذاری و کاهش گنجشی رطوبت بحرانی است. خاک لوم است. رشته‌های جدایک‌دار چگالی ظاهری خشک خاک کمتر و گنجشی رطوبت بحرانی بیشتر نسبت به خاک لوم شنی است. کاهش این اختلاف همراه با اندازه‌گیری مقدار ماده آلی ممکن است.

2. تأثیر معنادار ماده آلی مورد آزمایش بر حداکثر چگالی ظاهری خشک خاک و گنجشی رطوبت بحرانی بسیار زیادی به مقدار آمیختگی ماده آلی و نوع حداکثر دارد.

3. رابطه خاصی که میان حداکثر چگالی ظاهری خشک خاک و گنجشی رطوبت بحرانی در معادله 1 تعیین شد، و نیز معادله‌های که توسط پژوهشگران دیگر گزارش شده‌های همکی متأثر از نوع ماده آلی می‌باشد، یعنی با هر نوع ماده آلی

منابع مورد استفاده

1. بای بوردی، م. 1372، فیزیک خاک. انتشارات دانشگاه تهران.
2. حقی‌نیا، ح. ج. 1374، داشواری‌های تفویض آب در خاک. انتشارات دانشگاه فردوسی مشهد.
3. حقی‌نیا، ح. ج. 1375، خاک شناخت (ترجمه). انتشارات دانشگاه فردوسی مشهد.
4. عزیزی، م. ج. 1372، بررسی روش‌های زیمنه‌های جنین در ورزشگاه بیشوار و سائندیگی.
5. رضایت، م. ج. 1370، فیزیک خاک (ترجمه). چاپ سوم، انتشارات دانشگاه تهران.
6. قاسم‌زاده، ن. ج. 1372، مطالعات خاکشناسی نیمه‌تکنیکی در خاک‌های ترکیبی و شیمیایی بر اثر آب و بارونه میاندوآب (استان آذربایجان غربی).
7. نشریه شماره 8، مؤسسه تحقیقات خاک و آب، وزارت کشاورزی.

