بررسی مقاومت به استرس‌های شوری و فرمالین دریست لاروهای میگوی سفید هندی تغذیه
شده از روتوفرهای غنی شده با اسیدهای چرب غیراشیاع (DHA, EPA) و ویتامین C

چکیده

تست‌های استرس به طور معمول در هریه‌های میگر جهت ارزیابی کیفیت پست‌لاروهای (PL) در طی پرورش مورد استفاده قرار می‌گیرند. در این تحقیق لاروهای میگوی سفید هندی با نابلی نازه تخم گذشته از شده آمیخته (تیمار شاهد)، روتوفرهای پرورش یافته روی جلبک کارلا (تیمار 2) روتوفرهای غنی شده با روغن کبد ماهی کارلا (تیمار 3) و روتوفرهای غنی شده با اسیدهای چرب غیراشیاع (DHA, EPA) و ویتامین C (تیمار 4) تغذیه گردیدند. به‌طوری که در مرحله I در تست‌های استرس شوری (100 گرم در هر گرم وزن) پیش‌ترین میزان پیش‌بینی در تیمار 3 (به ترتیب 76/46 و 68/00 درصد) مشاهده شد. بعد از آن تیمار 2 (76/46 و 68/00 درصد) قرار داشته که با تیمار 3 تفاوت معنی‌داری (0.05 > P) داشت. اختلال این دو تیمار با تیمارهای 1 و 7 و شاهد نز معنی‌دار بود. در تست فرمالین (100 گرم دریست) در میلون) در این مرحله تفاوت معنی‌داری بین دو تیمار (37/46 و 68/00 درصد) به دلیل در این نتایج مشاهده تغییرات اما اختلاف آنها با تیمارهای 1 و 2 مشاهده شد. در مرحله II تفاوت معنی‌داری با تیمارهای 1 و 2 دارای تفاوت معنی‌داری (5/00 > P) بود. کمترین میزان پیش‌بینی در تیمار 1 (37/46 درصد) مشاهده شد. در تست استرس فرمالین (100 گرم دریست) در این مرحله پیش‌ترین میزان پیش‌بینی با تیمارهای شاهد، 7 و 2 (37/46 و 68/00 درصد) مشاهده گردید که تفاوت معنی‌داری به دلیل نیشان دهنده این اختلال این دو تیمار با

واژه‌های کلیدی: تست استرس، پست‌لاروی، میگر، روتوفرهای غنی شده با اسیدهای چرب غیراشیاع، ویتامین C

1. دانشجوی دکتری شیلات، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران
2. استادان بهداشت و بیماری‌های اپیدمی، دانشکده دامپزشکی، دانشگاه تهران

519
مقدمه

یکی از روشهای مناسب جهت ارزیابی کیفیت پست لاروهای میگوهای خانواده پاتیسیا به سادگی نیاز به هچمی‌ها قبلی انجام است. از درس‌های مرتبط، در قرار گرفتن با فرمولین، ترتیبی از ما و شورای کمیسیون اکسپرس در جهت ارزیابی این پست لاروهای که در شرایط استرس بقاء بالاتری از خودنشان می‌دهد، نمونه‌گیری شده است. این نمونه‌گیری از اجزای اصلی این پاسخ در مکانیسم‌های نظمی ایستاده به ویژه میکروبیو تمبورته. در این پاسخ نمونه در آشیانه‌ها در محیط نیاز اسیدهای ویژه فعالیت و پیشنهاد است. جریان بالا و پایین، نسبت لاروهای که در این پاسخ محله استر می‌توان

اسیدهای چرب غذایی سلولی موجود در آشیانه‌ها را می‌توان توسط چرب‌های غذایی اصلاح نمود و این تغییرات بر مکانیسم‌های نظمی محله و در نهایت بر بازماندگی لاروهای دیگر استرس‌های مورب است. نمونه‌گیری و دربرداری از این نمونه‌گیری از اجزای اصلی این پاسخ در مکانیسم‌های نظمی ایستاده به ویژه میکروبیو تمبورته. در این پاسخ نمونه در آشیانه‌ها در محیط نیاز اسیدهای ویژه فعالیت و پیشنهاد است. جریان بالا و پایین، نسبت لاروهای که در این پاسخ محله استر می‌توان

تعداد ۱۹۸۵ هر چهار و نیم تا ۱۹۸۵ هر چهار و نیم گزارش و پیشنهاد نموده‌اند. همچنین عده‌ای از پژوهشگران گزارش کرده‌اند که پست لاروهای که در شرایط بقاء بالاتری از خودنشان می‌دهد، نمونه‌گیری شده است. این نمونه‌گیری از اجزای اصلی این پاسخ در مکانیسم‌های نظمی ایستاده به ویژه میکروبیو تمبورته. در این پاسخ نمونه در آشیانه‌ها در محیط نیاز اسیدهای ویژه فعالیت و پیشنهاد است. جریان بالا و پایین، نسبت لاروهای که در این پاسخ محله استر می‌توان

جایگاه بروز این مشخص گردیده که سخت پیشنهاد است. این مشخص گردیده که سخت پیش‌
فوق العاده زیاد آنها، اندلایه کوچک (۷۰۰ تا ۷۵۰ میکرون) حرکت نسبتاً ملایم، ریزه خوار بودند، کافی بودن ترکیبات غذایی و ابزاری بودند تا آنها اشکار شود که می‌تواند جایگزین مناسب باید آرتمیان‌ها باشد. بنابراین با توجه به شناسنامه که ریزگرین خشکه در مراحل پرورش لاروی میگو سفید هندي استفاده شده و نتایج آن در مقایسه با آرتیمیا بررسی شود.

مواد و روش‌ها

۱. پروتئین و غنی سازی روتیفر

روتیفرهای (Brachionus plicatilis) لاروی میگو سفید هندي ابتدا در ظروف ۱/۵ و سپس ۲ لیتری کشت داده شد. به دنبال آن در نهایت جهت تولید اینووه به مخازن فابرگلد ۳۰۰ لیتری و ۶ نی تی در فضای ۱۵درایم انتقال داده شده و با جلبک های کارلا و توراسیم تغذیه شدند. پس از افزایش تعداد روتیفرها در ظروف پرورشی به حدود ۳۰۰.۵ به روتیفر در میلی لیتر، آنها را به ظروف ۱۰ لیتری انتقال داده و بر اساس روش ده‌تیرت (۷) غنی سازی کرده و مناسب با تیمارها مورد استفاده قرار گرفته.

جهت غنی روتیفرها از جلبک‌های حاصل مقدار بالای اسدیای جرب ضروري مانند: جلبک كارلا و امولپسون روغن بهره‌مندی او در امکان ماهی کادک شرک زیست‌دهی (HUFA) می‌باشد. استفاده گردید.

تراکم جلبک کارلا جهت غنی سازی در حدود ۹۵٪ در میلی لیتر به نظر شد. جهت بهره‌مندی امولپسون برای غنی روتیفرها از روغن کیل ماهی کادک محلول شرکت انگلستان می‌باشد استفاده شد. امولپسون‌ها حاصل Seven Seas شامل مخلوطی از آب دریا (۱۰۰ میلی لیتر)، روغن کیل ماهی کادک (۵ میلی لیتر) و زرد پنیر منجمد (۱ گرم) بوده و همچنین مولکول ویتامین‌های E و B به ترتیب در حدود ۱/۱۵ و ۱/۱۸ درصد ذوب و یا حجم مخلوط روغن اضافه شده و پس از مدت ۲ دقیقه توسط همزن به خوبی مخلوط گشته تا به صورت...
و لاروزهای تغذیه شده در هر مخلوط به طور مِن‌ظَم‌ اقامه به نمودی برای روز بهتر کاری کردن هوای نازک تا زمان آنالیزهای مربوط به در دمای 40 درجه سانتی‌گراد در فریزر جهت انتقال جمله‌ای مشابه است. انتخاب تغذیه دهانه‌ای در برابر هر دیگر تغذیه پیچیده و در زمان آنالیزهای محلولی شده با تغذیه شده استفاده شد. 68(7) و 88% بر اساس تغذیه دهانه‌ای طراحی شده با فاصله‌ای بعد از آماده‌سازی در تراکم 5-6 عدد می‌باشد. لازم به ذکر است که در انتقال داده شدن در آزمایش‌گاه برداشت بدین مقداری از آزمایشگاه انتقال داده شده. در آزمایش‌گاه ایندا استر اسیدهای چرب مربوطه نهایی و سپس به دستگاه‌گاز FID کرمازیک نمایند (GC).

 Nahshin روش‌های گردیده، برای تعیین مایعاتی اسیداسکوربیک نیز از دسته‌گاه کرمازیکی سایت وب‌سایت (HPLC) استفاده شد. 3

فیلم برای اورامی آماری

میزان اسیدهای چرب و اسید آسکوربیک غذاهای مختلف مورد آزمایش و لازم است تغذیه شده در 500 گرم کالا کدام شده با املسون رونگ کد ماهی کاد

3 تیمار 3 آزمایش - لازه‌های تغذیه شده از 14 همان‌گونه که در آزمایش دوم 6

4 تیمار 4 آزمایش - لازه‌های تغذیه شده از 1 رونگ کد ماهی کاد و آسکوربیلی بالا شدن.

3.1.4 آنالیزهای بیوشیمی

جهت مشخص کردن نرخ‌های کم و کمبود اسیدهای چرب (برحب میلی‌گرم / گرم وزن خشک) و میزان اسید آسکوربیک (برحب میلی‌گرم / گرم وزن خشک) در تیمارهای غذاهای

522
جدول 1. میانگین اسیدهای چرب غير اشباع بلدن زنجره (mg/g DW)

<table>
<thead>
<tr>
<th>n - 3 / n - 6</th>
<th>DHA / EPA</th>
<th>DHA</th>
<th>EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/130 ± 1300 a</td>
<td>0/61 ± 600 b</td>
<td>0/160 ± 650 c</td>
<td>2/000 ± 240 a</td>
</tr>
<tr>
<td>1/460 ± 330 b</td>
<td>0/250 ± 650 b</td>
<td>2/300 ± 200 a</td>
<td>0/000 ± 200 b</td>
</tr>
<tr>
<td>1/370 ± 230 c</td>
<td>0/050 ± 300 a</td>
<td>2/000 ± 300 a</td>
<td>0/400 ± 300 b</td>
</tr>
<tr>
<td>1/230 ± 90 c</td>
<td>0/220 ± 40</td>
<td>4/000 ± 380 b</td>
<td>2/000 ± 280 c</td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار) داده در یک ستون با حروف متغیر متفاوت احتمال اختلاف معنی‌دار دارد (P < 0/05)

(تعادل نمونه‌ها در هر گروه 3 = نی)
جدول ۲. میانگین اسیدهای چرب غیراشباع بلند زنجیره (mg/g DW) دردبات لاروهاي ميگودرمال ۱، ۲ و PL5

<table>
<thead>
<tr>
<th></th>
<th>PL1 مرحله</th>
<th>PL5 مرحله</th>
</tr>
</thead>
<tbody>
<tr>
<td>n – 3 / n – 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHA / EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمارها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۴۸ ± ۰/۶۳ a</td>
<td></td>
<td>۱/۴۹ ± ۰/۳۳ a</td>
</tr>
<tr>
<td>۱/۴۸ ± ۰/۶۴ b</td>
<td></td>
<td>۱/۴۸ ± ۰/۶۱ b</td>
</tr>
<tr>
<td>۱/۴۱ ± ۰/۶۷ c</td>
<td></td>
<td>۱/۴۱ ± ۰/۶۵ c</td>
</tr>
<tr>
<td>DHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمارها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ ± ۰/۰۱ a</td>
<td></td>
<td>۰/۷ ± ۰/۰۱ a</td>
</tr>
<tr>
<td>۰/۷ ± ۰/۰۱ b</td>
<td></td>
<td>۰/۷ ± ۰/۰۱ b</td>
</tr>
<tr>
<td>۰/۷ ± ۰/۰۱ c</td>
<td></td>
<td>۰/۷ ± ۰/۰۱ c</td>
</tr>
<tr>
<td>EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمارها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵/۲ ± ۰/۰۱ a</td>
<td></td>
<td>۵/۲ ± ۰/۰۱ a</td>
</tr>
<tr>
<td>۴/۵ ± ۰/۰۱ b</td>
<td></td>
<td>۵/۲ ± ۰/۰۱ b</td>
</tr>
<tr>
<td>۴/۵ ± ۰/۰۱ c</td>
<td></td>
<td>۵/۲ ± ۰/۰۱ c</td>
</tr>
</tbody>
</table>

جدول ۳. میانگین اسیدآسکوربیک (μg/g DW) در غذاهای مختلف

<table>
<thead>
<tr>
<th>غذاهای مختلف</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرمیا (غذای شاهد)</td>
<td>۵۵۰/۰۰ ± ۱۰۰/۰۰ a</td>
</tr>
<tr>
<td>رویفر + جلیک (غذای ۱)</td>
<td>۷۸۰/۰۰ ± ۱۰۰/۰۰ b</td>
</tr>
<tr>
<td>رویفر + رونف (غذای ۲)</td>
<td>۴۵۰/۰۰ ± ۱۰۰/۰۰ d</td>
</tr>
<tr>
<td>رویفر + روغن + ویتامین (غذای ۳)</td>
<td>۱۸۰/۰۰ ± ۱۰۰/۰۰ a</td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف متفاوت دارای اختلاف معنی‌دار هستند (P < ۰/۵).)
جدول 4. میانگین اسید آسکوربیک (μg/g DW) دربافت لازههای میگو تغذیه شده با غذاهای متفاوت در مراحل PL5 و PL1

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>مرحله 5</th>
<th>مرحله 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار شاهد</td>
<td>913±57</td>
<td>850±60</td>
</tr>
<tr>
<td>تیمار 1</td>
<td>670±60</td>
<td>710±60</td>
</tr>
<tr>
<td>تیمار 2</td>
<td>587±77</td>
<td>488±77</td>
</tr>
<tr>
<td>تیمار 3</td>
<td>502±77</td>
<td>450±77</td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف تفاوت دارای اختلاف معنی دار هستند (P<0.05).)

(نوع تفاوت معنی‌دار در روش تی‌سی.)

(تعداد نمونه در هر گروه 3 نمونه بود.

نتایج معنی‌داری در دیدگاه به نحوی که بیشترین یافته در مرحله 3 دربافت غذاهای میگو در هر گروه بازیافت دارد (P<0.05).

در مرحله 5، تفاوت معنی‌داری در طیف ورود قابلیت عضو در این شورای اسید آسکوربیک با غذاهای مختلف در مراحل PL5 و PL1 در تفاوت معنی‌داری در این تیمارها دیده شده است. در مرحله 5، تفاوت معنی‌داری با یکدیگر بوده و بیشترین میزان تفاوت معنی‌دار با تیمار 3 (422±77) در مراحل PL5 و PL1 مشاهده شد که بین تیمار شاهد (913±57) و تیمار 2 (587±77) میزان تفاوت معنی‌دار (P<0.05) بود.

5 میانگین دربافت لازههای میگو در مرحله PL1 در تفاوت معنی‌دار (P<0.05) بود.

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف تفاوت دارای اختلاف معنی دار هستند (P<0.05).)

(نوع تفاوت معنی‌دار در روش تی‌سی.)

(تعداد نمونه در هر گروه 3 نمونه بود.

نتایج معنی‌داری در دیدگاه به نحوی که بیشترین یافته در مرحله 3 دربافت غذاهای میگو در هر گروه بازیافت دارد (P<0.05).

در مرحله 5، تفاوت معنی‌داری در طیف ورود قابلیت عضو در این شورای اسید آسکوربیک با غذاهای مختلف در مراحل PL5 و PL1 در تفاوت معنی‌داری در این تیمارها دیده شده است. در مرحله 5، تفاوت معنی‌داری با یکدیگر بوده و بیشترین میزان تفاوت معنی‌دار با تیمار 3 (422±77) در مراحل PL5 و PL1 مشاهده شد که بین تیمار شاهد (913±57) و تیمار 2 (587±77) میزان تفاوت معنی‌دار (P<0.05) بود.

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف تفاوت دارای اختلاف معنی دار هستند (P<0.05).)

(نوع تفاوت معنی‌دار در روش تی‌سی.)

(تعداد نمونه در هر گروه 3 نمونه بود.

نتایج معنی‌داری در دیدگاه به نحوی که بیشترین یافته در مرحله 3 دربافت غذاهای میگو در هر گروه بازیافت دارد (P<0.05).
جدول 5. میانگین بقا لاروها (درصد) در مرحله PL1 و PL5 در تست‌های استرس شوری و فرماین

<table>
<thead>
<tr>
<th></th>
<th>PL5 مرحله (Mean ± SD)</th>
<th>PL1 مرحله (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمارها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شوری 10 قسمت در هزار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار شاهد</td>
<td>33/333 ± 5/777</td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>30/000 ± 5/333</td>
<td></td>
</tr>
<tr>
<td>تیمار 2</td>
<td>27/333 ± 5/333</td>
<td></td>
</tr>
<tr>
<td>تیمار 3</td>
<td>30/000 ± 5/000</td>
<td></td>
</tr>
<tr>
<td>شوری 20 قسمت در هزار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار شاهد</td>
<td>33/333 ± 5/777</td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>30/000 ± 5/333</td>
<td></td>
</tr>
<tr>
<td>تیمار 2</td>
<td>27/333 ± 5/333</td>
<td></td>
</tr>
<tr>
<td>تیمار 3</td>
<td>30/000 ± 5/000</td>
<td></td>
</tr>
<tr>
<td>فرماین 100 قسمت در میلیون</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار شاهد</td>
<td>33/333 ± 5/777</td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>30/000 ± 5/333</td>
<td></td>
</tr>
<tr>
<td>تیمار 2</td>
<td>27/333 ± 5/333</td>
<td></td>
</tr>
<tr>
<td>تیمر 3</td>
<td>30/000 ± 5/000</td>
<td></td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف متفاوت دارای اختلاف معنی‌دار هستند (P<0/05))

(تعداد تکرار در هر گروه 3 = می‌باشد)

پیست لاروها میگووهای پروبیوئی با جهت‌های غذایی متفاوت به کار گرفته می‌شود (27). به طور معمول، جهت‌های غذایی که سبب رشد و بقای بالاتر پیست لاروها می‌شوند مربوط به انرژی مقاومت آنها به تست‌های استرس تیز می‌گردد (10, 14, 16, 28 و 36). آذری ناکامی و همکاران (1) نشان دادند که تغذیه به جه میگووهای سفید‌هدی با آزمایش غنی‌شده با اسیدهای جرب غیرشایع بلند زنجیره از خانواده امکا سه (n-3HUFA) تفاوت معنی‌دار دیده شد که بیشترین بقای در تیمار شاهد (33/333 درصد) مشاهده گردید که با تیمار 3 (27/333 درصد) و 2 (30/000 درصد) تفاوت معنی‌دار دارد. در حالی که تفاوت آن با تیمار (33/333 درصد) معنی‌دار (P<0/05) بود.

بحث و نتیجه‌گیری

تست‌های استرس شوری به طور معمول در ارزیابی کیفیت
موجع افزایش مقاومت آنها در پرورش تنش اسمزی و یا تنش شوری می‌شود. به طوری که در این تحقیق چه می‌گوییم تغییرات شدید با آرتیمیا ارومیهای حاوی ۳/۸ میلیگرم بر گرم وزن خشک آرتیمیا n-۷۱۸۰۰
پیشگیری

بین و سیلی‌لی از زمینه‌ای بوده‌این دکتر محمد صادقی

مرطوب معاون تحقیقاتی پژوهشکده اکولوژی خلیج فارس و
دریای عمان، مهدی سعید مسندانی معاون تکنولوژی و پرورش
آبزیان شیره‌مرگ، مهندس مسندانی معاون ارزیابی‌های \(\text{کچک‌تر} \) که در اجرای این تحقیق می‌تواند
قدرتان را پیدا کند.

شکل‌تر بوده و آن‌ها غذاهای برگ‌ریزی را می‌پسندند. بطوری
که تیمار شاهد که همان نتایج گذشته تحقیقات شده
آزمایش (برگ‌تراز 38 میکروون) بوده به حال جهت اندانه برگ‌ریز
از تیمارهای آزمایشی که روندهای (کچک‌تراز 30 میکروون)
می‌باشد. در تست استرس شوری (200 قسمت در هزار) در
این مخلوط نیز بسترگن بقا در تیمارهای شاهد
(86/673 درصد) و (3/83 درصد) (ویت‌گردن دکهگیها) به هم
دارای تفاوت معنی داری نبودند. این انجا نیز گنی‌سازی تیمار
و اندانه مناسب‌تر تیمار شاهد منجر به افزایش بقا در آنها شده
است. بعد از آنها تیمارهای 2 (0/007 درصد) و
1 (0/667 درصد) نیز داشته که اختلاف آنها معنی دار است.
همچنین با دو تیمار قبل نیز تفاوت معنی داری دارند. تیمار
1 به عنوان غنی‌سازی کمترین بقا را نشان داد. در تست
استرس فرمالین (1000 قسمت در هزار) بسترگن بقا در
تیمارهای شاهد. 3 و مشابه‌تر گردنگی که تفاوت معنی‌داری با
پیکینگیارد ندارد، اما تفاوت آنها با تیمار 1 گردنگی دارند.

بقا را دار، معنی‌دار است. در محلول به غیر از غنی‌سازی
تیمارها، اندانه آنها بقا بر بازار تأثیر دارد. زیرا با انفراش
اندازه‌های برورشی دسترسی به غذاهای کچک‌تر

منابع مورد استفاده

1. آذری ناکامی، ق. 1. طبیعی. م. شکوری و ن. آق. 1384. تأثیر استفاده چرب برنده زنجیره امگا 3 در افزایش مقاومت بجه

growout in pacific white shrimp (\(\text{Litopenaeus vannamei} \)). Aquaculture 237: 237 – 249.

Physiol. 37: 911 – 917.

7. Dabrowski, K. and J. H. Blom. 1994. Ascorbic acid deposition in rainbow trout (\(\text{Oncorhynchus mykiss} \)) eggs and

Live Food for aquaculture . Fisheries technical paper No. 361. Food and Agriculture Organization of the United
Nations, Rome.

Wyban (Ed.) , Proceeding of the Special Session on Shrimp Farming . The World Aquaculture Society, Baton
Rouge, Belgium.

