پرسی عملکرد سدهای اصلاحی رسوب گیر خشکه چین در طول آبراهه‌ها در ترسبب مواد ریزدانه (مطالعه موردی: حوضه سد درودزن)

علی اسماعیلی نامقی و علی مراذ حسن لی

چکیده
پیکر از روی‌های ساده برا یک درخت فرسایش مهار سیلاب و کاهش خسارت‌های مالی در آبراهه‌های حوضه‌های آبخیز، احتمال سدهای اصلاحی خشکه چین است. برای پرسی عملکرد این نوع سدها در ترسبب رسوبات ریزدانه در آبراهه‌ها، تمدیدی آبراهه در حوضه سد درودزن که دارای سدهای اصلاحی خشکه چین بوده و همچنین شده چرخه‌های از 27 سال بوده و برسی شده‌اند. در هر آبراهه سد اصلاحی مشابه (از نظر انتخاب و نوع سطحی) به ترتیب در بالای رودخانه‌ای، ابتدایی، ابتدایی (سدهای ۱) و پایین‌ترین سدهای آبراهه (سدهای ۲) انتخاب شده‌اند. از رسوبات ترسبب شده پشت این سدها و همچنین نشان دهنده کار آنها، نمونه‌هایی از عمق صفر تا ۵۰ سانتی‌متری، به‌صورت مخلوط به‌راز با آزمایش‌های هیدرومتری و دانه نگهداری گردیده‌اند. بر اساس نتایج، غالباً خاک مواد ریزدانه آبراهه‌ها نسبت به رسوبات پشت سدهای مربوط به‌راز ته‌برده‌دانه آبیام مفاهیمی‌هایی دانی می‌دانند. سدهای پشت سدهای نشان داد که در پیشرفت آبراهه‌سدهای شماره ۳ (انهایی) از عملکرد نسبی بهتری برخوردار هستند و سدهای شماره ۲ و ۱ (ابتدایی و ابتدایی) به ترتیب در رتبه‌های بالای قرار دارند. همچنین مقایسه درصد ماهی، سیل و رس سدهای آب‌بردی رسوبات در غالب آبراهه‌ها درصد رس و سیل در سدهای ابتدایی پشت این سدها در سدهای پایین‌ترین و در سدهای ابتدایی کمترین مقدار است. به طور کلی نتایج نشان می‌دهند که کاهش نسبی خونده‌دانه نه تنها در سدهای ابتدایی به‌راز ته‌برده‌دانه سدهای آب‌بردی نیز نشان داد ولی در غالب آبراهه‌ها نسبت به رسوبات ریزدانه است. احتمالاً رپرتوار سدهای ابتدایی ریزدانه است. این سدهای آب‌بردی نیز سدهای در غالب آبراهه‌ها از عملکرد بهتری در ترسبب رسوبات ریزدانه برخوردار بوده و سدهای شماره ۲ و ۱ که در موقعیت ابتدایی و ابتدایی آبراهه فاصله دارند به ترتیب در رتبه‌های ابتدایی سیل زمانی نیز نشان داده بودند. این نتایج و نتایج نشان می‌دهند وقتی نهاد اصلی از احداث سدهای ساده ریزدانه پشت بهتر است حتی اگر کاوش در پایین دست آبراهه‌ها احداث شود.

واژه‌های کلیدی: آبراهه، حوضه سد درودزن، رسوبات ریزدانه، سدهای اصلاحی، سدهای خشکه‌چین

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار مدیریت مناطق پیابانی، دانشگاه تکنولوژی دانشگاه شیراز.
مقدمه

خاک و آب به عنوان منابع پایه طبیعی، نقش حیاتی در زندگی انسان‌ها و به طور کلی در تغذیه و تحولات طبیعت ایفا می‌کنند. به همین دلیل این گونه سازه‌ها به دسته‌ای اصلاحی شده باقتان. این سده‌ها در طول طول تاریخ آب فراوان و خاک مرغوب از بالا عمدی به وجود نمی‌آمده‌اند تا مذکر و به‌روژش گردیدن یافته موجب تأسیس‌ها و یا نقش مانندگی برخی جوامع بشری بوده است (1). فرسایش به عنوان یکی از عوامل تغییر محیط خلیل بر اثر بین زدن خاک و کاهش حاضری اراضی باعث آندیسی ممکن آب سطحی و کاهش فلوه آب در خاک می‌شود که حاصل این تغییرات محیطی است. کاهش بهینه سفره‌ها آب زیرزمینی و بسیار زیاد در نمای صنعتی است. آنان‌ها که به همراه رسوب‌ها، به ویژه رسوب‌های رسوب‌دانه در مساحت مختلف دوازده، نالاسا و کف رموده‌ها. تعمیم در پایان کننده سطحی محصول الگوی (1). رسوب‌های مهاجر در خاک و کاسنت حذف ذخیره مذکر خاصی است که در اثر این مشخصات، فرسایش و حمل رسوب‌های رسوب‌دانه ایجاد می‌گردد. متأسفانه امروزی برای هیچ‌سویی به نسب تبادل فرسایش و رسوب‌های می‌گردد (3). کناره (4) با انجام مطالعه‌ای در ایران، میزان رسوب‌گذاری در سطح‌های مخزونی موجود را یافته که ۱۲۰ میلیون متر مکعب در سال بر اثر کرده است. بنابراین به‌وجه اهمیت حفاظت منابع آب و خاک نیاز است.

علاقه بر اعمال صاحب‌نظر در حضور آنها، در طول سال‌ها، سازه‌ها و پولیسیک برای کنترل فرسایش در خاک‌ها ایجاد شده‌اند و به دست آمده‌اند. نتیجه گرفته‌ای که حاضری زیرزمینی مثبت در سطح جهان باید کنترل فرسایش و رسوب‌های مهار سیلاب و کاهش خطرات سیلاب از آبراهام و سیلاب‌هایی استفاده می‌شود. اهمیت سازه‌های اصلاحی است. این سازه‌ها، سازه‌های کوچکی هستند که در عرض یک آبراهام یا حدود به مظور کاهش نمای صنعتی است. سرعت جریان‌های متمرکز ساخته می‌شوند (6). این نوع سازه‌ها علاوه بر جلوگیری از رسوب‌های بستری، قابل استفاده در پیشگیری از
پخش‌هایی از حوضه آبخزی رودخانه که نا مقطع و به سد درودزن در مساحت کل ۲۴۵۲ کیلومتر مربع است که خود جریان از جریان آبخزی می‌باشد. یک چاه از سده‌های اصلاحی به نامه‌های به حساب سه‌ده‌ها اصلاحی با قدمت نسبتاً بالا در زمین‌های سد درودزن و این نمودار رهاسازی به وسیله کارآمدی به اختصار شرایط آب و هوایی این نمودار سه‌ده‌ها مطالعه مناسب نیستند. هون وزنگ (۸) با مطالعه سه‌ده‌های انگلیسی در حوضه رودخانه زینگری در منطقه نیمه‌خاکی روسی چیت نیشته گرفته به دلیل عملکرد سده‌های سیلت‌گیر، در حواشی سیلت‌گیر و در تمام مطالعات این مقدار رسمی حدود ۸/۸ میلیون لیتر در روز به لحاظ سه‌ده‌ها حوضه‌های مورد بررسی را نشان می‌دهند.

سده‌های اصلی که مرکزی حوضه سد درودزن (دودآباه) اول در قسمت شرقی رودخانه کر در اصل آب‌های ناشی از رودخانه کر (دود آب‌های) از سه‌ده‌های جریان با نظر خاصی از آنها، می‌تواند در نظر گرفته‌شده باشد. یکی از اراضی تهیه‌ها از جنگلی و مارک با پوشش گیاهی سبک بوده که شامل سه‌ده‌ها مربوط می‌باشد. مهم‌ترین تفاوت این چاه با بقیه را می‌توان در جریان‌های دامنه آب در قسمت انتهای آب‌های (محصول سد درودزن) دزک کرد. آب‌های نشان متفاوت از سایر آب‌هایی می‌باشد. مهم‌ترین تفاوت این چاه با بقیه گیاهی منطقه‌های که در محدوده سد درودزن انجام شده. یکی از دلایل انتخاب سده‌های سد درودزن برای این مطالعه وجود تعداد زیادی از گونه‌های باقی‌مانده در سال‌ها چنین که به چنین به حال تعداد رسیده‌اند.

مواد و روش‌ها
منطقه مورد مطالعه در جنوب غرب ایران و در قسمت شمال غرب استان فارس، بین طول‌های جغرافیایی ۵۵°۳۰ شمالی تا ۵۵°۰۵ شمالی و عرض‌های جغرافیایی ۶۰°۵۰ شرقی تا ۵۵°۲۵ شرقی قرار گرفته است. این منطقه
شکل ۱ موقیت حوضه سد درودزن در استان فارس

شکل ۲ حوضه سد درودزن و زیر حوضه‌های مورد مطالعه
نمونه‌های خاک، آزمایش‌های تعیین‌بافت و دانه‌بندی صورت گرفت. تعیین‌بافت بر روی هیدرومتر و دانه‌بندی بر روی سرنده کرد. خشک‌انگیختگی به‌منظور عمایکردهای سدها در ترکیب روش‌های بردنی و هم‌چنین بررسی تأثیر محل استقرار سدها در طول آباه‌ها، در ترکیب روش‌های بردنی، محسوس شده. دانه بندی روش‌های پشت سرد با خاک طبیعی محل همانند سد هم‌چنین محسوس شده. دانه بندی روش‌های واقع در هر آباه و درصد ماسه، رنگ و رسم آنها با هم مقایسه شد. تمام سده‌های مورد بررسی (به استثنای یک سد) هم‌گونه هستند. با استفاده از شکل‌های جدید ترکیب تراوید و آب و مواد رسوبی توانستند از منابع سد ورود کنند. مقدار بهره‌برداری سد کوهک داشتن و به‌واسطه برگ و خاک و خاشخاش مسیدود شده باندید.

نتایج و بحث
الف) تأثیر محل استقرار سدها موجود در یک آباه در اتباس محدد مدل استقرار سدها به منظور مقایسه عمایکردهای محل استقرار سدها زیر آباه در کوچک روش‌ها بردنی، محسوس شده. دانه بندی روش‌های پشت هر سد از هر آباه واقع در اتباس آباه، میانه و انتهای آن با هم مقایسه شدند. نتایج در شکل‌های 7 و 8 نشان داده شده است. بررسی نمودارهای مربوط به آباه‌های تگ نیاز حاکی از این است که عمایکردهای سد پایین‌دست این آباه در آب‌بایش می‌باشد.

ب) روش گونه که در شکل 11 مشاهده می‌شود در ترکیب روش‌های بردنی به منظور تعداد می‌باشد. که عمایکردهای سد پایین‌دست بر خلاف استقرار چندان مناسب نیستند. این نتیجه ها از شکل‌های 11 نشان داده است. بررسی نمودارهای مربوط به آباه‌های تگ نیاز حاکی از این است که عمایکردهای سد پایین‌دست این آباه در آب‌بایش می‌باشد.

ج) از این آباه به دلیل ناب‌پایه، و خاک لشکری وجود دارد. وجود دی‌پایه و جریان دائمی آب به دلیل چشمه‌ریزی وجود دارد.

د) ژریان سیالی محدود صورت گرفت. جریان دائمی در این آب‌بایش می‌شود که روش‌های بردنی به کمتر رسوب پی‌با کند. از ماده‌ای رز رسوب پی‌با از سیالی‌ها به دلیل گذشت به دلیل افزایش تانسیت انقلاب جریان ناشی از چاه‌های مصرفی. از طرف دیی پایه‌نشین شده و خارج شوند. (3).

17
هم منطقه می‌باشد (شکل 5)، که حاکی از عملکرد بهتر این
سد نسبت به سدهای قبلی است. این نتیجه می‌تواند ناشی شود از
خلع و افزایش زیرتر موجود در بدن سد شماره ۲ آبراهه
فیسپول‌ی به دلیل استفاده از سنگه‌های گوش‌دار شد. بررسی‌های نشان می‌دهد برخلاف نتایج حاصل از عملکرد
سدهای واقع در چهار آبراهه مورد بررسی، منحنی‌های داده به
دبی رسویات هر سد واقع در آبراهه نمای از طور
محکومی بالاتر از منحنی‌های دانابیدی خاک کنار منطقه
مروربند قرار گرفته‌اند. به عقلانیت نمونه عملکرد سد شماره ۴
آبراهه نتیجگیری در شکل ۳ نشان داده شده است. این نتیجه
منتفاوت از اینگونه ارتباط‌ها است و بیانگر این است که
دبی رسویات انسانی از طرف بی‌شکل می‌باشد که
می‌تواند متأثر از دو عامل باشد: اول از آن‌ها نتیجگیری برای
ساختن سدهای اصلاحی از سنگه‌ها گوش‌دار استفاده شده
است. این نوع سنگ‌ها به‌خاطر خلع و فرج موجود
در بدن سد زیرتر باشد و سد عملکرد بهتری داشته باشد.
ثانیاً ویژه‌ترین مزیت به آبراهه نتیجگیری بر خلاف قویه
آبراهه‌ها دارای پوشش کنگلی از نوع پلی‌مرکت می‌باشد.
برگ‌های زیرش درختان بلوط در فصل خزان همراه جریان
آب به نتیجه انتقال می‌باشد. برگ‌های انتقال فاقد به
صورت فیبر عامل کرده و باعث بهبود عملکرد سدهای این
آبراهه شده‌اند. وضویت پوشش گیاهی و سنگه‌های مورد
استفاده در ساختن این سد، در شکل ۳ نشان داده شده
است. سنگه‌های گوش‌دار و درختان جنگلی در بالاتر،
موج عملکرد بهتر سدها در گرفتن رسویات ریزدانه شده
است. (ج) عملکرد سدها در ترسیب رسویات ریزدانه براساس معیار
درصد ماس، سیلر و رس
به منظور بررسی تأثیر محل سدهای اصلاحی در گرفتن
رسویات ریزدانه، منحنی‌های دانابی رسویات شسته هر سد
با خاک منطقه مربوط به همان سد مقایسه شدند. اصولا
دانابندی رسویات ابتدا نشده در پشت یک سد متأثر از دو
عامل: نوع رسویات که همراه جریان به پشت سد رسیده و
عملکرد سد در گرفتن و باد انداختن رسویات است. اگر
یک سد صلب (غیر تراوا) در مسیر جریان قرار گیرد و همچنین
جریانی از سد خارج نشود به طوری که تمام مواد رسوی در
پشت سد رسویات یبدا، قاعدتاً باید رسویات جمع شده
در پشت آن ریزدانه تر از خاک منطقه باشد. چون رسویات
برای انتقال نیاز به یکی از کنترل‌های تازه درند و در
پاترندی یا میرا شد که هم این اثری تأثیر می‌گردد.
صورتی که رسویات درشت تر برای انتقال نیاز به دنبال
بیشتری دارند که ممکن است در پاترندی یا میرا
تأثیر نشود. نتایج مقایسه منحنی‌های دانابندی رسویات و
خاک طبیعی نشان داد که برای تمام سدهای اصلاحی، به
استناتی سدهای آبراهه نتیجگیری تر و سد میانی آبراهه فیسپول,
منحنی‌های دانابندی خاک منطقه بالاتر از منحنی‌های
دانابندی رسویات قرار می‌گیرند که به‌طور میزان افزایش
بودن خاک منطقه مربوط به رسویات می‌باشد در حالی که
ده میزان و سه شماره ۲ نتیجه به حالت سدهای
الکتر می‌باشد.
ین نتیجه حاکی از
عملکرد که جنگل‌ها خوب سدهای فوق دارد. به عقلانیت نمونه
منحنی‌های دانابندی رسویات و خاک منطقه در شکل های
۴، ۵ و ۶ به ترتیب برای سد شماره ۱ نک هرسون، شماره
۲ فیسپول و شماره ۳ نتیجه به حالت سدهای
دانابندی خاک منطقه ریزتر از رسویات ابتدا شده پشت
این سد می‌باشد و رسویات ریزدانه به راحتی از داخل فرح
سیگن ها عبور کرده‌اند. در سد میانی آبراهه فیسپول (سد
شماره ۲) منحنی دانابندی رسویات و خاک طبیعی تقریباً بر

18
بررسی عملکرد سدهای اصلاحی رسوپ گیر خاکه چین در...

شکل ۳. پیکی از سدهای اصلاحی آبراهه تگ تیر

شکل ۴. محلولی دانه‌بندی رسوپات و خاک منطقه سد ۱ تگ خرسون

شکل ۵. محتوی دانه‌بندی رسوپات و خاک منطقه سد ۲ قمشلو

شکل ۶. محتوی دانه‌بندی سد آبراهه تگ تیر

شکل ۷. محتوی دانه‌بندی سد آبراهه تگ تیر
سدهای هر آباهه نیز با هم مقایسه شدند. همان گونه که در شکل‌های ۱۲ و ۱۳ مشاهده می‌شود در جهت آباهه‌نگ تیر، قمیشل و نگ خرسون و نگ گرمه، درصد رس و سیلت نسبت به سدهاه پایین دست بیشتر از سدههای میانی و در سدههای بالاتر بیشتر از سدههای بالادست می‌باشد. در حالی که درصد ماسه در سدههای بالادست بیشترین و در سدههای پایین دست کمترین مقدار است این مشاهدات نشان از عملکرد سدههای پایین دست در گرفتن بیشتر رس و لای نسبت به ماسه در مقایسه با سدههای بالادست می‌باشد. در آباهه جویخنه، درصد رس و سیلت پشت سد میانی از همه بیشتر و در سد پایین دست از همه

شکل ۹. منحنی دانه‌ی بندی سد آباهه تیگ خرسون

شکل ۸. منحنی دانه‌ی بندی سد آباهه قمیشل

شکل ۱۰. منحنی دانه‌ی بندی سد آباهه گرمه

شکل ۱۱. منحنی دانه‌ی بندی سد آباهه جویخنه

کمتر می‌باشد. درصد ماسه نیز بر خلاف بقیه آباهه‌ها در سد پایین دست از همه بیشتر می‌باشد. این تفاوت همان گونه که در منحنی‌های دانه‌ی بندی ملاحظه گردیده می‌تواند ناشی از وضعیت خاص سد پایین دست در آباهه جویخنه به دلیل وجود دی‌پایه و آب دامنه‌ای باشد. به طور کلی بر اساس آزمایش‌های انجام شده می‌توان گفت درصد رس و سیلت در سدههای پایین دست بیشتر از سدههای میانی و در سدههای پایین بیشتر از سدههای بالادست می‌باشد ولی درصد ماسه در سدههای بالادست از همه بیشتر می‌باشد و سدههای میانی و پایین دست به ترتیب در رتبه‌های بعدی قرار می‌گیرند. تنا سد پایین دست آباهه
دست و به‌هود عملکرد سدها از لحاظ ترسيب رسوایی ریزدانه در پایین دست، می‌توان نتیجه گرفت که یکی از عوامل موثر در عملکرد سدها شبیه آباهه‌ها می‌باشد. عامل دیگر می‌تواند افزایش بهبود آباهه‌ها نسبت به ارتفاع سد، درجه‌بندی پایین دست باشد. به طوری که در جهت جریان و در پایین دست، آباهه‌ها بازتر شده و با احداث سدی با یک ارتفاع مشخص، به‌نابر گذشت رواناپیش‌تر شده و به تدرک و شرعی‌گرایی مشخص جریان به‌اکثر روان‌پیش‌تری عبور کنند و شرعی‌گرایی‌های هیدرولیکی جریان به میزان بیشتری کاهش پیدا کند. کاهش پیشتر شرعی‌گرایی هیدرولیکی جریان حرم‌با شبیه کشته مشترک باعث می‌شود که

جویخله، آن هم به دلیل وجود دریا پایه استثنایی بروده و از روند کلی فوق تبعیت نمی‌کند. با توجه به نتایج حاصل از مقایسه درصد ماسه، سپلت و رس و همچنین سدکش‌های دانه‌پذیری رسوایی سده‌هاي هر آباهه‌ها می‌توان گفت سده‌های شماره ۳ در تمام آباهه‌های مورد بررسی به استثنای جویخله از عملکرد نسبی بهتری در گرفتن ذرات ریزدانه برخورد کرده، شماره ۱ و ۲ به ترتیب در رتبه‌های بعدی قرار می‌گیرند.

نتایج گیری
با توجه به روند کلی کاهش شبیه آباهه‌ها در جهت پایین

21
سرعت جریان به ترتیب در محل سدهای راول و پایین دست، کمتر از سدهای بالاردیست باشد، در نتیجه رسوبات ریزدان به تر روب ویدا کند. این ادعای اساس فردی طبیعی و شرایط زیستی قابل توجه است. نتایج وضعیت تجمع رسوبات در آبراهه‌ها جوایز استنف هفت بهبودی از آبراهه‌های محلی در آب‌پاش ندارند. 

اصلی‌ترین زمینه این بحث مصرف و بهبودی از آبراهه‌های خاص و از ملمع‌های مورد استفاده در محلات سده‌ای است. 

پیشگیری 

انجام این تحقیق بکار گرفته شده است. 

منابع مورد استفاده 

1. پارسی، م. ر. 1379. بررسی کارآیی سازه‌های اصلاحی در جمع‌آوری رسوب، مطالعه موردی خوزستان آبی، گزارش گزارش گزارشگان شهرستان کردکوی. مجموعه مقالات دومین همایش ملی فرسایش و رسوب، خرم‌آباد، دانشگاه لرستان، شیراز، 1379، صفحات 267-276 

2. دهقان، ع. 1363. فرسایش خاک در ایران و اثرات جلوگیری از آن. زیست، 41: 32-37 

3. شفافی بجستان، م. 1373. همبستگی و زیررسوب انتقال‌های شهرک شهمایه شهید چمران اهواز. 

4. مزایی، م. 1379. مجموعه مقالات دومین همایش ملی فرسایش و رسوب، شهریور، 1379، دانشگاه لرستان، خرم‌آباد. 

