مدل‌سازی منطقه‌ای دبی‌های اوج در زیر حوزه‌های آب‌خیز سد سفیدرود با استفاده از شیشه عصبی مصنوعی

چکیده
مدل مورد بهتر در این تحقیق با استفاده از شیشه عصبی مصنوعی ساخته شده و در حوزه آب‌خیز سفیدرود (ناحیه غرب خزری) و استان شهید اجتاد انجام و انتخاب آن‌هایی که فقط با مشابه بارندگی در زیر حوزه با زمان تمرکز برای بررسی کارکرد آن‌ها جهت پیش‌بینی 24 ساعت بوده است. از کل زیر حوزه‌های انتخابی به تعداد 461 آب‌خیز به منظور انتخاب، از دو اوج آن‌ها برای ساخت مدل پیش‌بینی، انتخاب گردیده است. مدل‌سازی و روش مدل شامل بارندگی یک‌روزه بیزیلیا و بارندگی نیز روز قبل از اوج ساخت زیر حوزه. مدل صرفاً به جمله، انتخابی شبیهسازی 80-20 درصد طول آب‌های اصلی ارتفاع میان‌های حوزه، ساخت مدل‌سازی دیگری بیزیلیا و واحد حسابی گفته در سه گروه هیدرولوژیکی یک، دو و سه. برای پیش‌بینی آب‌های عصبی مصنوعی مدل روش مدل‌سازی شبیه‌سازی از نوع تغذیه به جمله و روش آموزشی پس انتشار خطا، تابع تبیین می‌باشد. نتایج به مدل‌سازی و مدل‌سازی چهارگانه مدل باید برای ساخت مدل‌سازی شما مقدار آب و نسبت به منظوره مورد بررسی ساخته شد. نتیجه مقایسه دبی‌های اوج مسابقه و برآورد شده بر منیات دسته داده اعتبار مدل‌سازی نشان می‌دهد که پارامترهای آماری ضریب (R²) و ضریب آمار آزمون فیشر (F) برای مدل دولت عصبی و دانشگاه چند مقدره نسبت به ترتیب‌های 0/06، 13/06 و 33/06 به بالاتر ارچهت کامل مدل شیشه عصبی بر روی راه‌های سنتی است.

واژه‌های کلیدی: بارندگی، روشنایی، دبی اوج، ساخت‌ها

مقدمه
دبی اوج (Peak flow) می‌باشد. جهت برآورده‌ای این عامل در سیالاب‌ها و به ویژه (Hydrograph) آب و ناخالی، داشتن آب‌خیزدانی سپاتاسی و به ویژه

1. دکتری آب‌خیزداری و عضو هیئت علمی مرکز تحقیقات کارآفرینی و منابع طبیعی استان زنجان
2. مهندسی هیدرولوژی، دانشکده منابع طبیعی، دانشگاه تهران
3. استاد مهندسی بر، دانشکده فنی، دانشگاه تهران
4. استاد زمین‌شناسی، دانشکده منابع طبیعی، دانشگاه تهران
5. استادیار پژوهشی مرکز تحقیقات حفاظت خاک و آب‌خیزداری، تهران

25
روش‌های فاقد آمار از مدل‌های تجربی مختلفی از جمله روش تحلیل مکانی سیال، استفاده می‌شوند. ولی واقعیت آن است که هر روش آبخیز ویژگی‌های خاص خود را داشته و لازم است روش‌های جستجو شود که اسناد بر اساس خصوصیات ذاتی هر روش آبخیز (معنی‌های مستقل) دیس اوج آن را شبیه سازی نماید. اما به دلیل پیچیدگی و روابط غیر خطی بارندگی – روان‌های بهتر است، از انجام تحلیل‌های فیزیکی که در برگیرندگی ضرایب فراوان برای تنظیم فرمول‌ها می‌باشد، چنین پیش‌بینی درآمده و از روش‌های محاسبات‌نرم‌کاری (Soft computing) که از قدرت انعطاف‌پذیری پایایی (Artificial intelligence) بهره‌بردار است، بهره‌جویی شود. نه فرض بر آن است که با انتخاب پارامترهای نسبتاً مستقل از هر حوزه آبخیز از جمله مساحات طول آب‌راه و عمود به عنوان معنی‌های ورودی به سامانه شبکه‌های مصنوعی، می‌توان به یک متد تعمیم‌یافته (Generalized) که یک روش متفاوت گزارش داشته که بیشترین تناسب را در خروجی آن دارد (27) و (28). نطق ضعف شبکه‌های عصبی در جعبه سیاه (Black box) بدون و عدم وجود قانون تایید شده برای معنا معمول شبکه آنها است (27). وزیری سری‌های زمانی نوسانات سطح آب دریاچه ارومیه را برای دورة زمانی ۱۹۷۶ تا ۱۹۸۹ با استفاده از شبکه عصبی مصنوعی و آزمایش (Auto Regressive Integration Moving Average) پربررسی کرد وباقی‌مانده است که با مثابی مورد مصرف شبکه (Mean Square Error)، روش شبکه عصبی بر دیگر روش‌ها ارتجاعی (14). شبکه عصبی پرسرتون (Perceptron) سه‌گانه برای واکنش به کار گرفته شده و نتیجه حاکی از آن است که این مورد واحد بر اساس روش شبکه عصبی، نتایج قابل قبول تری نسبت به روش‌های سنتی نظر روش شرمن (Sherman) (درا است) (19). در بررسی دیگری رابطه بارندگی – روان‌های زمانی را از استفاده از شبکه عصبی مصنوعی و مدل (SCA-SMA) در حوزه آبخیز (Sacramento- Soil Moisture Accounting) راکون و همین مکاپسرا یا مدل مفهومی (SCRR) ۱۳۸۶ علوم و فنون کشاورزی و منابع طبیعی / سال پزدهم / شماره اول (الف) / بهار
در حوزه آبخیز سد سفیدرود در جدیت و حوزه‌های منطقه‌ای ذی‌های اول در زیب جوی اخیر آب‌سنگرداود را با بروز نشانه‌هایی در حوزه‌های مدل (Simple Conceptual Rainfall-Runoff)

1 گروه‌های هیدرولوژیک سازنده زمین‌شناسی و واحد‌های سنجی

2 مقدمای سازگی گروه‌های هیدرولوژیک سازنده زمین‌شناسی و واحد‌های سنجی

یکی از عوامل اصلی مهمی که بر علائم تأثیر گذار نهایی در اغاز دیگر اوج، الی‌گون عمق و عمق در سطح جریان‌های آبخیز است. عمیق روان‌های خود نیز باید از طبقه‌ای و نسبت به هموار، معنای بالا، معنای بالا و افزایش تعداد‌های بارندگی، نفوذ آب به داخل است. لذا با توجه به زمین‌شناسی کوهن‌رود (Kohonen) بر اساس شکایت عمومی (Clustering)

انتصاب درصدی از هر یک از خورش‌های برای آموزش (Training) و اعتبارسنجی (Validation)، آزمایش (آزمایش) و رعایت پیشگیری از آماری آنها را توصیه نموده‌اند (24). هدف عمده این تحقیق نشان دادند مدل‌های بهتر به دنبال اخذ به روش شکایت عمومی مصنوعی نسبت به روش رگرسیون

چند متغیری خطي است.

مواد و روش‌ها

1. گروه‌های هیدرولوژیک حوزه‌های آبخیز انتخابی

بر اساس موضوع‌گذاری‌های انتخابی آب‌سنگرداود موج‌زد...
جدول 1. برخی ویژگی‌های فیزیوگرافی ویژه‌روزه‌های آبی‌خیز انتخابی در حوزه آبی‌خیز سد سفیدرود

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام حوزه آبی‌خیز</th>
<th>زمان تمرکز (گردی)</th>
<th>ضریب طول منتقل (km)</th>
<th>ضریب عرض منتقل (km)</th>
<th>عرض شیب طولی (%)</th>
<th>ارتفاع (m)</th>
<th>طولی (m)</th>
<th>مینه (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>طلابان - جنگستان</td>
<td>1/83</td>
<td>1/29</td>
<td>2/94</td>
<td>19/06</td>
<td>6/4</td>
<td>28/20</td>
<td>62/42</td>
</tr>
<tr>
<td>2</td>
<td>مهران - جنگستان</td>
<td>1/88</td>
<td>1/37</td>
<td>3/34</td>
<td>19/66</td>
<td>6/8</td>
<td>25/00</td>
<td>98/20</td>
</tr>
<tr>
<td>3</td>
<td>تهم - پالاندو</td>
<td>2/54</td>
<td>1/32</td>
<td>7/36</td>
<td>3/44</td>
<td>3/10</td>
<td>1/15</td>
<td>1/95</td>
</tr>
<tr>
<td>4</td>
<td>تلوار - مهگلان</td>
<td>2/85</td>
<td>8/74</td>
<td>3/53</td>
<td>1/00</td>
<td>9/20</td>
<td>1/90</td>
<td>32/38</td>
</tr>
<tr>
<td>5</td>
<td>طلابانود - جنگستان</td>
<td>3/11</td>
<td>1/38</td>
<td>13/45</td>
<td>1/56</td>
<td>14/1</td>
<td>2/43</td>
<td>28/18</td>
</tr>
<tr>
<td>7</td>
<td>طلابانود - کلبکی</td>
<td>5/17</td>
<td>1/39</td>
<td>5/33</td>
<td>8/7</td>
<td>2/20</td>
<td>83/25</td>
<td>7/28</td>
</tr>
<tr>
<td>8</td>
<td>قول اوزن - سناره</td>
<td>13/10</td>
<td>1/42</td>
<td>20/33</td>
<td>8/47</td>
<td>0/11</td>
<td>2/08</td>
<td>1/58</td>
</tr>
<tr>
<td>9</td>
<td>شاهرود - رجاالی دشت</td>
<td>12/36</td>
<td>1/38</td>
<td>24/70</td>
<td>9/35</td>
<td>1/30</td>
<td>2/30</td>
<td>27/60</td>
</tr>
<tr>
<td>10</td>
<td>تلوار - سمن خان</td>
<td>13/11</td>
<td>1/19</td>
<td>30/91</td>
<td>7/60</td>
<td>0/34</td>
<td>1/90</td>
<td>24/55</td>
</tr>
<tr>
<td>11</td>
<td>شاهرود - فرحان</td>
<td>22/30</td>
<td>1/00</td>
<td>21/59</td>
<td>23/91</td>
<td>0/98</td>
<td>1/85</td>
<td>28/64</td>
</tr>
<tr>
<td>12</td>
<td>تلوار - مهاراد</td>
<td>29/63</td>
<td>1/38</td>
<td>24/72</td>
<td>14/28</td>
<td>0/24</td>
<td>1/89</td>
<td>26/11</td>
</tr>
</tbody>
</table>

3. نحوه جمع‌آوری، پیش‌پردازی و دست‌یابی داده‌ها و ساختن مدل

با استفاده از گزارش‌های سیالات ایستگاه‌های آب‌سنجی جمع‌آوری شده از سازمان‌های آب استان‌های زنجان، تهران، کرمان و کرمانشاه، در کل به تعداد 174 مورد آب‌نورد از آنها استخراج شد. پس از انتخاب داده‌های قابل مورد بررسی، برای هر آب‌نورد، طول و عرض، ارتفاع و سطح، فاصله فاصله‌ها و نرخ آب‌نوردی مورد نیاز از دسته‌بندی و مجموعه‌بندی داده‌ها به سمت MATLAB استفاده شده است.

MATLAB ساخت مدل شبکه عصبی مصنوعی برای رصد و پیش‌بینی مکانی تغییرات آب‌نوردی.

4. نحوه ساخت مدل شبکه عصبی مصنوعی

برای ساخت مدل شبکه عصبی مصنوعی، انجام مرحلاتی از جمله استفاده از MATLAB (Preprocessing)، مدل ریزساختار شبکه عصبی مصنوعی، آموزش شبکه عصبی ریزساختار، و پیش‌بینی آب‌نوردی در آینده خواهد بود.
جدول 2: گروه‌بندی هیدرولوژیکی سازنده و واحدهای زمین‌شناسی به سه گروه هیدرولوژیکی

<table>
<thead>
<tr>
<th>گروه سازندهای هیدرولوژیکی</th>
<th>نوع زیست‌شناختی</th>
<th>گروه‌بندی هیدرولوژیکی</th>
<th>میزان‌های تهیه‌در (days/km²)</th>
<th>میزان‌های مصرف (m/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>نیش‌کاران، چنی، مارکوم کوپلا، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>(2)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(3)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>(4)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(5)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(6)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(7)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(8)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(9)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(10)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(11)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(12)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(13)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(14)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(15)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(16)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(17)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(18)</td>
<td>تهیه‌کننده‌های اکیم، شیل، مارن، سیستون</td>
<td>کنیل‌های مانند، اکیم، شیل، مارن، سیستون</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>
جدول ۳ فرمول‌های نحوه میزان متقی‌های ورودی و خروجی به شیب

<table>
<thead>
<tr>
<th>فرمول‌های میزان متقی</th>
<th>نام</th>
<th>نوع متقی‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST.A=5(A-(6538/2))</td>
<td>A</td>
<td>میزان</td>
</tr>
<tr>
<td>ST.P1=5(P1-(55.10/2))</td>
<td>P1</td>
<td>ابعاد</td>
</tr>
<tr>
<td>ST.P5=5(P5-(119.85/2))</td>
<td>P5</td>
<td>ابعاد</td>
</tr>
<tr>
<td>ST.L=5(L-(228.91/2))</td>
<td>L</td>
<td>طول ابراهیمی</td>
</tr>
<tr>
<td>ST.H=5(H-(2900/2))</td>
<td>H</td>
<td>ارتفاع میانه‌ای حوزه</td>
</tr>
<tr>
<td>ST.S=5(s-(6.82/2))</td>
<td>S</td>
<td>شبب ابراهیمی (89-85) طول</td>
</tr>
<tr>
<td>ST.GI=5(GI-(2202.39/2))</td>
<td>GI</td>
<td>میزان متقی‌های با تغییر تپیداری زیاد</td>
</tr>
<tr>
<td>ST.GII=5(GII-(3828/2))</td>
<td>GII</td>
<td>میزان متقی‌های با تغییر تپیداری زیاد</td>
</tr>
<tr>
<td>ST.GIII=5(GIII-(3190.73/2))</td>
<td>GIII</td>
<td>میزان متقی‌های کم</td>
</tr>
<tr>
<td>ST.Qb=5(Qb-(371/2))</td>
<td>Qb</td>
<td>دی‌پابه</td>
</tr>
<tr>
<td>ST.Qp=5(Qp-(552/2))</td>
<td>Qp</td>
<td>دی‌ایر (میزان صفری)</td>
</tr>
</tbody>
</table>

(۲۱) به عبارت دیگر اثن تغییر در فضایی ورودی بر فضایی خروجی پرمسه شده و حساسیت خروجی یا خروجی‌ها به تغییر ورودی مشخص گردید (۱۸). تحلیل حساسیت می‌تواند در مشخص نمودن نقاط کنترل، جمع آوری داده‌های اضافی تأیید و اعتبارسنجی مدل کمک نموده و در زمینه‌های مختلف از جمله تحلیل سامانه‌های مهندسی پیچیده، فیزیک، اقتصاد و کاربرد داشته باشد (۱۹). با تحلیل حساسیت، همین رفتار سامانه مدل ساز در پلی برودی و ارزیابی میزان بر کارکرد و پایداری (Stability) مدل نیز امکان‌پذیر می‌شود. در مدل‌هایی به روش شبکه عصبی تحلیل حساسیت می‌توانند منجر به انجام هرس ساختار شکل که به عبارتی باعث حذف نرخ‌های مخفی غیر مؤثر بر روی خروجی شود (۱۱). در اینجا روش تحلیل حساسیت مدل به روش میانگین متقی‌های استفاده بوده است. میانگین متقی‌های جزئی (Partial Derivative) مرتبه اول، مناسب‌ترین نتیج به منطقه تابع شبکه عصبی را ارائه می‌نماید (۱۵). این روش تحلیل حساسیت در مقابل به روش‌های دیگر برای روابط غیر خطی از کارایی بهتری برخودارد می‌باشد (۱۳). اگر یک شبکه عصبی مصنوعی با یک لايه ورودی (لايه صفر) اکر یک لايه عصبی مصنوعی با یک لايه خروجی (N+1) با تابع (N+1) ، پیدا می‌شود (متفاوت) است. است.

۵. تحلیل حساسیت مدل

تحلیل حساسیت مدل عبارت از انجام اقداماتی است که میزان تأثیرگذاری هر یک از ورودی‌ها (متقی‌های مستقل) در اندازه تغییرات عامل خروجی (متفاوت بایسته) ارزیابی شده و میزان اهمیت آنها در تعیین مقدار صحیح اندازه خروجی تعیین شود.
شماره 1. ساختار شبکه عصبی مورد استفاده

اتقال پیوسته (سیگموئید و یا مشابه آن) در نظر گرفته شد.

میزان حساسیت مدل با استفاده از مشتق‌های زنجیره‌ای (Chaining) (از طرف خروجی به ورودی)، ابتدا نسبت به لایه

یا لایه‌های مخفی (N) محاسبه می‌شود (معادله 1 و 2) و بعد از آن بر اساس همه قاعده نسبت به ورودی‌ها محاسبه می‌شود.

(معادله 3)

\[\frac{\partial O_k}{\partial h_i^N} = \frac{\partial O_k}{\partial \text{net}_k^N} \cdot \frac{\partial \text{net}_k^N}{\partial h_i^N} = O_k (1 - O_k) w_{ki} \]

\[\frac{\partial O_k}{\partial h_i^N} = \sum_{j=1}^{N} \frac{\partial O_k}{\partial h_i^{j+1}} \cdot \frac{\partial h_i^{j+1}}{\partial h_i^N} \cdot \frac{\partial \text{net}_j^{j+1}}{\partial h_i^{j+1}} = \sum_{j=1}^{N} \frac{\partial O_k}{\partial h_i^{j+1}} \cdot h_i^{j+1} \cdot \frac{\partial \text{net}_j^{j+1}}{\partial h_i^{j+1}} = \]

\[\frac{\partial O_k}{\partial h_i^N} = \sum_{j=1}^{N} \frac{\partial O_k}{\partial h_i^{j+1}} \cdot \frac{\partial h_i^{j+1}}{\partial h_i^j} \cdot \frac{\partial \text{net}_j^{j+1}}{\partial h_i^j} = \sum_{j=1}^{N} \frac{\partial O_k}{\partial h_i^{j+1}} \cdot (1 - h_i^{j+1}) \cdot w_{ij} \]

برای حل معادلات مشتقات جزئی، ابتدا ماتریس وزن شبکه

در لایه خروجی و لایه‌های مخفی پس از تبیین وزن‌ها محاسبه

شده و پس از ضرب ماتریس‌ها به مسکوک، در نهایت بردار

وزن‌ها با تعداد روابط با تعداد وزن‌ها به دست آمده

است. سپس با نوچه به معادلات 1 و 3 مقدار مشتقات جزئی

شماره i در لایه‌های خروجی و لایه‌های مخفی از N تا 1، شماره j در لایه‌های مخفی از N تا 1 و i در لایه‌های خروجی و لایه‌های مخفی.

\[\frac{\partial \text{net}_j^{j+1}}{\partial h_i^{j+1}} = \text{NET}_j^{j+1} \]

شماره i در لایه‌های خروجی و لایه‌های مخفی از N تا 1، شماره j در لایه‌های مخفی از N تا 1 و i در لایه‌های خروجی و لایه‌های مخفی.

\[\frac{\partial h_i^{j+1}}{\partial h_i^{j+1}} = 1 \]

شماره i در لایه‌های خروجی و لایه‌های مخفی از N تا 1، شماره j در لایه‌های خروجی و لایه‌های مخفی.
شکل ۲. منحنی‌های رابطه مشتق‌های جزئی خروجی با هر یک از ورودی‌ها

شیب معیار شده پیش‌گویی ۰/۸۵ درصد طول آراها اصلی، طول آراها اصلی معیار شده،
زمان‌شناستی گروه یک، ارتفاع متوسط معیار شده حوزه، ST.P5 = بارندگی نگر روز قبل، ST.P.A = مصاحت معیار شده حوزه، ST.Qb = زمان‌شناستی گروه دو، DB = دبی پایه معیار شده.

$\frac{\partial O}{\partial L} = (O - 0.05^4 + 0.02^4 - 0.03^4 + 0.0^4) \cdot W_i$

$O = \text{متغیر خروجی}$ و $W_i = \text{وزن کلی هر یک از متغیرهای ورودی}$.

$\frac{\partial O}{\partial L} = \text{مشتق جزئی متغیر خروجی به متغیرهای ورودی}$

با استفاده از نرم‌افزار SPSS و برنامه‌های مختلف داده‌های انتخاب شده (۶۴۰ مورد داده‌های متغیر وابسته عضو دی آور و متغیرهای مستقل منظم) ضرایب همبستگی کل متغیرهای به صورت جفتی و همچنین مقاله رگرسیون چند متغیره خطي تحلیل شده و به روش برگشتی به کنار (Backward).

نتایج

با استفاده از داده‌های اعتبارسنجی که در انجام معادله رگرسیون چند متغیره عصبی و آزمون آن هیچ خروجی برای یک از ورودی‌ها بر حسب خروجی محاسبه شده (معادله ۴) و نتایج به صورت نمودار آنها شده است.

ساخته شده با روش مدل‌گرایی رگرسیون چند متغیره خطی، با استفاده از همان داده‌های مورد استفاده برای آموزش شبکه، معادله رگرسیون مربوط به وسیله ترم افزار MINITAB و با لجستگی نمودن عرض از بدایا برای شرایط به دست آمده است.

معادلات رگرسیون این متغیره خطی، معادله‌های ریاضی مستند که با استفاده از روش‌های آماری و توابع چند متغیر پیش‌بینی کننده (متغیرهای ورودی) قابل انجاد هستند. در این روش هر متغیر پیش‌بینی کننده یک ضریب خاصی را به خود اختصاص می‌دهد. این ضرایب علاطم به یک پایانگر میزان و ناحیه کنار این متغیر در میزان تابع (خروجی مدل) است (معادله ۵).

$STQP = 0/74AV + 0/53V + 0/30PL + 0/24Qb - 0/26L + 0/16GI - 0/35GII + 0/32GIII + 0/17Qb$ (۵)

برای فراهم نمودن امکان مقایسه نواهایی روش شبکه عصبی
جدول ۲. ضریب همبستگی و سطح احتمال معنی‌دار با همدیگر

<table>
<thead>
<tr>
<th>پیش‌بینی کننده</th>
<th>QP</th>
<th>A</th>
<th>P1</th>
<th>P5</th>
<th>L</th>
<th>H</th>
<th>S</th>
<th>GL</th>
<th>GH</th>
<th>GHH</th>
<th>Qb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qp</td>
<td>۱/۰۰۰</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>۰/۰۸۲</td>
<td>۰/۰۳۵</td>
<td>۰/۰۲۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۳۵</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
</tr>
<tr>
<td>P1</td>
<td>۰/۰۳۵</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۶</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۳۵</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۳۵</td>
</tr>
<tr>
<td>P5</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
</tr>
<tr>
<td>L</td>
<td>۰/۰۲۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
</tr>
<tr>
<td>H</td>
<td>۰/۰۳۵</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۲۴</td>
</tr>
<tr>
<td>S</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
</tr>
<tr>
<td>GL</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
</tr>
<tr>
<td>GH</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
</tr>
<tr>
<td>GHH</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۸۲</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۷۶</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
<td>۰/۰۴۴</td>
</tr>
<tr>
<td>Qb</td>
<td></td>
</tr>
</tbody>
</table>

سطح معنی‌دار تک‌طرفه

دبي اوج، A = مساحت حوزه آبيا، B = ضریب همبستگی پیکروه، C = ضریب دی‌اوج، D = طول آب، E = ارتفاع معیار حوزه آبيا، F = ضریب غربه هم‌سنجانه و واحد، G = ضریب غربه هم‌سنجانه و واحد، H = ضریب غربه هم‌سنجانه و واحد، I = ضریب غربه هم‌سنجانه و واحد، J = ضریب غربه هم‌سنجانه و واحد، K = ضریب غربه هم‌سنجانه و واحد، L = ضریب غربه هم‌سنجانه و واحد، M = ضریب غربه هم‌سنجانه و واحد، N = ضریب غربه هم‌سنجانه و واحد، O = ضریب غربه هم‌سنجانه و واحد، P = ضریب غربه هم‌سنجانه و واحد، Q = ضریب غربه هم‌سنجانه و واحد، R = ضریب غربه هم‌سنجانه و واحد، S = ضریب غربه هم‌سنجانه و واحد، T = ضریب غربه هم‌سنجانه و واحد، U = ضریب غربه هم‌سنجانه و واحد، V = ضریب غربه هم‌سنجانه و واحد، W = ضریب غربه هم‌سنجانه و واحد، X = ضریب غربه هم‌سنجانه و واحد، Y = ضریب غربه هم‌سنجانه و واحد، Z = ضریب غربه هم‌سنجانه و واحد، ۰ = ضریب غربه هم‌سنجانه و واحد، ۱ = ضریب غربه هم‌سنجانه و واحد، ۲ = ضریب غربه هم‌سنجانه و واحد.
جدول ۵. مراحل برگشت به عمل و مشخصه‌های آماری مدل‌های رگرسیون خطی در سه حالت حذف بعضی از متغیرها

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.136</td>
<td>0.023</td>
<td>0.777</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>GII</td>
<td>0.368</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
<tr>
<td>2</td>
<td>GII</td>
<td>0.241</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>0.019</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>GII</td>
<td>0.027</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>GII</td>
<td>0.368</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>0.019</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>GII</td>
<td>0.027</td>
<td>0.002</td>
<td>0.577</td>
<td>0.132</td>
</tr>
</tbody>
</table>

a. پیشینی کننده‌ها در مدل Qb, P1, G1, P5, S, GII, H, GII, L
b. پیشینی کننده‌ها در مدل GII, Qb, P1, G1, P5, S, GII, H, L
c. پیشینی کننده‌ها در مدل GII, Qb, P1, G1, P5, S, GII, H, L

توجه به افزایش مقدار خروجی (دب اوج) است، به طوری که تقییتاً شیب 10-10 درصد طول آراهام‌های گروه‌های شناسی و واحدهای سنگی در سطح ۰.۰۵ افزایش یافته است. در مقایسه با GII و P5، مقدار t و Sig. در مدل GII بین ۰.۰۲ و ۰.۰۳ است که نشان می‌دهد که مدل GII بهتر از مدل‌های P5 و GII است.

نتیجه‌نگری، نسبت به برآورد دبی اوج توسط هر دو مدل و محاسبه پارامترهای آماری آنها اقدام شد. روش کار به این صورت بود که ابتدا در سطح معیار شده، دبی اوج توسط مدل‌ها برآورد شد. سپس بر اساس روابط مندیدر جدول ۵، دبی اوهای معیار شده به دبی‌های با مقدار واقي و تبدیل گشته و بر اساس این داده‌ها پارامترهای آماری محاسبه گردیده است. (جدول ۶، شکل ۱۱). همچنان که از جدول ۶ بر می‌آید، در دو سرده میزان دبی اوج با عناصر مختلف فعالیت برآورد شده که فاصله منطقی است.

موفقیت‌های ثابتی و روش مشتق‌های جزئی (شکل ۱۲), از پیشینی تأثیر مشتق‌های ورودی به مکان‌های بنیان بر روی دبی اوج در شرایط خاصی تأثیرات از شیب ۰.۵۰ درصد طول آراهام اصلی (س) افزایش دی‌پی و واحدهای سنگی (GI) و (GII) دبی‌پایه (Qb)، طول آراهام اصلی (L) ثابت منجر به افزایش مقدار خروجی (دب اوج) می‌شود. باین‌ها به ترتیب به مدل‌های GII و P5 مدل‌های پیشینی کننده‌ها در سطح ۰.۰۵ مورد آزمایش قرار گرفته‌اند. در حضور رگرسیون دیگری که با استفاده از نرم‌افزار انجام شده (جدول ۵)، نشان می‌دهد که هنگامی که یک نوع به دقت در مقدار مشتق‌های سنگی، سه متغیر ورودی مدل رگرسیون خطی شامل
شکل ۳ رابطه دی اوج برآوردی و مشاهدهای بر اساس داده‌های اعتبارسنجی به روش شبکه عصبی مصنوعی

شکل ۴ رابطه دی اوج برآوردی و مشاهدهای بر اساس داده‌های اعتبارسنجی به روش رگرسیون چند متغیره خطی
جدول 6 دی اوج مشاهداتی و برآوردی با استفاده از نمونه داده‌های اعتبار سنجی (ی/3) (m3)

<table>
<thead>
<tr>
<th>برآوردی رسپسر</th>
<th>مشاهداتی</th>
<th>برآوردی رسپسر</th>
<th>مشاهداتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/6</td>
<td>10/3</td>
<td>30/5</td>
<td>11/0</td>
</tr>
<tr>
<td>32/8</td>
<td>44/8</td>
<td>32/7</td>
<td>54/4</td>
</tr>
<tr>
<td>34/50</td>
<td>33/8/2</td>
<td>6/17</td>
<td>79/2</td>
</tr>
<tr>
<td>38/1</td>
<td>19/5/2</td>
<td>30/6</td>
<td>84/9</td>
</tr>
<tr>
<td>41/11</td>
<td>11/4</td>
<td>39</td>
<td>11/9</td>
</tr>
<tr>
<td>44/47</td>
<td>21/0</td>
<td>21/6</td>
<td>17/3</td>
</tr>
<tr>
<td>47</td>
<td>38/7</td>
<td>18/50</td>
<td>32/40</td>
</tr>
<tr>
<td>49/50</td>
<td>84/26</td>
<td>15/94</td>
<td>132/95</td>
</tr>
<tr>
<td>50/7</td>
<td>10/36</td>
<td>24/7</td>
<td>33/5</td>
</tr>
<tr>
<td>50/24</td>
<td>122/34</td>
<td>19/43</td>
<td>22/4</td>
</tr>
<tr>
<td>57/80</td>
<td>42/3</td>
<td>18/50</td>
<td>21/9</td>
</tr>
<tr>
<td>57/80</td>
<td>21/7</td>
<td>20/24</td>
<td>61/0</td>
</tr>
<tr>
<td>57/20</td>
<td>57/8</td>
<td>33/20</td>
<td>66/33</td>
</tr>
<tr>
<td>59/3</td>
<td>156/5</td>
<td>58/17</td>
<td>100</td>
</tr>
<tr>
<td>63</td>
<td>21/85</td>
<td>28/25</td>
<td>24/8</td>
</tr>
<tr>
<td>65/80</td>
<td>152</td>
<td>27/3</td>
<td>95/58</td>
</tr>
<tr>
<td>69</td>
<td>170/10</td>
<td>38/2</td>
<td>9/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15/1</td>
</tr>
</tbody>
</table>

آنجا که در هر زیر جدول، مجموع مساحت گروه‌های هیدرولوژیکی برای یک مساحت حوزه آبیاری می‌باشد. لذا رفتار آنها در بالا ارگذاری بر مقدار دی اوج به هم‌بندی نیز واپس‌برده و باعث پیچیدگی تحمل رفتار هیدرولوژیکی آنها می‌شود.

بحث

بر اساس تحلیل حساسیت، سازندگی زمین‌شناسی و واحد‌های سنگی مجموع شده ذهنه در سه گروه هیدرولوژیکی با نفوذپذیری یک (ریک) دو (متوسط) و سه (کم) از نظر ارگذاری بر مقدار دی اوج آثار نمایش داده و احتمالاً منجر به افزایش تفاوت نفوذپذیری گروه‌های هیدرولوژیکی با هم‌بندی است. از

نتیجه‌های مساحت، گروه هیدرولوژیکی با نفوذپذیری کم و بارندگی پنج روز قبل از مدل گزارش می‌باشد.
جدول 7 مقایسه آماره‌های مدل شیک عصبی با مدل رگرسیون چند متغیره خطي بر اساس داده‌های اعتبار سنجی

<table>
<thead>
<tr>
<th>پارامترهای آماری رگرسیون خطي</th>
<th>پارامترهای آماری شیک عصبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2=0.33$</td>
<td>$R^2=0.28$</td>
</tr>
<tr>
<td>$F=3.45$</td>
<td>$F=33.69$</td>
</tr>
<tr>
<td>MSE=429.3</td>
<td>MSE=1283.4</td>
</tr>
<tr>
<td>$MAE=24$</td>
<td>$MAE=22$</td>
</tr>
<tr>
<td>$MBE=-39$</td>
<td>$MBE=-28$</td>
</tr>
</tbody>
</table>

کاربردی آن اضافه می‌گردد. بنابراین با روش‌های حساب‌سنجی، امکان رده‌بندی قاطع و مستقل از متغیرها بر روی عامل خروجی (دبی اوج) وجود ندارد. مدل ساخته شده به روش شیک قرار داده برای انجام پیش‌بینی قبل قبول دی اوج در دامنه وسیعی از تغییرات و سرعت از حوزه در بخش برز مناسب حوزه ابزار سفیدرو در مقایسه با روش رگرسیون چند متغیر خصیت مشابه داشت. همچنین که از جدول 6 و شکل 4 برای حدود 100 متر مکعب بر ثانیه به ازای دو اوج مشاهده‌ای برای ما دیده می‌شود. این امر بین موقعی است که به طور متوسط 100 متر مکعب بر ثانیه مقدار پیاده‌ای از مقادیر مشاهده‌ای پیش‌بینی می‌شود. همین موضوع در دبی‌های برابری دیده می‌شود. به علاوه عوامل مختلف در مورد در داخل جدول دی اوج مشاهده شده است که به همین وجه توجه مطلق و قرارگذاری ندارند. این مسئله با توجه به جدول 4 و شکل 3 تطبیقی با کلیه بروزهای دیده اوج روش شیکه... بر داده‌های مشاهده شده محور سود و مخصوصاً خط برازش داده شده به داده‌های دی اوج مشاهده‌ای و برابری از مرکز محور مختصات عبور می‌نماید. همچنین نقطه ضعف رگرسیون چند متغیره خطی را می‌توان در ادمام تمام این نتایج و ارزیابی این مدل رگرسیون خطی شاخص متغیرهای مساحت، گرمایه و هیدرولوژیکی با نفوذی‌بودن کم و بارندگی بیشتر و مدل رگرسیون چند متغیره خطي بر اساس داده‌های اعتبار سنجی در طول زمان بارندگی، با استفاده در توانایی و روانگاه تفاوت‌ها را از این این گروه‌ها زبان‌های هیدرولوژیکی انتظار داشت.

ساختار حوزه ابزاری می‌تواند بخش عمده‌ای از سایر ویژگی‌های مورفومتری حوزه را نمایندگی کند. همین امر می‌تواند توجه کندن جایگزینی سطح حوزه آبی به جای شیب آب‌راه اصلی، طول اب‌راه اصلی و ارتفاع از سطح دریا و در نتیجه کاهش تعداد متغیرهای ورودی مدل شود. اما هر جهت عامل مؤثر در یک‌دیده در هم ادغام شوند، منجر به افزایش خطای هر چه بیشتر اختصاصی شدن مدل ساخته شده برای یک ناحیه جغرافیایی خاص خواهد بود. بین نمود لحاظ چگالی نمودن مساحت به گاه متغیرهای مذکور کلیه نتوانسته هستند که کاهش گونه‌ای را بر تولید خروجی بعنی دبی اوج دارد. از آنجا که این متغیر نمایندگی نوع آب و هوای پوشش گیاهی و کاربری اراضی را به عهده دارد، به نظر می‌رسد که حذف آن در مدل شیک عصبی ضروری باشد. این می‌توان باعث این تأثیرات این عامل را در داخل متغیرهای دیگر مانند ملاحظه نمود. خواسته که با کاهش مساحت حوزه ابزار و ارتفاع متوسط آن افزوده می‌شود.

این موضوع از شکل 2 نیز قابل دریافت است. به طوری که فاصله بین مساحت مساحت بی‌محور افقی تقریباً برابر با میزان فاصله بین مساحت مساحت بی‌محور افقی ارتفاع، طول و شیب آب‌راه اصلی است. از آنجا که به صورت کم بودن متغیرهای یک مدل به شرط محدود مانند کارایی بر ارزش
منابع مورد استفاده
1. حسینی، م. 1379. مدل شکل عصبی مصنوعی برای تیغین هیدروگراف سیلاب‌های پایان‌نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، تهران.
2. رضائی، ع. 1380. مدل‌سازی فرسایش با استفاده از شکل عصبی مصنوعی، همایش ملی مدیریت اراضی - فرسایش خاک و توسه، پایدار، صفحه 256-272.
3. رضائی، ع. 1382. شیبه سازی آبینمود ذوب بر فرض اساس شبکه عصبی مصنوعی در حوزه آبخیز ته نژان، هشتادمین سمینار سراسري آبیاری و کاشت تبخیر، دانشگاه بهشهر کرمان، صفحه 65-72.
4. رهنما، م. و. و. 1382. پیش‌بینی سیلاب‌های خوزستان از شکل عصبی مصنوعی، هشتادمین سمینار سراسري آبیاری و کاشت تبخیر، دانشگاه بهشهر کرمان، صفحه 65-72.
5. شرکت سهامی آب منطقه‌ای گیلان - معاونت مطالعات پایه منابع آب. 1376. گزارش تلفیق مطالعات منابع آب جوزه آبیر سفیدوز و شرق و غرب گیلان. جلد اول (آمار و اطلاعات و بررسی مقدمات آن، ضمیمه‌های 21 و 1-3، شرکت سهامی آب منطقه‌ای گیلان، رشت.
6. ناهید، م. 1377. مشابهت‌های عصبی جلد اول، مرکز پژوهش حسابی، تهران.
7. ناظمی، ع. 1380. کاربرد محاسبات نرم در مهندسی منابع آب. چهارمین کنفرانس دانشجویی سیستم‌های هوشمند، دانشگاه صنعتی خواجه نصیر طوسی، تهران.

