مدل سازی منطقه‌ای دبی‌های اوج در زیر حوزه‌های آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی

چکیده
مدل مورد بحث در این تحقیق با استفاده از شبکه عصبی مصنوعی ساخته شده و در حوزه آبخیز سفیدرود (ناحیه غرب خوزستان) و استنج شده است. انجام این تحقیق بمنеж بر جمع آوری و انتخاب آن‌مودهای فقط با مشابه بازدهی در 14 زیر حوزه با زمان تمرکز برابر و باکتری از 24 ساعت بوده است. از کل زیر حوزه‌های انتخابی به تعداد 661 آن‌موده به منظور استفاده از دیگر اوج آنها در حال ساخت مدل پیش‌بینی، انتخاب گردیده است. تنظیماتی و همچنین مدل شامل پارامترها یک‌بردزه سیلزیا و بازگشت به روز قبل هر دیگر اوج، ساخت زیر حوزه، طول آب‌ریزه اصلی، شیب 85 درصد طول آب‌ریزه اصلی، ارتفاع میانه حوزه، ساخت سازندگان ده‌دماش‌های زمین‌شناسی و واحد‌های سنتی در سه گروه هیدرولوژیکی یک، دو و سه، دیپ پایه و متغیر خروجی نیز تهیه ذخیره است. توسط روش شبکه عصبی مصنوعی از نوع تغذیه به چند و روش آموزش پس انتشار قطع، تابع تبدیل متغیر‌های ورودی به متغیر خروجی با طول سه مرحله آموزش، آزمایش و اعتبارسنجی به دست آمده است. همچنین بر اساس همان داده‌ها و متغیرها، مدل رگرسیون چند متغیره خطی برای منطقه مورد بررسی ساخته شد. نتیجه مقایسه دیگر آموزشی و برآورد کد رنگ‌دانشی داده‌های اعتبار سنجی نشان می‌دهد که پارامترهای آماری ضریب (R²) و ضریب آمار آزمون فیشر (F)، برای مدل شبکه عصبی و رگرسیون چند متغیره خطی به ترتیب 0/84، 0/33/56، 0/23/06، 0/53/03، 0/37/06، 0/47 و 0/53 بوده و بایانگر ارچه‌ای کاملاً مدل شبکه عصبی بر روی‌های است. است.

واژه‌های کلیدی: باران‌گر، روان‌اب، دبی اوج، سازندگان

مقدمه

دبی اوج (Hydrograph) به صورت سیال‌ها و به ویژه سیال‌های دبی اوج (Peak flow) می‌باشد. جهت برآورد این عامل در 1. دکتری آبخیزداری و عضو هیئت علمی مرکز تحقیقات کارزاری و منابع طبیعی استان زنجان
2. استان هیدرولوژی، دانشگاه مبیماری، دانشگاه تهران
3. استاد مهندسی برق، دانشگاه فنی، دانشگاه تهران
4. استاد زمین‌شناسی، دانشگاه مبیماری، دانشگاه تهران
5. استاد سرپوشیده مرکز تحقیقات حفاظت خاک و آبخیزداری، تهران

در نهایت

۲۵
حوزههای فاقد آمار از مدل‌های تجربی مختلفی از جمله‌ی روش تحلیل منطقه‌ای سیالی استفاده می‌شود. ولی واقعیت آن است که هر حوزه آبی از یک گروه‌های خاص عضو را داشته و لازم است روش‌های جستجو شود که بتوانند بر اساس خصوصیات ذاتی هر حوزه آبی (مغزه‌های مستقل) دیگر آنها شیبهٔ سازی نمایند. اما به دلیل پیچیدگی و روابط غیر خطی وارتدگی - روان‌بندی (Rainfall-Runoff) به‌هم‌امسال از اتجام تحلیل‌های فیزیکی که در برگیری ضرایب فرآوران معین (Deterministic) برای تنظیم فرمالی‌های می‌باشند، می‌تواند چندین پیش‌بینی شده از روش‌های محاسباتی ترم (Soft computing) که از قدرت انعطاف‌پذیری بالایی (Artificial intelligence) برخوردار است، به‌طور جزئی و شایع به‌طور کلی است. اما با اینکه با اندازه‌گیری نسبتاً مستقل از حوزه آبی از جمله مساحت، طول آب‌راه اصلی و به‌عنوان مفاهیم‌های ورودی به سامانه‌شناسی عصبی، می‌توان به یک مدل تعمیم‌یافته (Generalized) هستی پایه. به‌دینه‌ای در مدل به‌دست آمده پیش‌بینی ون را از مفاهیم ورودی خواهد داشت که پیش‌بینی تأثیر را در خروجی آن دارد (7 و 13). نظیره ضعف شیب‌های عصبی در جعبه سیاه (Black box) به‌ون و عدم وجود قانون تایید شده برای معادلی شیبکه‌ها است (6). وزیری سری‌های زمانی توپوگرافی سطح آب دریاچه ارومیه را برای دوره‌های زمانی 1967 تا 1999 با استفاده از شیب‌های عصبی مساحتی و اریمنی (Auto Regressive Integration Moving Average) بررسی، ارزیابی و مقایسه قرار داد است (24). حسی شکریه از استفاده از شیب‌های عصبی مساحتی این‌مود سیالی سه حوزه، با خصوصیات و ابعاد مختلف را شیب‌های سازی نموده و اعلام مدارک این روش در مقایسه را برای حوزه‌های سنتی به ویژه در شبیه‌سازی شاخص صفوی این‌مود از توانایی پیش‌بینی برخوردار است (1). رضایی و ناظری کاربرد روش‌های مختلف به‌صورت مساحتی را از مساحت‌های مختلف قابل‌پیمایش و نمونه‌های مقایسه را در فرآیند تکمیل و منابع آب طرح کره و قابلیت آنها را در مقایسه را برای حوزه‌های سنتی معیار بانوان مهندسی 20 و 72.
در حوزه آبخیز سد سفیدرود زیر حوزه‌ها در مقاطع
مذکور بسته شده و زمان تمرکز مورد برآورد قرار گرفته است. از آنجا که بارندگی و روزه‌سنگ‌هایی (P1) از طرف جوهربرداری و روغنی به مدت می‌باشد. لذا به منظور
هم‌انگیزی نسبت می‌بیند (نام‌نام) بارش و زمان تمرکز
حوزه. از میان زیر حوزه‌های مورد بررسی، آنها که زمان
تمکز برای و یا کمتر از 24 ساعت داشته‌اند انتخاب شده و
برای در میان زیر حوزه‌های فیزیوگرافی آنها به عنوان عامل‌های
اترکذار در دو بیو اس افته‌اند از نقشه‌های تیپوگرافی
اندازه‌گیری شده است (جدول 1). از میان عوامل فیزیوگرافی
حوزه‌های آبخیز انتخابی به دیدگاه وابسته بعضاً عامل‌ها به
هم‌انگیزی (16) در حجم امواج عامل‌های مستقل می‌باشد قرار
گرفته است.

2. مقدمه‌سازی گروه‌های هیدرولوژیک سازندهنگ زمین‌شناسی و واحد‌های سنجی
یکی از عوامل سیاسی مهم و به عبارتی تأثیر کاذب تناوبی در
ایجاد دبی اوج. امکان وجود عمق روشن در سطح حوزه آبخیز
است. عمق روشن در حوزه نیز تابعی از مقدار و شدت بارندگی
و میزان سطح در سطح حوزه آبخزی می‌باشد. عمقه عامل
افزایش سطح لفف‌بندی و در نهایت در حفر اوج است. لذا به
تیم‌سازی سازندهنگ زمین‌شناسی و واحد‌های سنجی به
گروه‌های هیدرولوژیکی با اخلاقیت منعی‌دار این مهم قابل
حرصو است. این مرحله از کار مشترک بزرگ هدایت و اطلاعات
حازم به بررسی فیزیوگرافی، سازندهنگ زمین‌شناسی
حوزه آبخزی سطح بوده است (5). روشن کار به این ترتیب
بوده است که این‌گونه سازندهنگ زمین‌شناسی در دو طبقه
کلی به نام‌های گروه سازندهنگ رسوایی تابوسته و گروه
سازندهنگ سخت تیم‌سازی شده‌اند. سپس با توجه به میزان
رفتار نوعی زنده‌گواری و ویژگی‌های هیدرودینامیکی همچون ضریب
هدایت هیدرولوکی برای رسوایی تابوسته و دی و پی ژرف

27
جدول 1. برخی ویژگی‌های فیزیوگرافی زیست‌جوری‌های آمیختگی در جوهر آمیختگی سد سفیدرود

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام جوهر آمیختگی</th>
<th>زمان تمرکز (ثانیه)</th>
<th>ضریب کراده (گردن)</th>
<th>عرض مطلوب (کیلومتر)</th>
<th>طول مطلوب (کیلومتر)</th>
<th>میانه ارتفاع (متر)</th>
<th>میانه وزن جوهر (کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>طریقت - جوهرستان</td>
<td>0.3</td>
<td>1.24</td>
<td>3.94</td>
<td>19.06</td>
<td>0.2</td>
<td>284.0</td>
</tr>
<tr>
<td>2</td>
<td>مهران - جوهرستان</td>
<td>0.88</td>
<td>1.37</td>
<td>5.34</td>
<td>19.99</td>
<td>0.8</td>
<td>400.0</td>
</tr>
<tr>
<td>3</td>
<td>تهم - پالویلو</td>
<td>1.15</td>
<td>1.16</td>
<td>8.75</td>
<td>23.44</td>
<td>3</td>
<td>195.0</td>
</tr>
<tr>
<td>4</td>
<td>منار - همدان</td>
<td>0.47</td>
<td>0.35</td>
<td>8.47</td>
<td>30.3</td>
<td>1</td>
<td>194.0</td>
</tr>
<tr>
<td>5</td>
<td>طبیعت - جوهرستان</td>
<td>0.21</td>
<td>1.83</td>
<td>9.64</td>
<td>23.94</td>
<td>3.9</td>
<td>250.0</td>
</tr>
<tr>
<td>6</td>
<td>ماهوود - کالیه</td>
<td>0.16</td>
<td>0.13</td>
<td>5.18</td>
<td>15.49</td>
<td>0.1</td>
<td>250.0</td>
</tr>
<tr>
<td>7</td>
<td>طبیعت - کالیه</td>
<td>0.77</td>
<td>1.39</td>
<td>5.17</td>
<td>35.33</td>
<td>7</td>
<td>282.0</td>
</tr>
<tr>
<td>8</td>
<td>قانون گزش - نامه</td>
<td>0.24</td>
<td>0.24</td>
<td>1.34</td>
<td>7.46</td>
<td>0.1</td>
<td>215.0</td>
</tr>
<tr>
<td>9</td>
<td>شاهروود - دسته</td>
<td>0.17</td>
<td>0.37</td>
<td>3.54</td>
<td>13.94</td>
<td>0.3</td>
<td>230.0</td>
</tr>
<tr>
<td>10</td>
<td>فلور - سنام</td>
<td>0.62</td>
<td>0.21</td>
<td>6.18</td>
<td>27.91</td>
<td>0.9</td>
<td>190.0</td>
</tr>
<tr>
<td>11</td>
<td>شاهروود - لوشن</td>
<td>0.09</td>
<td>0.20</td>
<td>2.06</td>
<td>12.99</td>
<td>0.09</td>
<td>180.0</td>
</tr>
<tr>
<td>12</td>
<td>فلور - سنام</td>
<td>0.08</td>
<td>0.20</td>
<td>1.88</td>
<td>14.28</td>
<td>0.2</td>
<td>180.0</td>
</tr>
</tbody>
</table>

سازمان‌های ساخت و واحدهای سنگی، کلیه سازنده‌های موجود در زیر جوهرهای در قبلاً گروه‌های هیدرولوژیکی سازمان‌های تخصصی سازنده‌های زمین‌شناسی و واحدهای سنگی نیز، تحقیقاتی زمین‌شناسی 20,500,000 سازمان زمین‌شناسی کشور تعداد است.

3. نحوه جمع‌آوری، پیش بودن و دستورالعمل داده‌ها و ساختن مدل

با استفاده از گزارش‌های سیلاب ایستگاه‌های آب‌انبار جمع‌آوری شده از سازنده‌های اب استان‌های زنجان، تهران، گیلان و کردستان، در کل به تعداد 194 مورد آب‌انبار از آنها استخراج شد. خود سنگ‌زهای بوز مربوط به سازانه در این کل است، بزرگ‌ترین جمع‌آوری شده از سازنده‌های تحقیقاتی از آب‌انبار بزرگ‌ترین کار گرفته و به‌عنوان سازنده محاسبه گردیده، بوم نشان‌های هنری پژوهان نیز ایستگاه‌های ایستگاه‌های مجاور جمع‌آوری شده و مهندسان حساب‌های آنها به عنوان پژوهان بزرگ‌ترین محاسبه گردیده. بسیار به‌عنوان بزرگ‌ترین بودن در این کل است، بزرگ‌ترین و تحقیقاتی هنر. بزرگ‌ترین بانک بزرگ‌ترین و تحقیقاتی H
جدول ۲. گروه‌بندی هیدرولوژیکی سازنده و واحدهای زمین‌شناختی به سه گروه هیدرولوژیکی

<table>
<thead>
<tr>
<th>کریتیریوم</th>
<th>تعداد</th>
<th>نوع زیرخاکساز</th>
<th>سطح زمین‌شناختی</th>
<th>میان‌گویی</th>
<th>ضریب هولی (ff/km²)</th>
<th>وادا</th>
<th>قسمت</th>
<th>هیدرولوژیکی</th>
<th>هیدرولوژیکی</th>
<th>هیدرولوژیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>215</td>
<td>کریتیریوم سازنده</td>
<td>مرسوم</td>
<td>0.356</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کریتیریوم تخریبی</td>
<td>مرسوم</td>
<td>0.355</td>
<td>187</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کریتیریوم تخریبی</td>
<td>کم</td>
<td>0.353</td>
<td>103</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>103</td>
<td>کریتیریوم سازنده</td>
<td>11</td>
<td>0.351</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کریتیریوم سازنده</td>
<td>12</td>
<td>0.352</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کریتیریوم سازنده</td>
<td>13</td>
<td>0.353</td>
<td>94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>کریتیریوم سازنده</td>
<td>14</td>
<td>0.354</td>
<td>93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کریتیریوم سازنده</td>
<td>15</td>
<td>0.355</td>
<td>92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

در سطح زمین‌شناختی گزارش‌های دیگری که در واقعیت به طرف‌های مختلف داده‌ها و مشترک‌های مختلف در این محیط صورت گرفته، مانند شرایط‌های طبیعی، موقعیت و موقعیت‌های آب‌های زمین‌شناختی که براساس با تخمین‌های اخیر سدهای گذشته فرد یا به‌عنوان استفاده از...
جدول ۳: فرمول‌های نحوه‌ی معیار میانگینی ورودی و خروجی به شبکه

<table>
<thead>
<tr>
<th>فرمول‌های معیار میانگینی</th>
<th>نامدار</th>
<th>نوع متغیرها</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST.A = 5(A - 6538/2) / 6538/2</td>
<td>A</td>
<td>مناسب</td>
</tr>
<tr>
<td>ST.P1 = 5(P1 - 55.10/2) / 55.10/2</td>
<td>P1</td>
<td>بازدرگی پیکره</td>
</tr>
</tbody>
</table>
شماره i در لایه i تابع خروجی نترون شماره i در لایه مخفي j در طوری که زیردار است از $i+1$. نتیجه خروجی h_i^j خروجی نترون i در لایه j مخفي اول است. خروجی نترون i در لایه j مخفي اول به طوری که زیردار است از $i+1$. جمع مخفي اول Net_k^{i+1} $= \sum_{i} h_i^j \cdot w_{ik}$.

برای حل معادلات مشتقات جزئی، ابتدا متغیر وزن شکه در لایه خروجی و لایه‌های مخفي پس از ثبت وزن‌ها محاسبه شده و پس از ضرب متغیرها به مقادیر وزن‌ها با تعداد روابط با تعداد وزن‌ها به دست آمده است. سپس با توجه به معادلات 2.1 و 3.3 مشتقات جزئی انتقال پیوسته (دیک مونتی و یا مشابه آن) در نظر گرفته شد.

میزان حساسیت مدل با استفاده از مشتقات جزئی زنجیره‌ای (Chaining) از طرف خروجی به ورودی، ابتدا نسبت به لایه i یا لایه‌های مخفي N محاسبه شده (معادله 2.4) و بعد از آن بر اساس همین قاعده نسبت به ورودی ورودی‌ها محاسبه می‌شود.

(معادله 3)

\[
\frac{\partial O_k}{\partial h_i^j} = \frac{\partial O_k}{\partial \text{Net}_k^{i+1}} \frac{\partial \text{Net}_k^{i+1}}{\partial h_i^j} = O_k (1 - O_k) \cdot w_{ik} \\
\frac{\partial O_k}{\partial h_i^j} = \sum_{l} \frac{\partial O_k}{\partial h_l^{j'}} \cdot \frac{\partial h_l^{j'}}{\partial h_i^j} = \sum_{l} \frac{\partial O_k}{\partial h_l^{j'}} \cdot h_l^{j'} \cdot (1 - h_l^{j'}) \\
\frac{\partial O_k}{\partial h_i^j} = \sum_{l} \frac{\partial O_k}{\partial h_l^{j'}} \cdot h_l^{j'} \cdot (1 - h_l^{j'}) = \sum_{l} \frac{\partial O_k}{\partial h_l^{j'}} \cdot w_{lk}
\]
شکل ۲: متقاطع رابطه مشاهده جزئی خروجی با هر یک از ورودی‌ها

زاویه مشاهده شده ST.GI = ST.P1 = ST.L
ارتقاً مستقل مشاهده شده ST.P5 = ST.T.A
داشت مشاهده خود شده ST.Qb = ST.T.A
داشت مشاهده ستاندارد و واحدهای زمین شناسی گروه یک
داشت مشاهده ستاندارد و واحدهای زمین شناسی گروه دو
داشت مشاهده ستاندارد و واحدهای زمین شناسی گروه سه

واضحه شده با روش سنتی رگرسیون چند متغیره خطی، با استفاده از همان دادههای مورد استفاده برای آموزش شبکه، مدل رگرسیون مناسب به وسیله نرم افزار MINITAB و با لحاظ نمودن عرض از مبدا برای با صفر، به دست آمده است.

کننده متغیرها ورودی قابل اجاده هستند. در این روش هر متغیر پیشینی کننده یک ضریب خاصی را به خود اختصاص می دهد. این امر و اعلام این ضرایب بیانگر میزان و نحوه ترکیبی آن متغیر در میزان تابع (خروجی مدل) است (معادله ۵)

\[
\frac{\partial O}{\partial i} = (0 - 3O_i + 5O_i - 2O_i + O_i) \cdot W_i
\]

\[\hat{O} = \frac{\partial O}{\partial i} = \text{مشتق جزئی متغیر خروجی به متغیرهای ورودی.}
\]

با استفاده از نرم افزار SPSS و برنامه مختلف داده‌های انتحاب شده (66) مورد داده‌های متغیر واسته بررسی دی اوج و متغیرهای مستقل متغیر سنجانه، ضرایب همبستگی کل متغیرهای به صورت جفتی و همچنین در قالب مدل های رگرسیون چند متغیره، خطي تحلیل شده و به روش برگشتی به عقب (Backward)

متغیرهای با ارزشی کم مشخص شده اند (جدول ۴ و ۵).

برای فراهم نمودن امکان مقایسه نوایای روش شبکه عصبی

نتایج

با استفاده از دادههای اعتبارسنجی که در اجاده مدل رگرسیون

چند متغیره خطی و آموزش شبکه عصبی و آزمون آن هیچ
<table>
<thead>
<tr>
<th>QP</th>
<th>A</th>
<th>P1</th>
<th>PI</th>
<th>PS</th>
<th>L</th>
<th>H</th>
<th>S</th>
<th>G1</th>
<th>GII</th>
<th>GIII</th>
<th>Qb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>
جدول ۵: مراحل برگشت به عقب و مشخص‌سازی آماری مدل‌های رگرسیون خطی در سه حالت حذف بعضی از متغیرها

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation Tolerance</th>
<th>Collinearity Statistics</th>
<th>Minimum Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>۱/۱۵۶E-۰۲</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>GII</td>
<td>۰/۱۳۶b</td>
<td>۰/۳۳۵</td>
<td>۰/۸۷۷</td>
<td>۰/۱۳</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>P5</td>
<td>۰/۱۳۶c</td>
<td>۰/۳۳۵</td>
<td>۰/۸۷۷</td>
<td>۰/۱۳</td>
<td></td>
</tr>
</tbody>
</table>

آماره‌گزاری: A. پیشینی کننده در مدل Qb, P1, GI, P5, S, GII, H, GIII, L

آماره‌گزاری: B. پیشینی کننده در مدل Qb, P1, GI, P5, S, GII, H, L

آماره‌گزاری: C. پیشینی کننده در مدل Qb, P1, GI, S, GII, H, L

بُندی‌ها و فاکتورهای تأثیرگذار بر توجه به افزایش مقدار خروجی (دبی اوج) است، به طوری که تقریباً شیب گام‌های طول آبراهه اصلی با سازنده‌ی زمین‌شناسی و واحدهای سنگی گروه هیدرولوژیکی سه‌رده‌ی سرعت اثرگذاری مساوی هستند. در مطالعه‌ی رگرسیون جنوبی تشخیص داده شد که مساحت روزهای آب‌زدایی و بعد از آن پایه پیشینی ضریب رگرسیون را با علامت منفی بی‌خود اختصاص داده و در مقابل عامل بارندگی پیش روز قبل و سازنده‌ی زمین‌شناسی و واحدهای سنگی با هم‌خوانی‌های متوسط کمتری ضریب رگرسیونی را تأمین با علامت منفی دارا می‌آورند. بستگی ضریب رگرسیونی کوچک‌تر باید متفاوت ورودی بایاک اثر گذاری که آن تبیین در مقایسه به علائم‌های دیگر با ضریب رگرسیونی بزرگ‌تر بوده و علامت منفی ضریب بعنوان اثرگذاری افزایش و علامت منفی به عنوان اثرگذاری کاهشی در اندام دبی اوج می‌باشد. ضریب رگرسیون معنای گوشهای ورودی اثرگذاری متوسط حوزه، گروه‌های هیدرولوژیکی به نفوذپذیری متوسط و زیاد معنی‌دار نیز به‌دنبال اینفیکشن و بیز عباراتی کلی حذف از عواملی می‌باشد. در تحلیل رگرسیون دیگری که با استفاده از نرم‌افزار انجام شده (جدول ۵)، نشان می‌دهد که تنها با کاهش یک دهم در مقدار ضریب همبستگی، سه متری ورودی مدل رگرسیون خطی شامل‌کشیده‌های بیانگر سرعت تغییرات اثرگذاری بر مقدار خروجی است

۲۴
شکل ۳ رابطه دی اوج پراورده و مشاهدهای بر اساس داده‌های اعتبارسنجی به روش شبکه عصبی مصنوعی

شکل ۴ رابطه دی اوج پراورده و مشاهدهای بر اساس داده‌های اعتبارسنجی به روش رگرسیون چند منفر هشت خطی
جدول 6: دی‌ای اوج مشاهده‌ای و پراوردی با استفاده از نمونه‌های اختیار سنجی (m3/س)

<table>
<thead>
<tr>
<th>برآوردی شیشه</th>
<th>برآوردی گرگرسون</th>
<th>مشاهده‌ای</th>
<th>مشاهده‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/6</td>
<td>30/0</td>
<td>10/0</td>
<td>100/87</td>
</tr>
<tr>
<td>31/8</td>
<td>30/4</td>
<td>29/2</td>
<td>100/36</td>
</tr>
<tr>
<td>43/50</td>
<td>37/4</td>
<td>10/0</td>
<td>4/6</td>
</tr>
<tr>
<td>38/1</td>
<td>30/0</td>
<td>9/2</td>
<td>100/17</td>
</tr>
<tr>
<td>40</td>
<td>9/2</td>
<td>8/3</td>
<td>99/95</td>
</tr>
<tr>
<td>41</td>
<td>10/0</td>
<td>1/9</td>
<td>137/1</td>
</tr>
<tr>
<td>42/42</td>
<td>5/9</td>
<td>7/5</td>
<td>37/5</td>
</tr>
<tr>
<td>44/77</td>
<td>8/3</td>
<td>3/8</td>
<td>12/0</td>
</tr>
<tr>
<td>49/85</td>
<td>82/0</td>
<td>7/4</td>
<td>196/57</td>
</tr>
<tr>
<td>50/24</td>
<td>12/6</td>
<td>11/9</td>
<td>91/12</td>
</tr>
<tr>
<td>51/50</td>
<td>20/4</td>
<td>9/5</td>
<td>12/0</td>
</tr>
<tr>
<td>52/23</td>
<td>22/7</td>
<td>30/7</td>
<td>92/0</td>
</tr>
<tr>
<td>60</td>
<td>10/0</td>
<td>12/0</td>
<td>8/3</td>
</tr>
<tr>
<td>61</td>
<td>11/9</td>
<td>0/10</td>
<td>3/8</td>
</tr>
<tr>
<td>62</td>
<td>5/9</td>
<td>4/3</td>
<td>12/0</td>
</tr>
<tr>
<td>71/50</td>
<td>20/0</td>
<td>7/4</td>
<td>196/57</td>
</tr>
<tr>
<td>80</td>
<td>12/6</td>
<td>11/9</td>
<td>91/12</td>
</tr>
<tr>
<td>82/0</td>
<td>20/4</td>
<td>9/5</td>
<td>12/0</td>
</tr>
<tr>
<td>83</td>
<td>22/7</td>
<td>30/7</td>
<td>92/0</td>
</tr>
<tr>
<td>85/30</td>
<td>82/0</td>
<td>7/4</td>
<td>196/57</td>
</tr>
<tr>
<td>86</td>
<td>10/0</td>
<td>12/0</td>
<td>8/3</td>
</tr>
<tr>
<td>95/80</td>
<td>12/6</td>
<td>11/9</td>
<td>91/12</td>
</tr>
<tr>
<td>96</td>
<td>20/4</td>
<td>9/5</td>
<td>12/0</td>
</tr>
</tbody>
</table>

بحث

بر اساس تحلیل حساسیت، سازنده‌های زمین شناسی و واحد‌های سنجشی مجموع شده در سه گروه هیدروژیلیکی با نفوذپذیری یک (زیاد) دو (متوسط) و سه (کم) از نظر الرگدایر بر مقدار دی‌ای اوج متفاوتی را ارائه می‌کنند و این موضوع تأثیر گذار کننده تفاوت نفوذپذیری گروه‌های هیدروژیلیکی با هم‌ریختگی است.
جدول 7 مقایسه آماره‌های مدل شبکه عصبی با مدل رگرسیون چند منگیره خطي بر اساس داده‌های اعتبار سنجی

<table>
<thead>
<tr>
<th>پارامترهای آماری رگرسیون خطی</th>
<th>پارامترهای آماری شبکه عصبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2=0.83$</td>
<td>$R^2=0.64$</td>
</tr>
<tr>
<td>$F=3%,5$</td>
<td>$F=33%,66$</td>
</tr>
<tr>
<td>MSE=529,3</td>
<td>MSE=103,75</td>
</tr>
<tr>
<td>MAE=34,8</td>
<td>MAE=22</td>
</tr>
<tr>
<td>MBE=29</td>
<td>MBE=2,4</td>
</tr>
</tbody>
</table>

کاربردی‌اند اضافه‌ی می‌گردد. با توجه به روز یا روز‌های حسابی سنجی، امکان رده‌بندی قطعه و مستندات متغیرها بر روی عمل خریدی (دبی اوج) وجود ندارد. مدل ساخته شده به روش شبکه... قرار به انجام پیش‌بینی قابل قبول دیا اوج در دامنه وسیعی از تغییرات و سرعت زیست حوزه در بخش البرز گنجی جوهر آن‌یک سیبیدور در مقاله‌ی با روش رگرسیون چند منگیره خطي می‌باشد. همچنین که از جدول 6 و شکل 4 برای یک حالت بارانی با دیا اوج مشاهده‌ی نسبی در مورد در داخل جدول نیز مشاهده‌ی است که به هیچ وجه توجه متقی و فیزیکی ندارد. در مقابل با توجه به جدول 6 و شکل 3 تطبیق نسبتاً کامل برآوردی دیا اوج روش شبکه... بر داده‌های مشاهده شده مجزا بوده و مخصوصاً خیلی بزرگ داده شده به داده‌های دیا اوج مشاهده‌ای و برآورده‌ی از مرکز محرک محاسبات به دیا اوج. همچنین نقطه ضعف رگرسیون چند منگیره خطي را می‌توان در ادامه... نمونه‌ی دیا اوج مشاهده شده مجزا بوده و طوری که با کاهش یک دهم در مقدار ضربه‌ی سیبیدور، همه... و در مدل رگرسیون خطی، شامل متغیرهای مناسب، گونه‌های هیدرولوژیکی با نفوذپذیری کم و بارندگی پنج روز قبل از مدل منگیره در زمان می‌باشند، در نتیجه در طول زمان بارندگی، با استر فشار ضربه روانی تفاوت‌های ارتفاع این گونه سازند. هیدرولوژیکی اندازه‌گیری شده...

مبحث‌های حوزه‌ی آبخیز می‌تواند بخش عمده‌ای از سایر ویژگی‌های مورفومتری حوزه‌ی را نماینده‌ی می‌باشد. همین امر می‌تواند توجه کندن چنین جایگزینی سطح حوزه آبخیز به جای شیب آب‌های اصلی، طول آب‌های اصلی و ارتفاع از سطح دریا و در نتیجه کاهش تعداد متغیرهای ورودی مدل شود. اما هر جوهر عامل مؤثر به یک دیدنی در هم ادغام شوند منجر به افزایش خطا و هر چه یک تعداد اختصاصی شدن مدل ساخته شده برای یک ناحیه جغرافیایی خاص خواهد بود. البته لحاظ جایگزینی تعداد پاسخ به یک متغیرهای مدل که مثال توصیه تهی می‌باشد. عامل ارتقای به عوامل منگیره‌های هست که منجر به اثر گذاری را بر تولید خریدی بیشتر دیا اوج دارد. از آنجا که این منگیر نمایندگی نوع آب و هوای هوشی‌گاهی و کاربری اراضی را به عهده دارد، به نظر می‌رسد که حذف آن در مدل شبکه عصبی ضروری باشد. البته می‌توان پیشین از تأثیرات این عامل را در داخل متغیرهای دیگر مناسب ملاحظه نمود. البته که با کاهش حوزه باران یا ارتفاع متوسط آن افزوده می‌شود. این موضوع از شکل 2 نیز قابل دریافت است. به طوری که فاصله بینهیمن مناسب باید محور افقی تقیی‌کننده برایبا متوسط فاصله بینهیمن عمده‌ای فیزیوگرافی ارتفاع، طول و شیب آب‌های اصلی است. از آنجا که در صورت کمی بودن منگیرهای یک مدل به شرط محدود مانند کارایی، بر اثر...
مقاله مورد استفاده

1. حسینی، م. 1379. مدل شبکه عصبی مصنوعی برای تعيین هيئدروگراف سیلاب. پایان‌نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، تهران.

2. رضائی، ع. 1380. مدل‌سازی فرسایش با استفاده از شبکه عصبی مصنوعی. همایش ملی مدیریت اراضی - فرسایش خاک و توزیع یاب، پایدار ارک، صفحه 246-247.

3. رضائی، ع. 1382. شیب سازی آینه‌ای نمونه گرفته و برای پیش‌بینی دو برش بر اساس شبکه عصبی مصنوعی در حوزه آبی‌های مهم نمی‌باید. هشت‌مین سمینار سراسری آب‌رانی و کاهش تبخیر، دانشگاه شهید بهنر کرمان، صفحه 145-146.

4. رهنما، م. و چ. موسوی. 1382. پیش‌بینی سیلاب حوضه آب‌ریز درآمد با استفاده از شبکه عصبی مصنوعی. هشت‌مین سمینار سراسری آب‌رانی و کاهش تبخیر، دانشگاه شهید بهنر کرمان، صفحه 126-135.

5. شرکت سهامی آب مناطق‌های گیلان - معاونت مطالعات پایه منابع آب. 1379. گزارش تلفیق مطالعات منابع آب جوزه آبیر سفیدرود و شرق و غرب گیلان. جلد اول (آمار و اطلاعات و بررسی مقدمات آن - ضمیمه‌های 20 و 31)، شرکت سهامی آب مناطق‌های گیلان، رشت.

6. رهنما، م. و چ. موسوی. 1377. پیش‌بینی شیب‌های عصبی جلد اول. مرکز پژوهش حسابی. تهران.

7. ناظمی، ع. 1380. کاربرد محاسبات نرم در مهندسی منابع آب. چهارمین کنفرانس دانشجویی سیستم‌های هوشمند، دانشگاه صنعتی خواجه نصیر طوسی، تهران.

