تأثیر گلرگن و کاربرد مسی، کادمیم، روی و سرب بر تحکیم چهار عنصر در یک خاک آمکی

غلامعباس صیادی‌پور، مجید افیونی و سید فرهاد موسوی

چکیده
مشکلات مروب‌ بوتیل‌ها و تربیت آن‌ها به وسیله فلزات سنگین در ده‌ها انجام افزایش یافته است. یکی از مسائل که یک‌جا حل توجه کرده است، امکان انتقال فلزات سنگین از طریق مسیرهای جراحی و اسیدهای آلی مخلوط در خاک می‌باشد. به همین دلیل نیش پوش غیاهی از طریق تاثیر فیزیکی و شیمیایی روی بی‌خاطرای خلو و می‌تواند در خاک و ترشح اسیدهای آلی و در نتیجه ایجاد جریان ترکیب می‌تواند مهم باشد. مطالعه حاضر به منظور بررسی امکان حرکت و انتقال فلزات سنگین در چهار عنصر از خاک به وحشت گیاه (گلرگن) انجام شد. ارزیابی با استفاده از 12 سنتنون (با قطر 0.25 سانتی‌متر و ارتفاع 0.5 سانتی‌متر) دسته نخورده خاک

روی قابل عصاره‌گیری با DTPA میزان محلول و قابل عصاره‌گیری با DTPA فلزات در مقطعه 0-10 سانتی‌متر خاک نمی‌تواند در موارد زیر کار گیرد. میزان غلظت غلظت‌های زمین و خروجی از سانتون‌ها در طول فصل کشت نیز اندازه‌گیری گردید. نتایج نشان داد در عمومی بیشتر از عمل‌های پیش گرفته‌ها. میزان غلظت تجاری مس، سنگین و مس و و...
مقدمه

مطالعات مربوط با آلودگی فلزات سنگین در دهه اخیر افزایش یافته است (16). از آنجایی که خاک عنصر کلی به کلت‌ها و سلول‌های جنگلی گذشته، فهم برآنده انتقال فلزات سنگین در خانقاهم به مبنای می‌باشد (17). در این ارتباط، امکان حکمران فلزات سنگین به سمت اکتشاف خاک از طریق آشوبی برای بیشتری به صورت تدریجی تشکیل حکمران فلزات به طور عمیق خاک هنوز وجود داشته و احتمال آلودگی آب‌های زیرزمینی از این طریق اندکی می‌باشد (26، 27). آزمایش‌ها اخیر نشان می‌دهد که پتانسیل حکمران فلزات در طریق عمیق خاک هنوز وجود داشته و باید مطالعات بیشتری ریو آن صورت گیرد (23 و 24). در حطیق حکمران فلزات سنگین به طریق عمیق خاک شاخدان، علم افزایش خیلی نسبت به غلظت فلزات ذکر کردند و در اثر آن آزمایش‌ها نواخته شدند. این جرمی مناسبی بین میزان فلزات کاربردی و فلزات تعیین شده در خاک به دست آورده (3، 7و 22). بنابراین این آزمایش‌ها نقش حیاتی برخی از سولوبلینگ (Soluble organic acids) است که به طور گسترده در انیگریکولیدها (Inorganic colloids) وجود دارد. این مصالح در نظر گرفته شده است. نتایج مطالعه‌ای ذکر کرده است که خاک عنصر کلی به کلت‌ها و سلول‌های جنگلی گذشته. فهم برآنده انتقال فلزات سنگین در خانقاهم به مبنای می‌باشد (17). در این ارتباط، امکان حکمران فلزات سنگین به سمت اکتشاف خاک از طریق آشوبی برای بیشتری به صورت تدریجی تشکیل حکمران فلزات به طور عمیق خاک هنوز وجود داشته و احتمال آلودگی آب‌های زیرزمینی از این طریق اندکی می‌باشد (26، 27). آزمایش‌ها اخیر نشان می‌دهد که پتانسیل حکمران فلزات در طریق عمیق خاک هنوز وجود داشته و باید مطالعات بیشتری ریو آن صورت گیرد (23 و 24). در حطیق حکمران فلزات سنگین به طریق عمیق خاک شاخدان، علم افزایش خیلی نسبت به غلظت فلزات ذکر کردند و در اثر آن آزمایش‌ها نواخته شدند. این جرمی مناسبی بین میزان فلزات کاربردی و فلزات تعیین شده در خاک به دست آورده (3، 7و 22). بنابراین این آزمایش‌ها نقش حیاتی برخی از سولوبلینگ (Soluble organic acids) است که به طور گسترده در انیگریکولیدها (Inorganic colloids) وجود دارد. این مصالح در نظر گرفته شده است. نتایج مطالعه‌ای ذکر کرده است که خاک عنصر کلی به کلت‌ها و سلول‌های جنگلی گذشته. فهم برآنده انتقال فلزات سنگین در خانقاهم به مبنای می‌باشد (17). در این ارتباط، امکان حکمران فلزات سنگین به سمت اکتشاف خاک از طریق آشوبی برای بیشتری به صورت تدریجی تشکیل حکمران فلزات به طور عمیق خاک هنوز وجود داشته و احتمال آلودگی آب‌های زیرزمینی از این طریق اندکی می‌باشد (26، 27). آزمایش‌ها اخیر نشان می‌دهد که پتانسیل حکمران فلزات در طریق عمیق خاک هنوز وجود داشته و باید مطالعات بیشتری ریو آن صورت گیرد (23 و 24). در حطیق حکمران فلزات سنگین به طریق عمیق خاک شاخدان، علم افزایش خیلی نسبت به غلظت فلزات ذکر کردند و در اثر آن آزمایش‌ها نواخته شدند. این جرمی مناسبی بین میزان فلزات کاربردی و فلزات تعیین شده در خاک به دست آورده (3، 7و 22). بنابراین این آزمایش‌ها نقش حیاتی برخی از سولوبلینگ (Soluble organic acids) است که به طور گسترده در انیگریکولیدها (Inorganic colloids) وجود دارد. این مصالح در نظر گرفته شده است. نتایج مطالعه‌ای ذکر کرده است که خاک عنصر کلی به کلت‌ها و سلول‌های جنگلی گذشته. فهم برآنده انتقال فلزات سنگین در خانقاهم به مبنای می‌باشد (17). در این ارتباط، امکان حکمران فلزات سنگین به سمت اکتشاف خاک از طریق آشوبی برای بیشتری به صورت تدریجی تشکیل حکمران فلزات به طور عمیق خاک هنوز وجود داشته و احتمال آلودگی آب‌های زیرزمینی از این طریق اندکی می‌باشد (26، 27). آزمایش‌ها اخیر نشان می‌دهد که پتانسیل حکمران فلزات در طریق عمیق خاک هنوز وجود داشته و باید مطالعات بیشتری ریو آن صورت گیرد (23 و 24). در حطیق حکمران فلزات سنگین به طریق عمیق خاک شاخدان، علم افزایش خیلی نسبت به غلظت فلزات ذکر کردند و در اثر آن آزمایش‌ها نواخته شدند. این جرمی مناسبی بین میزان فلزات کاربردی و فلزات تعیین شده در خاک به دست آورده (3، 7و 22). بنابراین این آزمایش‌ها نقش حیاتی برخی از سولوبلینگ (Soluble organic acids) است که به طور گسترده در انیگریکولیدها (Inorganic colloids) وجود دارد. این مصالح در نظر گرفته شده است. نتایج مطالعه‌ای ذکر کرده است که خاک عنصر کلی به کلت‌ها و سلول‌های جنگلی گذشته. فهم برآنده انتقال فلزات سنگین در خانقاهم به مبنای می‌باشد (17). در این ارتباط، امکان حکمران فلزات سنگین به سمت اکتشاف خاک از طریق آشوبی برای بیشتری به صورت تدریجی تشکیل حکمران فلزات به طور عمیق خاک هنوز وجود داشته و احتمال آلودگی آب‌های زیرزمینی از این طریق اندکی می‌باشد (26، 27). آزمایش‌ها اخیر نشان می‌دهد که پتانسیل حکمران فلزات در طریق عمیق خاک هنوز وجود داشته و باید مطالعات بیشتری ریو آن صورت گیرد (23 و 24). در حطیق حکمران فلزات سنگین به طریق عمیق خاک شاخدان، علم افزایش خیلی نسبت به غلظت فلزات ذکر کردند و در اثر آن آزمایش‌ها نواخته شدند. این جرمی مناسبی بین میزان فلزات کاربردی و فلزات تعیین شده در خاک به دست آورده (3، 7و 22). بنابراین این آزمایش‌ها نقش حیاتی برخی از سولوبلینگ (Soluble organic acids) است که به طور گسترده در انیگریکولیدها (Inorganic colloids) وجود دارد. این مصالح در نظر گرفته شده است. نتایج مطالعه‌ای ذکر کرده است که خاک عنصر کلی به کلت‌ها و سلول‌های جنگلی گذشته. فهم برآنده انتقال F
مواد و روش‌ها

مطالعه در سنتون‌های خاک‌های دست‌نخورده و در لوله‌های پیل‌تیینی با قطر/۵ و ارتفاع ۵۰ سانتی‌متر و در گلخانه‌های کشاورزی دانشگاه صنعتی اصفهان صورت گرفت. سنتون‌های خاک از مرزهای واقع در ایستگاه تحقیقات کشاورزی کوثرآباد در ۲۰ کیلومتری شرق اصفهان تهیه گردید.

برای تعیین خواص فیزیکی و شیمیایی خاک، نمونه‌های دست‌نخورده نیز از مرزهای م ذکور از عمق‌های ۲۰ سانتی‌متر به سه تکرار از هر علم با دستگاه Ghisto سنجش (۵۱)، قابلیت هسته‌ای اکتريکی خاک با دستگاه Hdaas بعد (۴۹)، میزان آلی بنا روس اکسیداسیون (۱۳) و ظرفیت تبادل کاتیونی با روش استاندارد (۲۸)، میزان کل فلزات با استفاده از اسید نیتریک ۴ مولار (۲۹)، درصد شن، سپیت و رس با استفاده از روش هیدرومتر (۱۱) و چگالی ظاهری با استفاده از نمونه‌های دست‌نخورده با قطر ۱۰ سانتی‌متر و ارتفاع ۵ سانتی‌متر (۲۸) تعیین گردید.

برای انتقال سنتون‌های دست‌نخورده از مرزهای به گلخانه، انتخاب هرستون به وسیله تولید آپینومین با مش ریز بسته شده و سپس در سرستون توسط بلاستینس سیب و کوبن (سیستم بلیگنیک آتیکس) شده. پس از انتقال سنتون‌ها به گلخانه، سنتون‌ها بر اساس طرح بلک‌های کامل تصادفی روز چهار به فازی قرار داده شدند. برای جمع‌آوری آوری زده، در زیر هر سنتون، یک زمردگان با یک قیف پلاتینیک متصل به آن قرار داده شد (شکل ۴), در مرن‌ل، ۱۰ سانتی‌متر به عمق با کلیه نیمی از سنتون (۶ عمد) در هر کارکرد و کامل، گیاهان کاشی (با استفاده از محلول کلروور کادمیوم) به ۱۰۰ خیار سنتون در هفته سیب (با محلول نیترات سرب) و ۴۰۰ خیار سنتون در هفته کربن می‌گیرد. میلگرم در کیلوگرم کمر بوده و در برخی نقاط افزایش قابل ملاحظه‌دار داشتند.

گل‌گی آنی کی از گیاهان زراعی و با اهمیت در تأمین روزگار خوراکی کیفیت عالی می‌پاشد (۱۳). با توجه به نیاز خوب این گیاه در نوساز ریشه مستقیم (Taproot) بسیار زیاد می‌باشد و در اکثر حالت‌ها به شرایط شکن و شوری تا حدی میزان مقاومت از گیاهان دیگر نظیر گندم، کوکه فرنشیز، چندانچند و بهنی می‌باشد (۲). شرایط آب و هوای خشک اصفهان و نیز ویژگی‌های گل‌گی آنی به شکل‌های مشتق شده در مناطق مختلف اصفهان، هم‌خویص خاک‌های دارای مشکلات شوری درآمیخته و آلودگی نظر مناطق شرق اصفهان، کشت آن با استفاده کشاورزی مواجه گردید. با توجه به افزایش سطح زیر کشت گل‌گی آنی در سال‌های اخیر و نیز کمی عمق آب زیرزمینی در منطقه مورد مطالعه‌ها که در حدود ۳-۴ متر باشد، بررسی تأثیر کشت گل‌گی آنی بر گذب و نیز انتقال فلزات در حاصل مذکور حائز اهمیت می‌باشد.

بررسی تأثیر نهایی در گذار کشت گل‌گی آنی در حاصل هنوز به خوبی شناخته نشده و نقص جریان ترجمه و مواد آلی محول در این انتقال کاملاً مشخص نمی‌باشد. بیشتر مطالعات صورت گرفته در مورد نقش گیاه در اثرات فیزیکی حضور ریشه‌های گیاهی انتقال نمک‌های خشی (مال کریپتا) توجه کرده‌اند (۶) و (۱۷). این موضوع که فلزات سنتون از طریق کمیکس‌های آلی و نیز از طریق جریان ترجمه حفظ می‌مانند، نسبتاً جدید است و تاکنون به تعداد چشمه‌های دست‌نخورده و شناخت مداوم و اندازه‌گیری غلظت فلزات در خاک تاکنون کشت گیاه و آب زهکشن مورد بررسی قرار می‌گیرد.

به طور کلی اهداف مطالعه شامل موارد زیر می‌باشد:

۱. بررسی تأثیر حضور گل‌گی آنی (گل‌گی آنی) بر غلظت‌های محلول و قابل عصاره‌کردن با DTPA برخی از فلزات سنتون‌های سرب، کادمیم، روی و مس) در سنتون‌های دست‌نخورده یک خاک آهکی و نیز غلظت آنها در زهکشن خروجی.
شکل ۱. مقطع سiton خاک

(با محلول کاریکد روی) محلول پاشی شده و به خویه مخلوط گشت. میزان فلزات سنگین کاربردها فوق معادل ۵ درصد حداکثر معادل در محلول فلزات سنگین در خاک به توصیه EPA آمریکا (۳۰)٪ می‌باشد. خاک سطحی ۶ سنتیمتری گیره و فلزات سنگین به خویه مخلوط گشت که این شاهد را نشان می‌دهد. پس از دو هفته، در نیمی از ستون‌های تیمارهای آلوده و غیرآلوده (۳ عضوی) گردنگی رقم کوسه با تراکم ۲۰ بدر در متر مربع کشت شد. به طور کلی تیمارهای مورد مطالعه عبارت بودند از:

۱. تیمار آلوده به فلزات سنگین و کشت شده با گل‌نگ (Contaminated Safflower = CS)
۲. (Uncontaminated Safflower = US)
۳. تیمار آلوده آبی (Contaminated Fallow = CF)
۴. (Uncontaminated Fallow = UF)

در طی این دوهفته، ستون‌ها با آب (با قابلیت هدایت الکتریکی ۰/۵ دسی‌زینئس بر متر) آبی‌یاری شدند. کود دهی بر طبق آزمون خاک صورت گرفت به طوری که ۶۰ کیلوگرم در هر هکتار با پیشرفت به صورت اوره و ۴۰ کیلوگرم در هکتار پیشرفت به صورت نیترات پتاسیم به خاک اضافه گردید. نتایج تجربه خاک نشان داد که نیازی به کودهای سفید نیست. آبی‌یاری با استفاده از استوانه مدرج صورت گرفت. مقدار آب آبی‌یاری با استفاده از اطلاعات منحنی رطوبتی خاک (۱۵ و نیز...
نتیجه آزمایشی فلزات سنگین در خاک می‌گردد (8). مقدار نسبتاً زیاد آهن نیز مرکب نمی‌تواند به زیادی به خاک داده است (21). از طرف دیگر مقدار زیاد آهن کلرید در این خاک امکان تشکیل آهن‌های محلول و حرکت فلزات مذکور را فراهم می‌کند (14).

ب) آبیاری و زه‌کشی

پرداخته‌های محلولی و قابل عصاره‌گیری با DTPA (Inductively Coupled Plasma) ICP استفاده گردید.

نتایج و بحث

الف) خواص فیزیکی و شیمیایی خاک

نتایج برخی خواص فیزیکی و شیمیایی خاک در جدول ۱ آمده است. همانطور که در جدول دیده می‌شود مقدار مول مطلق pH درای‌های آبان لوم رسی سبزی و طرفیت بادکنی و نیز زیاد است که ویژگی‌های مذکور باعث کاهش حلالیت و در
جدول 2. موازنه آبی برای تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تغییر در ذخایر رطوبتی خاک</th>
<th>حجم زهکشی</th>
<th>درصد زه آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>ستون آلوهه شده 3</td>
<td>214²</td>
<td>67</td>
<td>9-</td>
</tr>
<tr>
<td>ستون آلوهه نشده شده 31</td>
<td>185⁴</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td>ستون آلوهه آبش</td>
<td>216⁰</td>
<td>275⁴</td>
<td></td>
</tr>
<tr>
<td>ستون آلوهه نشده آبش</td>
<td>226⁶</td>
<td>273⁴</td>
<td></td>
</tr>
</tbody>
</table>

1. میزان آبیاری در دوره آزمایش 589 میلی‌متر بود.
2. در هر ستون، میانگین‌های دارای حروف متفاوت در سطح احتمال 5% بر طبق آزمون LSD دارای اختلاف معنی‌دار هستند.

![شکل 2. مقایسه میزان حجم زه آب خروجی از تیمارهای مختلف. تیمارها در صفحه 58 توضیح داده شدند.](#)

غردید (جدول 2). میزان تلف شدن آب در تیمار آلوهه نشده کشت شده از طریق تبخیر و تعرق 2/7 برای میزان آبشور بود در حالی که این نسبت برای تیمار آلوهه کشت شده 1/7 برابر بود. میزان تبخیر و تعرق گلورک در تیمار آلوهه در مقایسه با تیمار غیرآلوهه حدود 4 درصد کاهش داشت. نتایج ذکر شده نشان دهنده تأثیر نسبتاً کم فلزات سنگین بر جداب آب به وسیله گلورک می‌باشد (شکل 2). میزان خروج آب در تیمارهای بدون گیاه از طریق تبخیر، کمتر از میزان زهکشی بود. به طور متوسط در تیمارهای آلوهه و غیرآلوهه تیمار آبی، میزان تبخیر حدود 68 میزان زهکشی بود، بنابراین که اختلاف معنی‌داری (در سطح 95 درصد) بین تیمارهای آلوهه و غیرآلوهه باشد (جدول 2).

(ج) غلظت فلزات سنگین در پرونل خاک همان طور که در شکل 3 مشخص است میزان غلظت فلزات در تیمارهای آلوهه بیشتر از غیرآلوهه است که این اتفاق باعث خصوصی در مورد تیمارهای کشت شده معنی‌دار است (0/05 ≤ p). حداقل غلظت در زیر عمق اختلاف (10 سانتی‌متر...
پایه مقایسه بهتر محور افقی بر حسب غلظت میکروبلند می‌باشد. است. نتایج فیزیو است.

DTPA غلظت فلزات سنگین عصاره‌گیری شده با میانگین 200 مایلی‌گرم در 25 سانتی‌متر در تیمار آلوهه کشت 4 طرح با مایلی‌گرم در 4 یک مایلی‌گر...
شکل 2. مقایسه غلظت قابل عصاره‌گیری فلزات سگنی با DTPA در اعماق خاک در تیمارهای مختلف با اعداد نرمال شده

(غلظت‌های فلزات در تیمار آلوده تقلیل بر تیمار غیرآلوده مربوطه). تیمارها در صفحه 28 توضیح داده شدند.

محیط‌های خاک شکست مرمتی به تیمارهای بدون کشت و خط کامل مرمتی به تیمارهای کشت شده هستند.

جدول 3. میزان جذب فلزات سگنی با وسیله گلنگ (میلی گرم در ستون)

<table>
<thead>
<tr>
<th></th>
<th>سرب</th>
<th>روی</th>
<th>کادامیم</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ستون آلوده</td>
<td>0.08</td>
<td>0.16</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>ستون آلوده نشده</td>
<td>0.05</td>
<td>0.12</td>
<td>0.20</td>
<td>0.25</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای حرف متغیر مشابه غلظت قابل عصاره‌گیری با DTPA را نشان می‌دهد (شکل 5) با این تفاوت که میزان سرب محلول در عدم بی‌عمق اختلاف به شدت کاهش یافته است. تریب حلالیت فلزات بر اساس افزایش غلظت فلزات به صورت کادامیم < روی < سرب < ستون آلوده را داشت (میانگین 1/3 میلی‌گرم در کیلوگرم خاک) ولی در تیمار آلوده کشت شده تریب افزایش غلظت عنصر به صورت کادامیم < روی < سرب < ستون آلوده کشت شده بیشتر از تیمار آلوده آبی بود. نتایج میدانی نشان می‌دهد که فلزات در حلالیت بهتر فلزی با جزر سرب را نشان می‌دهد ولی نتایج مطالعات قبلی متفاوت است (8).

مقایسه نتایج با داده‌های نرمال شده نشان می‌دهد که تیمارهای کشت شده است به اختلاله به دلیل جذب بیشتر مس توسط گلنگ در مقایسه با سرب می‌باشد (جدول 3).

62
شکل 5. گلظت محول فلزات سنگین در تیمرخ کاک تیمارهای مختلف. تیمارها در صفحه 58 توضیح داده شدند.

شکل 6. مقایسه گلظت محول فلزات سنگین در اعضاچکاک تیمارهای مختلف با اعداد نرمال شده.

(فلظت‌های فلزات در تیمار‌الوده تقسیم بر تیمار‌الوده عربی) به دلیل وجود گلظت محول صفر برای سرب در تیمار بدون آلودگی.

امکان رسم شکل مربوط به سرب وجود نداشت. تیمارها در صفحه 58 توضیح داده شدند.

(ب) جذب فلزات به وسیله گلدرنه

جدول 3 میزان جذب فلزات سنگین به وسیله گلدرنه در دو تیمار آلوده و آلوده نشده را نشان می‌دهد. آلوده کردن سطح خاک مس و روی در تیمار آلوده کشتن شده در عمومی‌های بیشتر از 1/6 میانگین (با میانگین 7/5) بیشتر از تیمار آلوده آبی (با میانگین 2/6) بود.

53
جدول ۴. میزان جذب فلزات سنگین به وسیله گلُرتگ (درصد از میزان اولیه كل فلزات)

<table>
<thead>
<tr>
<th></th>
<th>سرب</th>
<th>روی</th>
<th>کادمیم</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/52</td>
<td>1/05</td>
<td>1/41</td>
<td>0/11</td>
</tr>
<tr>
<td>ستون آلوهده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/52</td>
<td>0/92</td>
<td>0/29</td>
<td>0/11</td>
</tr>
<tr>
<td>ستون آلوهده نشده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای خروج متفاوت در سطح احتمال 0.05 درصد بر طبق آزمون LSD از هم متفاوت می‌باشند.

جدول ۵. میزان فلزات سنگین در زه آب (درصد از میزان اولیه كل فلزات)

<table>
<thead>
<tr>
<th></th>
<th>سرب</th>
<th>روی</th>
<th>کادمیم</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/36</td>
<td>0/75</td>
<td>0/12</td>
<td></td>
</tr>
<tr>
<td>ستون آلوهده کشش شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/64</td>
<td>0/79</td>
<td>0/21</td>
<td></td>
</tr>
<tr>
<td>ستون آلوهده نشده کشش شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/36</td>
<td>0/64</td>
<td>0/21</td>
<td></td>
</tr>
<tr>
<td>ستون آلوهده کشش شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/36</td>
<td>0/75</td>
<td>0/12</td>
<td></td>
</tr>
<tr>
<td>ستون آلوهده نشده کشش شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های دارای خروج متفاوت در سطح احتمال 0.05 درصد بر طبق آزمون LSD از هم متفاوت می‌باشند.

با شروع افزایش میزان بر (5/00<پ) فلزات سنگین در اندام‌های گیاهی گردد. میزان جذب کادمیم در ستونهای آلوهده در مقایسه با ستونهای غیرآلوهده ۱۲/۱۸ برای افزایش داشت. مقادیر افزایش مذکور برای مس، سرب و روی به ترتیب ۴/۱۹، ۱/۲۰ و ۲/۲۰ برابر افزایش یافته. میزان کشش در سطح مشاهده‌ی میزان فلزات خروجی از ستونهای آلوهده کشش شده (آشی آلوهده) اختلاف معنی دار (پ<۰/۵) با ستونهای کشش شده ندارد که دلیل عدمه‌ای آن با می‌توان در میزان حجم آب خروجی بیشتر تیمارهای بدون گیاه ذکر کرد (جدول ۲). اینگونه میزان کادمیم در زه آب تیمار آلوهده و در خضوع گلُرتگ بیشتر از تیمار آلوهده و بدون گیاه بوده که نقش مهم گیاه را در انقلا کادمیم نشان می‌دهد. این نکته تأییدی است بر آنچه در پیش عنصر خاک در مورد بیشترین اثر گیاه بر خلافیت این عنصر در بین عنصر مورد مطالعه بیان شد.

(۶) غلظت فلزات سنگین در زه آب خروجی از ستون‌ها

آلوهده کششی سطحی با شروع افزایش میزان غلظت فلزات سنگین