اثر شهری بر غله‌ت و پراکنش یونهای پتاسیم، سدیم و کلر در پیوند لیموشیرین روي پنج پایه مربیات

عبدالحسین ابوطالبی، عنايت آل تفضیلی، بهمن خلدری‌پور و نجف‌علی کربیمان

چکیده
این پژوهش به منظور بررسی اثر شهری بر غله‌ت و پراکنش یونهای پتاسیم، سدیم و کلر تحت تأثیر کلیند سدیم در اندازه‌های مختلف و ریشه نهالی لیموشیرین پیوندی گذاشته روي پنج پایه مربیات شامل گوگردی (لیموشیرین تارنگی) لیمواب، و لیموابانا و لیموشیرین به صورت فاکتوریل در قالب طرح کاملی تصادفی در چهار تکار در گلخانه به اجرا در آمد. براساس ترکیب، نوع پایه تأثیر زیادی بر غله‌ت پونه‌ها داشت. غله‌ت و پراکنش یونهای پتاسیم، سدیم و کلر در تیمار شاهد و سایر سطوح شهری با هم تفاوت معنی‌دار داشت. شهری غله‌ت سدیم و کلر را در ریشه و شاخانه افزایش داد ولی میزان افزایش بسته به نوع پایه متفاوت بود. کمترین غله‌ت کلر و سدیم در شاخانه پیوندک روي پایه و لیموابانا وجود داشت. بر اثر شهری غله‌ت غله‌ت پتاسیم در شاخانه پیوندک روی پایه تارنگی و بگرایی افزایش و روی سایر پایه‌ها کاهش یافت و همچنین غله‌ت پتاسیم در ریشه همه پایه‌ها به جز لیموآب افزایش یافت.

واژه‌های کلیدی: شهری، لیموشیرین، پایه

مقدمه
مطالعات متعدد نشان داده است که درختان مربیات می‌توانند از طریق نوع پایه، ترکیبات مختلف پایه و پیوندک و نوع میان پایه نسبت به محدود کردن ورود عناصر شهری در سطوح سیمی به درون گیاه جلوگیری کنند. (1، 2، 3) نسبت به نوع حاکم، آب‌داری و دور آب‌داری، شهری حاکم ممکن است در بین

1. استادیار باغبانی، دانشگاه کشاورزی، دانشگاه آزاد اسلامی واحد چهاردانگه
2. استاد باغبانی، دانشگاه کشاورزی، دانشگاه شیراز
3. استادیار زیست‌شناسی، دانشگاه شیراز
4. استاد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز

69
جدول 1: خصوصیات فیزیکی و شیمیایی خاک مورد استفاده

<table>
<thead>
<tr>
<th>درصد اشباع</th>
<th>قابلیت هدایت الکتریکی</th>
<th>استیده کل</th>
<th>خشش شونده</th>
<th>رس سیلت</th>
<th>سنگ</th>
<th>چربی</th>
<th>مس</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>آهن</th>
<th>روت/منطقه</th>
<th>لمنونی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td>(دیسی‌زمنی بر سانتی‌متر)</td>
<td>(درصد)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>قسمت (درصد)</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td>6/30</td>
<td>2/5</td>
<td>7/5</td>
<td>32/5</td>
<td>43</td>
<td>65</td>
<td>34</td>
<td>27</td>
<td>27</td>
<td>11</td>
<td>0/18</td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>2/4</td>
<td>32/4</td>
<td>22/5</td>
<td>22/5</td>
<td>22</td>
<td>32</td>
<td>43</td>
<td>65</td>
<td>43</td>
<td>65</td>
<td>0/18</td>
<td></td>
</tr>
<tr>
<td>2/7</td>
<td>2/7</td>
<td>32/7</td>
<td>22/7</td>
<td>22/7</td>
<td>22</td>
<td>32</td>
<td>43</td>
<td>65</td>
<td>43</td>
<td>65</td>
<td>0/18</td>
<td></td>
</tr>
<tr>
<td>0/18</td>
<td></td>
</tr>
</tbody>
</table>

با طور کامل شناخته نشده است. پایه‌های مركبات آنار معمولی از CV و سایر هم‌سازه بروز Na⁺ و یا هم در شاخ و بارک درختان بی‌پوسته و غیربی‌پوسته دانهای. در این رابطه پایه‌ها تیتر مرکز (24). بیشترین‌ترین‌یکی از ارقام مهم مركبات در مناطق مختلف پوسته است. عکس این این آبیاری سری‌های منطقه‌گوناگونی در کمتر موده مطالعه قرار گرفته است. این این این حفظ بزین نمونه بر غلظت و پراکتیپشن پتاسیم، سدیم، و کلر در نهال‌های بی‌پوسته بی‌پوسته تحت شرایط، مسیره‌های غلظته در محیط کشت خاک منطقه جنوب بوده است.

مواد و روش‌ها

این آزمایش بر روی پرستار اثر شویری بر پوسته و پودرهای بی‌پوسته به صورت فاکتوریل در قالب طرح کاملاً نیاپرا دچار تکرار روي نهال‌های لیموشیرین پوسته شده روی پریپوسته مختلف در گلخانه‌های دانشگاه کشاورزی دانشگاه شیراز (متوسط دما 20 - 25 درجه سانتی‌گراد) انجام گرفته، فاکتوریل در چهار سطح صفر، 20، 40 و 60 می‌مول در سه کدک سدیم و پایه‌ها در 5 سطح شمار تاریخ معمولی، لیموشیرین، و لیموشیرین. تکرار این باکتریای بود. نهال‌های بی‌پوسته پایه‌ها در گلخانه‌های 5 نیتری حاول خاک غلظه منطقه جنوب با خصوصیات خاک اکتیک (جدول 1) کاشته شد و پس از استقرار و شروع رشد مجدد

پروکشت Na⁺ در قسمت‌های مختلف گیاه‌های می‌دهد که Na⁺ به‌خوبی از ترکیبات پایه و پودرهای پوسته بی‌پوسته دانهای از رشته بسیار بارک در شاخ و بارک (24). منابع مالیه‌های مادرید تکرار بی‌پوسته و پادیور اخیار به‌خور افشا در قسمت‌های مختلف یا اقلیم رشته‌های افشا و رشته‌های اولیه تهیه مواد دیگری نیست. به‌خور افشا در قسمت‌های مختلف یا اقلیم رشته‌های افشا و رشته‌های اولیه تهیه مواد دیگری نیست.
جدول 2. برخی ویژگی‌های آب مورد استفاده برای آب‌های نهال‌ها

<table>
<thead>
<tr>
<th>pH</th>
<th>قابلیت هدایت الکتریکی</th>
<th>نمک مصرفی (گرم) NaCl میلی‌مول در لیتر</th>
<th>سطح شوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/8±0/1</td>
<td>0.0565 صفر</td>
<td>صفر</td>
<td></td>
</tr>
<tr>
<td>4/8±0/2</td>
<td>0.215±12 1/17 20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4/1±0/1</td>
<td>0.244 40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4/8±0/2</td>
<td>0.835±17 3/5</td>
<td>3/5</td>
<td></td>
</tr>
</tbody>
</table>

از امکانات شنیدن در سطح یک درصد مقایسه شدن.

نتیجه و بحث

تأثیر نوع پایه و شوری بر غلظت پتایسم مقایسه میانگین‌ها نشان داد که نوع پایه به غلظت پتایسم در شاخص‌های پایتونک تأثیر دارد. شوری اثرات منفی‌خوانی را به‌نوع پایه بر غلظت پتایسم در شاخص‌های پایتونک داشت. به طور کلی بین پتایسم شاهد و سایر پتایسم‌ها در نظر غلظت پتایسم در شاخص‌های پایتونک اختلاف معنی‌دار وجود داشت و بیشترین غلظت پتایسم در شاخص‌های پایتونک در سطح شوری 40 میلی‌میلی‌متر و کمترین آن در پتایسم شاهد بود. در هر مجموع آزمایش‌ها از نظر غلظت پتایسم در شاخص‌های پایتونک اختلاف وجود داشت که این اختلاف بین نرخی و بکرایی با ولکامینا، لیموشیروین و لیموی معنی‌دار بود (جدول 3).

بر اساس نتایج آزمایش، در تیمار غلظت‌پتایسم در شاخص‌های پایتونک از 1/4 درصد تا 2/3 درصد متغیر است که با مقایسه به دست آمده توسط گارسیا سنگز (14) گونه‌گون (15) یا روش و همکاران (16) در مجموع سایر ارقام مربوط به غلظت شوری، نتایج آزمایش همچنین هاکی از افراد غلظت پتایسم تحت تاثیر شوری در شاخص‌های هم‌پایه به جه تأثیر و بکرایی می‌باشد (جدول 3)، این نتیجه نیز با تابعی به دست آمده توسط گارسیا سنگز و همکاران (14) گارسیا لیدود و همکاران (13) متعلق به داشت و دست آمده توسط یا نتایج به دست آمده توسط باتولس و همکاران (1) در مجموع سایر ارقام مربوط به تجارب تجربی و تحلیل آماری شد و میانگین‌ها با توجه MSTAT-C

(چهره‌های) عمل یوند، با استفاده از پایتونک لیموشیرین معمولی به روش سه‌انجام شد. پس از گذشت 25 روز از انجام پایتونک، قسمت هموایی پایه خم شد و پس از آن که پایتونک شروع به رشد نمودند، پایه از 5 سانتی‌متر بالای پایتونک قطع گردید. از این پس به مدت 6 ماه به پایتونک اجراش رشد داده شد و زمانی که اندازه پایتونک به حدود 50 سانتی‌متر رسید، تیمارهای شوری اعمال گردید. به منظور جلوگیری از ایجاد شکر ناشی از شوری، مقدار نمک تثبیتی به آب آبیاری اضافه شد. پس از چهار دوره آبیاری، غلظت نمک مصرفی به اندازه تیمارهای مورد نظر رسید (جدول 2). از این محوره به بعد گیاهان به مدت 10 هفته تحت تیمار شوری بودند. آب مورد استفاده استحصالی از چاه عضیف بود و آب‌های دیگر روز به روز طوری انجام می‌گرفت که آب آبیاری هر صبح به تعداد 6 لیتر در داخل دوره آزمایش هیچ کننده کودک مصرف نگردید. در یابان آزمایش نهال‌ها از گلدان خارج شدند. ریشه و ساقه آنها از هم جدا شدند و پس از خشک‌شدن با بی‌فشار، در اون با مقدار 70 درجه تا سرده به وزن نابیندا شانه و سایر آسیب‌بریه به صورت پودر در آورده شدند. پس از 5 وزن دکستر از ماده گیاهی در مقدار 500 درجه سانتی‌گراد و عصاره گیری با استفاده کربن‌دهی که اجراشد و دار دار تفکر، و غلظت یون‌های هم‌پایه و سایر به روش شناختی و غلظت یون‌های هم‌پایه و سایر به ارائه کردن شد. داده‌های به دست آمده با استفاده از ترم و تجزیه و تحلیل آماری شد و میانگین‌ها با توجه MSTAT-C
جدول 3 اثر نوع پایه و تیمارهای شوری بر غلظت پتاسیم (درصد ماده خشک) در شاخه‌های لیموسیرین

<table>
<thead>
<tr>
<th>بکریابی</th>
<th>نتیجه</th>
<th>NaCl میلی‌مول در لیتر</th>
<th>غلظت پتاسیم (درصد ماده خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیموسیرین</td>
<td>ولکامیانا</td>
<td>مانگنیک</td>
<td>صفر</td>
</tr>
</tbody>
</table>

در هر ستون و رشته پایه، مانگنیک‌های دارای حروف مشترک، در سطح 0/1 آزمون‌ها اختلاف معناداری ندارند.

در هم‌چنین از نتایج جدول می‌توان دریافت که برخی پایه‌ها نه تنها سطح مشخصی از شوری قادر به افزایش غلظت پتاسیم در شاخه‌های پیوندکه هستند و با افزایش سطح شوری از توان آنها در ارسال پتاسیم به پیوندک کاملاً می‌شود. گزارش شده است که ریشه‌های بیشتر ارقام میکروبی‌ها سطح شوری 20 میلی‌مولار، خاصیت انگلیزی بیشتری نسبت به پتاسیم تا 5 میلی‌مولار افزایش می‌بیند که این مسئله می‌تواند دلیل بر افزایش غلظت پتاسیم در شاخه‌های پیوندک روا هم پایه‌ها به وزن ولکامیانا در این سطح شوری باشد. این تحقیق نیز به ترتیب به دست آمده توسط گروه سانجر (14) در مورد سایر ارقام میکروبی‌ها مطالب دارد. گزارش شده است که افزایش غلظت پتاسیم در شاخه‌های پیوندک که از مکانیزم‌های تنظیم اسیدی تحت تنش شوری می‌باشند (16).

توجه نرخ پایه و هوری بر غلظت سدین

مقایسه میانگین‌ها نشان داد که غلظت سدین در شاخه‌های پیوندک تحت تأثیر نرخ پایه مشابه است (جدول 5). شوری سبب افزایش غلظت سدین در شاخه‌های پیوندک روي تثام پایه‌ها و چر چگونه غلظت به‌طوری به نیاز پایه متقابل بود. به طور کلی کمترین و بیشترین غلظت سدین در شاخه‌های پیوندک به ترتیب در تیمار شاهد و تیمار 40 میلی‌مول می‌شد. پایه‌های مختلف متقابل شوری محور آزمایش از نظر غلظت سدین در شاخه‌های پیوندک اختلاف معنی‌دار دارند و جود داشت این به دلیل کمترین غلظت سدین به ترتیب در تیمار شاهد و ولکامیانا مشاهده شد. جدول 4 نشان داد که بین نرخ پایه و لیموسیرین اختلاف معنی‌دار وجود نداشت (جدول 5).
جدول 4 اثر تیمارهای شوری بر غلتظت پتاسیم (درصد ماده خشک) در رشته پایه‌های مختلف مركبات

<table>
<thead>
<tr>
<th>پایه‌های مركبات</th>
<th>میلی‌مول NaCl در لتر</th>
<th>میانگین</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرای</td>
<td>لیموآب</td>
<td>کرای</td>
<td>لیموآب</td>
</tr>
<tr>
<td>0/85</td>
<td>1/5</td>
<td>1/3</td>
<td>1/5</td>
</tr>
<tr>
<td>0/5</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>0/3</td>
<td>1/2</td>
<td>1/1</td>
<td>1/3</td>
</tr>
</tbody>
</table>

در هر سئون و رشدی پایه، میانگین‌های دارای حروف مشترک در سطح 0/1 آزمون دانک اختلاف معنی‌دار ندارند.

جدول 5 اثر نوع پایه و تیمارهای شوری بر غلتظت سدیم (درصد ماده خشک) در شاخصه‌های لیموآب

<table>
<thead>
<tr>
<th>پایه‌های مركبات</th>
<th>میلی‌مول NaCl در لتر</th>
<th>میانگین</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرای</td>
<td>لیموآب</td>
<td>کرای</td>
<td>لیموآب</td>
</tr>
<tr>
<td>0/85</td>
<td>1/5</td>
<td>1/3</td>
<td>1/5</td>
</tr>
<tr>
<td>0/5</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>0/3</td>
<td>1/2</td>
<td>1/1</td>
<td>1/3</td>
</tr>
</tbody>
</table>

این نتایج به نتایج جدول گزارش شده است که در تولید غلتظت سدیم هم پایه و هم پیوندک دخالت دارند (3/17, 1/21, 1/21). از آنجایی که دفع سدیم از طریق مکاتبه با زیبیان از رشد و شاخصه پیوندک صورت می‌گیرد، می‌توان چنین نتیجه‌گیری کرد که پایه‌های لیموآب و لیموآب دفع اکسیده‌های خویبرای سدیم در شوری‌های پایین‌تر و درسیم تأثیر زیادی بر غلتظت سدیم جذب شده توسط پایه دارد. به‌این‌گونه از پرگاهی بر غلتظت سدیم در برگ‌ها گرفتار می‌شود مارش خلیلی بیشتر از برگ‌های برگ‌بند والنسیا روى پایه نارنج سه برگ بوده
جدول ۶. اثر تیمارهای شوری بر غلظت سدیم (درصد ماده خشک) در ریشه پایه‌های مختلف مراکز

| پایه‌ها مراکز | میلی‌مول NaCl در لیتر | تاریک | نارنجی | بکرای | لیموآب | لیموشیرین | لیموکارنا
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۰/۴۳۳</td>
<td>۰/۲۶۱</td>
<td>۰/۲۵۴</td>
<td>۰/۳۲۲</td>
<td>۰/۳۲۲</td>
<td>۰/۵۸۴</td>
<td>۰/۶۸۴</td>
</tr>
<tr>
<td>میانگین</td>
<td>۰/۸۱۶</td>
<td>۰/۹۱۶</td>
<td>۰/۲۴۱</td>
<td>۰/۱۷۱</td>
<td>۰/۱۱۲</td>
<td>۰/۸۵۸</td>
<td>۰/۹۳۵</td>
</tr>
<tr>
<td>میانگین</td>
<td>۰/۹۲۵</td>
<td>۰/۹۱۶</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۹۴۵</td>
<td>۰/۹۲۵</td>
</tr>
<tr>
<td>میانگین</td>
<td>۰/۹۱۶</td>
<td>۰/۹۱۶</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۹۴۵</td>
<td>۰/۹۱۶</td>
</tr>
<tr>
<td>میانگین</td>
<td>۰/۸۵۴</td>
<td>۰/۹۱۶</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۹۴۵</td>
<td>۰/۹۱۶</td>
</tr>
<tr>
<td>میانگین</td>
<td>۰/۹۲۵</td>
<td>۰/۹۱۶</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۹۴۵</td>
<td>۰/۹۱۶</td>
</tr>
<tr>
<td>میانگین</td>
<td>۰/۹۱۶</td>
<td>۰/۹۱۶</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۹۴۵</td>
<td>۰/۹۱۶</td>
</tr>
</tbody>
</table>

در هر ساتن و رذافی پایین، میانگین‌های دارای اختلاف معنی‌دار دارند.

با توجه به نتایج جدول ۶، ریشه پایه‌های مختلف مراکز اختلافات فاصله در انتقال سدیم را نشان می‌دهد که با تابعی به دست آمده توسط زارع محققین (۱۵۱) و (۱۵۲) در مورد تاریک و نارنجی ارگامات مراکز تفاوت‌دار بوده و عبارت دیگر ریشه می‌باشد. این مطالعه مختلف در پایه‌های مختلف لیموشیرین، قیمت‌ها و بازیابیتی از لحاظ شکمی، نارنجی به شکل مثبت تأثیر داشته یافته که می‌توان کلیات این آزمایشات پایه و لیموکارنا و بکرای تمایل کمی به جمع سدیم در شکمی‌های بی‌پایه‌ها کلیه‌ای‌ها نشان داد که غلظت سدیم در ریشه

مورد بکرای و لیموکارنا شاید صادق باشد. لرخ دیگر به مدت مرز تاریک، نارنجی و میانگین‌های مختلف مستقیم با استفاده از مدل‌های نارنجی ارگامات مراکز شکمی‌های مختلف در انتقال سدیم دارند که با تکلم طرفی این‌اشتی، انتقال پایه به شکمی‌های غلظت سدیم در ریشه به‌طور نسبی در افزایش آن در شکمی‌های بی‌پایه‌ها بدون. نتایج تأثیر نوع پایه و شوری بر غلظت کل میانگین‌های نشان داد که نوع پایه تأثیر زیادی بر غلظت کل پایه‌های بی‌پایه دارد (جدول ۶). در تیمار شاهد بالاترین غلظت سدیم در ریشه و کمترین آن در ریشه

میانگین‌های مختلف را و یا پایه‌های مورد آزمایش در سطح یک درصد آزمون دانشجویی دارد. بر اثر شوری غلظت سدیم در ریشه بی‌پایه‌ها افزایش یافته و لی‌میزان

افزایش غلظت سدیم به نوع پایه و سطح شوری متفاوت بود. بین پایه‌های مختلف از نظر غلظت سدیم در ریشه اختلاف معنی‌دار وجود داشت و ترکیب آن از پایه‌های مختلف با

صورت تاریک، لیموشیرین، و لیموکارنا با بکرای و لیموآب بود (جدول ۶).
جدول 7 اثر نوع پایه و تیمارهای شوری بر غلظت کلر (درصد ماده خشک) در شاخه‌های پوندک لیموشرین

<table>
<thead>
<tr>
<th>پایه‌های مراکز</th>
<th>میلی‌مول NaCl</th>
<th>میلی‌مول</th>
<th>تناژ</th>
<th>میکرو‌ایاکس</th>
<th>ریشه</th>
<th>پوندک</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/12</td>
<td>2/59</td>
<td>0/97</td>
</tr>
<tr>
<td>7/1</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/18</td>
<td>2/54</td>
<td>0/83</td>
</tr>
<tr>
<td>2/7</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/22</td>
<td>2/59</td>
<td>0/83</td>
</tr>
<tr>
<td>1/5</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/24</td>
<td>2/59</td>
<td>0/83</td>
</tr>
<tr>
<td>0/5</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/12</td>
<td>2/59</td>
<td>0/83</td>
</tr>
</tbody>
</table>

در هر سطح و رنگ پایه، میانگین‌های درایای هر نوع کمیت را در سطح 0/1 آزمون دانک اختلاف معنی‌دار ندارند.

مقایسه میانگین‌ها نشان داد که غلظت کلر در ریشه
پایه‌های مورد آزمایش نیز متفاوت است (جدول 8). در تیمار
شاهد بالاترین غلظت کلر در ریشه لیموآپ و کمترین آن در
ریشه تازه بود. شوری سبب افزایش غلظت کلر در ریشه
همه پایه‌ها شد اگرچه کیفیت افزایش غلظت کلر بیشتر به نوع
پایه متفاوت بود. به طور کلی بین تیمار شاهد و سایر تیمارها
از نظر غلظت کلر در ریشه اختلاف معنی‌دار وجود داشت ولی
بین سطح شوری 0/4 و 0/5 میلی‌مولار، اختلاف معنی‌دار نبود.
غلظت کلر ریشه مشدیده نشان داد که پایه‌های مختلف بین
غلظت کلر در ریشه اختلاف معنی‌دار وجود داشت و ترتیب
آن از پایه‌های بیضی‌دار به کمترین و سایر و کمترین به
لیموآپ تازه و کبکی بود (جدول 8).

نتایج موجود در جدول 8 حاکی از نتایج متفاوت پایه‌های
مراکز از تراکم کلر در ریشه مایع و گرانش‌های سایر
پژوهشگران (14.1) نیز مورد این تجربه‌اندازه که غلظت
کلر در ریشه‌های مراکز پسته به نوع گونه متفاوت است. با
افزایش غلظت کلر در ریشه افزایش یافته است که این
نتیجه با نتایج دسته‌ای توسط دیگر پژوهشگران
(8-14.1) مطابقت دارد. با مقایسه نتایج جدول 7 و 8
می‌توان دریافت که تغییرات غلظت کلر در ریشه خیلی کمتر
داشت و همچنین بین پایه‌های مختلف از نظر غلظت کلر در
شاخصه پوندک اختلاف معنی‌دار بوده طوری که بیشترین
و کمترین غلظت کلر مربوط به تازه و کمترین معنی‌دار
(جدول 7).

налگن

و اینکه ریشه پوندک روی پایه‌های مانند روزی 20 میلی‌مولار، مورد این تجربه که نتیجه کلر به
تازه بود. با توجه به اینکه غلظت کلر در شاخه‌های
پوندک روی پایه تازه خیلی بیشتر از سایر پایه‌های
نتیجه حاصل می‌شود که تازه بود نکنی در گل‌گیری از انتقال
کلر به پوندک دارد. براساس غلظت کلر در شاخه‌های
پوندک و کمک به شوخه است که تازه بود نکنی در
پوندک مامعه‌نما نیست. این مسئله در مورد پایه بکرایک
صداق است، اما تنها پایه بکرایک در شوری 40 میلی‌مولار،
محدود می‌شود و پایه لیموآپ نیز از شوری 40 میلی‌مولار
پایه‌های مناسب جهت محدود کردن انتقال کلر به پوندک
می‌باشد.
جدول 8 اثر تیمارهای شوری بر غلظت کلر (درصد ماده خشک) در ریشه پایه‌های مختلف مراکیت

<table>
<thead>
<tr>
<th>پایه‌های مراکیت</th>
<th>میلیمول NaCl در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیمون‌پیرین</td>
<td>1/100c</td>
</tr>
<tr>
<td>میانگین</td>
<td>1/100</td>
</tr>
<tr>
<td>همکاری</td>
<td>10/100c</td>
</tr>
<tr>
<td>نتیجه</td>
<td>10/100</td>
</tr>
</tbody>
</table>

در هر سنتو ری یا میانگین‌هایی که در جدول ذکر شده‌اند در سطح ۱٪ آزمون‌های انحراف معنی‌دار ندارند.

از تغییرات آن در شاخص‌های است. این نتایج با نتایج به دست آمده توسط سایر پژوهشگران (17.18) در مورد سایر ارقام مراکیت‌های مختلف و برازش سطح شوری ظرفیت انباشت کلر در ریشه کاهش می‌یابد. در این پایه انباشت کلر در سطح شوری ۵ میلیمولار نسبت به ۱۰ کاهش می‌یابد. در نگرپایه‌های مراکیت‌های نیز چنین موردی که ریشه‌ها بسته است (14 و 19).

منابع مورد استفاده