اثر شوری بر غلظت و پراکنش یونهای پتاسیم، سدیم و کلر در پیوند لیموشیرین روي پنج پایه مركبات

عبدالحسین ابوطالی، عنایت اله تفضلی، بهمن خلیبرین و نجمعلی کریمیان

چکیده
این پژوهش به منظور بررسی اثر شوری بر غلظت یونهای پتاسیم، سدیم و کلر تحت تأثیر کلیه سدیم در اندازه‌های مختلف و ضریب ته آلایه لیموشیرین پیوند نده روي پنج پایه مركبات شامل یک یکی از (پیوند لیموشیرین + تارهگی) لیموآب، وكلازیرانا و لیموشیرین به صورت فاکتور تبیین در قابل طرح کلاً تصادفی در چهار تکرار در گلخانه به اجرا در آمد. براساس نتایج، نوع پایه تأثیر زیادی بر غلظت پونه‌ها داشت. غلظت و پراکنش یونهای پتاسیم، سدیم و کلر در تیمار شاهد و سایر سطوح شوری با هم تفاوت معنی دار داشت. شوری غلظت سدیم و کلر در ریشه و شاخه‌های افزایش داد ولی میزان افزایش، هنگامی که نوع پایه مشابه بود. کمترین غلظت کلر و سدیم در شاخه‌های پیوند چهار پایه و لیموآب بود. اثر شوری غلظت پتاسیم در شاخه‌های پیوند چهار پایه نارنجی و یک یکی از (پیوند لیموشیرین، روي پنج پایه تارهگی و یک یکی از افزایش و روی سایر پایه‌ها کاهش پایه و همچنین غلظت پتاسیم در ریشه همه پایه‌ها به جز لیموآب افزایش یافت.

واژه‌های کلیدی: شوری، لیموشیرین، پایه

فواصل آپاری‌ها به چندین برابر بررسید (23). به همین دلیل اصلاح و شناسایی مداوم پایه‌ها و یا ترکبات پایه و پیوندکه‌ها به منظور پرورش و حفاظت مركبات در محیط‌های که شوری آنها در حال افزایش است، بسیار ضروری است. پایه‌ها مركبات دارای قدرت متناوب در کاهش و یا مرتبه‌ی از ورود کلر به درون سلول‌های خود هستند که این سازوکارها هنوز به

مقدمه
مطالعات متعدد نشان‌داده است که درختان مركبات می‌توانند اطراف نوع پایه، ترکبات مختلف پایه و پیوندک و نوع میان پایه نسبت به محدوده کرون ورود عناصر شوری در سطوح سوی به درون گیاه جلوگیری کنند (2، 3، 4 و 5). به نوبه‌ی همین، دسته ای از پایه و دور آپاری، شوری خاک ممکن است در بین

1. استادیار باغبانی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد چمران
2. استاد باغبانی، دانشکده کشاورزی، دانشگاه شیراز
3. استادیار زیست‌شناسی، دانشگاه علوم، دانشگاه شیراز
4. استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه شیراز

69
جدول 1. خصوصیات فیزیکی و شیمیایی خاک مورد استفاده

<table>
<thead>
<tr>
<th>درصد اشعاب</th>
<th>قابلیت هدایت الکتریکی</th>
<th>اسیدیت کل</th>
<th>نسبت رس شن</th>
<th>خاک</th>
<th>(دست وسیم بر ساعت متر)</th>
<th>اشعاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>بایزی</td>
<td>5/8</td>
<td>37</td>
<td>22</td>
<td>23</td>
<td>6/8</td>
<td>187</td>
</tr>
<tr>
<td>ارز کل</td>
<td>کربن آلی</td>
<td>4/3</td>
<td>2/3</td>
<td>2/3</td>
<td>0/18</td>
<td>0/18</td>
</tr>
<tr>
<td>میلی‌گرم در کیلوگرم خاک</td>
<td>2/7</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>0/18</td>
<td>0/18</td>
</tr>
</tbody>
</table>

مختلفی پوندک مثل برگ و ساقه‌ها دارد. به طور کلی چنین نتیجه‌گیری می‌شود که محدود کردن انتقال Na⁺ فقط به پوندک اثر نسبتاً بزرگی داشته بلهک تغییر می‌رسد که در این رابطه پایبند این مؤثر شود (6). لیموشهدنی‌گی از ارقام مهم مربوط در مناطق مختلف پوندک است. عکس العمل این رقم تحت شرایط شوری کمتر مورد مطالعه قرار گرفته است. بر این اساس، هدف از این تحقیق بررسی تأثیر نوع پایه بر غلظت و پراکنش پاسیم، سدیم و کلر در حالات تیونیدی لیموشهدنی تحت تنش شوری در محیط کشت خاک بالعوض جنوب بوده است.

مواد و روش‌ها

این آزمایش به مظور بررسی اثر شوری بر پوندک لیموشهدنی روی یاپه‌های مختلف در سال 1383-1386 به صورت فاکتوریل قابل طرح کلی به منظور گیاه‌شکنی بی‌چهار تکرار روی نهال‌های لیموشهدنی پوندک شده روی پایه مختلف در گل‌خانه دانشگاه کشاورزی دانشگاه شیراز (متوسط دما 30-35 درجه سانتی‌گراد) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت تیونید نسبت به میزان متوسط شرکت می‌باشد. تغییرات انتقال میزان متوسط دما و رطوبت نسبی 5-75 درصد و بدون نور مصنوعی) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت تیونید نسبت به میزان متوسط شرکت می‌باشد. تغییرات انتقال میزان متوسط دما و رطوبت نسبی 5-75 درصد و بدون نور مصنوعی) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت تیونید نسبت به میزان متوسط شرکت می‌باشد. تغییرات انتقال میزان متوسط دما و رطوبت نسبی 5-75 درصد و بدون نور مصنوعی) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت تیونید نسبت به میزان متوسط شرکت می‌باشد. تغییرات انتقال میزان متوسط دما و رطوبت نسبی 5-75 درصد و بدون نور مصنوعی) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت تیونید نسبت به میزان متوسط شرکت می‌باشد. تغییرات انتقال میزان متوسط دما و رطوبت نسبی 5-75 درصد و بدون نور مصنوعی) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت تیونید نسبت به میزان متوسط شرکت می‌باشد. تغییرات انتقال میزان متوسط دما و رطوبت نسبی 5-75 درصد و بدون نور مصنوعی) انجام گرفت. فاکتور شوری در سطح سه طبقه ترکیبی 100، 200 و 300 میلی‌متر در برکلی سدیم و یاپه‌ها در 5 سطح شرکت
جدول 2. برخی ویژگی‌های آب مورد استفاده برای آبیاری نهال‌ها

<table>
<thead>
<tr>
<th>pH</th>
<th>قابلیت هدایت الکتریکی (میکرومپس بر سانتی‌متر)</th>
<th>نمک مصرفی (کرم)</th>
<th>سطح شوری NaCl در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8±0/1</td>
<td>0.05</td>
<td>صفر</td>
<td>صفر</td>
</tr>
<tr>
<td>7/8±0/2</td>
<td>0.05</td>
<td>1/17</td>
<td>20</td>
</tr>
<tr>
<td>8/1±0/1</td>
<td>0.05</td>
<td>2/44</td>
<td>40</td>
</tr>
<tr>
<td>8/8±0/2</td>
<td>0.05</td>
<td>3/51</td>
<td>60</td>
</tr>
</tbody>
</table>

آزمون دانکن در سطح یک درصد مقایسه شدند.

نتایج و بحث
تأثیر نوع پاه و شوری بر غلظت نتایم
مقایسه میانگین‌هایی که داشت که نوع پاهی به غلظت نتایم در شاخصه پونک نتایم دارد. شوری اثرات متفاوتی را بر آن و نوع پاهی به غلظت نتایم در شاخصه پونک داشت. بطور کلی تیمار شاهد و سایر تیمارها از نظر غلظت نتایم در شاخصه پونک اختلاف معنی‌دار وجود داشت و بیشترین غلظت نتایم در شاخصه پونک در سطح شوری 40/0 میلی‌مولار بود و کمترین آن در تیمار شاهد بود. در مجموع آزمایش از نظر غلظت نتایم در شاخصه پونک اختلاف وجود داشت که این اختلاف بین نتایم و بکارایی با ولکامینان لیموشیرین و لیمو مصنوعی برود (جدول 3).

بر اساس نتایج آزمایش به تیمار شاهد غلظت نتایم در شاخصه پونک از 74/1 درصد تا 4/68 درصد متغیر است که با مقادیر به دست آمده توسط کارگردان سانچز (14) و ترکیبی (15) بالا و همکاران (10) از دو هوری ارتفاع، مربوط به نتایم و افزایش غلظت نتایم به تنهایی تأثیر شوری در شاخصه همه‌پایه به جز طرح و بکارایی می‌باشد (جدول 3). این نتایج نیز با نتایج بی دست آمده توسط کارگردان سانچز و همکاران (16) گارسیا لیدون و همکاران (13) مطابقت داشته و لیکن با نتایج به دست آمده توسط بالا و همکاران (1) در مورد سایر ارتفاع مربوطات تفاوت

(چهار ماه) عمل پونک. با استفاده از پونک لیموشیرین معمولی به روش سیری انجام شد. پس از گذشت 25 روز از انجام پونک، قسمت هموایی پاهی خم شد و پس از آن که پونک‌ها شروع به رشد نمود، پاهی از 5 سانتی‌متر بالای پونک غلظت گردید. از این پس به‌مدت 6 ماه به پونک اجازه رشد آب و عصاره‌ها که نفوذ به حدود 50 سانتی‌متر رشد می‌رفت، تیمارهای شوری اعمال گردید. به منظور چربی‌زدایی از ابتدا شوری ناکث شوری، مقدار نمک تجویز (به آب آبیاری اضافه شد) تا پس از چهار دوره آبیاری غلظت نمک مصرفی به اندازه تیمارهای مورد نظر رسید (جدول 2).

از این مرحله به بعد گیاهان به‌مدت 10 هفته تحت تیمار شوری بودند. آب مورد استفاده، اساساً از چاه عمق بود و آبیاری هر روز یکبار طوفان انجام می‌گرفت که از ته گلدان خارج شد. در خلوت دوره آزمایش هیچ کدام کود مصرف نگردید. برای پایان آزمایش، نهال‌ها از گلدان خارج کرد. ریشه و ساقه آنها از هم جدا شدند و پس از استحصال و تاریک‌گیری، به‌صورت ناحیه تا 70 درجه آب مصرف می‌گردد. و نتایج نگه داشته و سپس با آسیاب بری‌های صورت پیدا در آورده شدند. پس از به‌نهایت خاکستر از مواد گیاهی در تمام 500 درجه سانتی‌گراد و عصاره‌گیری با سایر کالری‌های 2000 ترمال و آب دوبار تازه، غلظت بیونه‌ریا نتایم و سدیم به روش شعله‌نشینی و غلظت بیونه‌ریا افزایش و در نهایت به‌صورت دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت نهال‌های ابتدا آبیاری شدند. همچنین دوباره به دست آمده به‌صورت NSTAT-C
جدول 3 اثر نوع پایه و تیمارهای شوری بر غلظت پتاسیم (درصد ماده خشک) در شاخه‌های لیموشیرین

<table>
<thead>
<tr>
<th>پایه‌ها</th>
<th>میلی‌مول NaCl در لیتر</th>
<th>غلظت پتاسیم (درصد ماده خشک)</th>
<th>ترکیب</th>
<th>لیموشیرین</th>
<th>ولکامیانا</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>2/88†</td>
<td>2/31†</td>
<td>کم‌تر</td>
<td>2/31†</td>
<td>2/71†</td>
<td>2/31†</td>
</tr>
<tr>
<td>2/50†</td>
<td>2/41†</td>
<td>2/32†</td>
<td>کم‌تر</td>
<td>2/32†</td>
<td>2/71†</td>
<td>2/41†</td>
</tr>
<tr>
<td>2/51†</td>
<td>2/44†</td>
<td>2/45†</td>
<td>کم‌تر</td>
<td>2/45†</td>
<td>2/71†</td>
<td>2/44†</td>
</tr>
<tr>
<td>2/52†</td>
<td>2/53†</td>
<td>2/46†</td>
<td>کم‌تر</td>
<td>2/46†</td>
<td>2/71†</td>
<td>2/53†</td>
</tr>
<tr>
<td>2/53†</td>
<td>2/54†</td>
<td>2/47†</td>
<td>کم‌تر</td>
<td>2/47†</td>
<td>2/71†</td>
<td>2/54†</td>
</tr>
<tr>
<td>2/54†</td>
<td>2/55†</td>
<td>2/48†</td>
<td>کم‌تر</td>
<td>2/48†</td>
<td>2/71†</td>
<td>2/55†</td>
</tr>
<tr>
<td>2/55†</td>
<td>2/56†</td>
<td>2/49†</td>
<td>کم‌تر</td>
<td>2/49†</td>
<td>2/71†</td>
<td>2/56†</td>
</tr>
<tr>
<td>میانگین</td>
<td>2/88†</td>
<td>2/31†</td>
<td>کم‌تر</td>
<td>2/31†</td>
<td>2/71†</td>
<td>2/31†</td>
</tr>
</tbody>
</table>

در هر سنتی و رده پایه، میانگین‌ها دارای حوزه مشترک، در سطح 0.1 آزمون دانک اختلاف معنی‌دار ندارند.

در صورت ترتیب‌آن از پایه‌های تیمارهای به کمترین به صورت لیموآب، لیموشیرین، تنانج، ولکامیانا و پیکرینی بود (جدول 3). این نتایج حاکی از تفاوت غلظت پتاسیم در رشته‌های مختلف مربک‌های است که به ترتیب به دست آمده توسط کارسی‌سانتژ و همکاران (14) و بانکر و همکاران (1) در مورد سایر ارقام مربک‌های مطالعه دارد.

تأثیر نوع پایه و شوری بر غلظت سدیم

مقاومت میانگین‌ها نشان داد که غلظت سدیم در شاخه‌های پتانسیل تحت تأثیر نوع پایه متفاوت است (جدول 5). شوری سبب افزایش غلظت سدیم در شاخه‌های پیوندک روی تمام پایه‌ها شد. اگرچه افزایش غلظت بسته به نوع پایه متفاوت بود، البته هر کلی کمترین و بیشترین غلظت سدیم در شاخه‌های پیوندک به ترتیب در تیمار شاهد و تیمار 6 میلی‌مول مشاهده شد. بین پایه‌های مورد آزمایش از نظر غلظت سدیم در شاخه‌های پیوندک اختلاف معنی‌دار وجود داشت. به طوری که بین پایه‌ها و تیمارهای دارای انتخاب غلظت پتاسیم در رشته پیکرینی کمترین انتخاب معنی‌دار وجود داشت و بین پایه‌های مورد آزمایش از نظر غلظت پتاسیم در رشته اختلاف معنی‌دار وجود داشت و
جدول 4. اثر تیمارهای شوری بر غلظت پتاسیم (درصد ماده خشک) در رشته پایه‌های مختلف مركبات

<table>
<thead>
<tr>
<th>پایه‌های مركبات</th>
<th>میلی‌مول NaCl</th>
<th>لیموئین</th>
<th>بکرایی</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین (دم)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/24 %</td>
<td>0/198</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
<tr>
<td>1/32 %</td>
<td>0/191</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
<tr>
<td>1/40 %</td>
<td>0/208</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
<tr>
<td>میانگین مولکول</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/53 %</td>
<td>0/191</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
</tbody>
</table>

در هر ستون و ربنده واضح، میانگین‌های دارای جزئی مشترک، در سطح 0/1 آزمون دانک اختلاف معنی‌دار ندارند.

جدول 5. اثر نوع پایه و تیمارهای شوری بر غلظت سدیم (درصد ماده خشک) در شاخاسه نی‌عدسی

<table>
<thead>
<tr>
<th>پایه‌های مركبات</th>
<th>میلی‌مول NaCl</th>
<th>لیموئین</th>
<th>بکرایی</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین (دم)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/21 %</td>
<td>0/191</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
<tr>
<td>1/29 %</td>
<td>0/191</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
<tr>
<td>1/37 %</td>
<td>0/208</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
<tr>
<td>میانگین مولکول</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/53 %</td>
<td>0/191</td>
<td>1/24</td>
<td>1/21</td>
<td>0/27</td>
</tr>
</tbody>
</table>

در هر ستون و ربنده واضح، میانگین‌های دارای جزئی مشترک، در سطح 0/1 آزمون دانک اختلاف معنی‌دار ندارند.

گزارش شده است که در تنظیم غلظت سدیم هم پایه و هم بیوندک دخالت دارند (3). در این ارایه که دفع سدیم از طریق مکانیسمی با جذب آن از ریشه و شاخاسه بیوندک صورت می‌گیرد، می‌توان یقین نشان دهند که پایه‌های پایه‌پذیر و بیوندک‌ها باغی این بزرگ که با شاخاسه بیوندک روز پایه پایه بکرایی در حضور غلظت سدیم در شاخاسه بیوندک روی پایه و لیموئین‌ها مشابه. گزارش شده است که توان دفع سدیم و کار قابل توجه است و در این رابطه توان دفع سدیم توسط نبات سه برگ گیره‌های پایه بزرگ‌که در بخش و برای مثال غلظت سدیم در بزرگ‌های گربه‌فرت مارش خلیلی بیشتر از بگونه‌های پرینال و الیس‌ها روی پایه نارنج سه برگ بوده.
جدول ۶. اثر تیمارهای شوری بر غلظت سدیم (درصد ماده خشک) در ریشه پایه‌های مختلف مراکز

<table>
<thead>
<tr>
<th>میلیمول NaCl</th>
<th>پایه‌های مراکز</th>
<th>لیموآب</th>
<th>بکرآب</th>
<th>تاریک</th>
<th>وکرآب</th>
<th>صفر</th>
<th>۲۰</th>
<th>۴۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۵۲۶۳۲</td>
<td>۰/۵۷۶۲۶۷</td>
<td>۰/۳۲۲۵۱۹</td>
<td>۰/۵۴۸۵۰۰</td>
<td>۰/۵۴۸۵۰۰</td>
<td>۰/۵۴۸۵۰۰</td>
<td>۰/۵۴۸۵۰۰</td>
<td>۰/۵۴۸۵۰۰</td>
<td>۰/۵۴۸۵۰۰</td>
</tr>
<tr>
<td>۰/۰۸۱۶۵۲</td>
<td>۰/۰۲۶۱۰۶</td>
<td>۰/۰۲۵۴۱۴</td>
<td>۰/۰۲۵۴۳۲</td>
<td>۰/۰۲۵۴۶۴</td>
<td>۰/۰۲۵۴۶۴</td>
<td>۰/۰۲۵۴۶۴</td>
<td>۰/۰۲۵۴۶۴</td>
<td>۰/۰۲۵۴۶۴</td>
</tr>
<tr>
<td>۰/۰۹۶۵۶۱</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
<td>۰/۰۱۱۳۰۶</td>
</tr>
<tr>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
<td>۰/۱۲۸۹۰۰</td>
</tr>
<tr>
<td>۰/۰۸۵۶۵۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
<td>۰/۰۷۹۵۶۱</td>
</tr>
</tbody>
</table>

در هر ستون و رنگ‌بندی یافتنی، میزان برشایندگی داده‌ها بیان‌شده درصد ماده خشک، در سطح ۱/۰ آزمون دانک اختلاف معنی‌دار دارند.

با توجه به نتایج جدول ۶، ریشه پایه‌های مختلف مراکز اختلافات فعالی در انباشت ریشه و سدیم دارد که به نتایج به دست آمده توسط سایر محققان (۲۱) و (۱۵) در مورد تارک سدیم و سایر ارگام‌های مطلوبی دارد. به عبارت دیگر ریشه گونه‌های مختلف، ظرفیت ریشه‌سپری گونه‌های مختلف در انباشت سدیم سیستان که به تکمیل ظرفیت انتقال، انتقال سدیم به شاخه‌سازی ناگهانی می‌شود (۵). این مسئله با مقایسه عدد در جدول ۶ کاملاً مشخص است. با مقایسه این دو جدول می‌توان به رابطه منفی بین غلظت سدیم ریشه و شاخه‌سازی ریشه برد. به عبارت دیگر، افزایش غلظت سدیم در ریشه ارتباط زدیکی با افزایش آن در شاخه‌سازی پیوندک دارد.

تأثیر نوع پایه و شوری بر غلظت گاز

مقایسه ماژیک‌ها نشان داد که غلظت سدیم در ریشه چهارگانه ضعیف است (جدول ۶). در تیمار شاهد بالاترین غلظت در ریشه نرخ و کمترین آن در ریشه لیموآب پایه بود. در این رابطه تفاوت بین پایه‌های مورد آزمایش در سطح ۲ک درصد آزمون دانک معنی‌دار بود. اثر شوری غلظت سدیم در ریشه هم پایه‌ها افزایش یافت ولی میزان افزایش غلظت سدیم بسته به نوع پایه و سطح شوری متفاوت بود. پایه‌های مختلف از نظر غلظت سدیم در ریشه اختلاف معنی‌دار و وجود ترتیب آن از پایه‌های به کمترین بود. پایه‌ها، لیموآب، بکرآب و لیموآب ذوب (جدول ۶).
جدول 7 اثر نوع پایه و تیمارهای شوری بر غلظت کلر (درصد ماده خشک) در شاخساره پروندهای لیموشیرین

<table>
<thead>
<tr>
<th>میلیمول NaCl</th>
<th>پایه‌های مركبات</th>
<th>لیموشیرین</th>
<th>نیتروس</th>
<th>بکرای</th>
<th>نتایج</th>
</tr>
</thead>
</table>
| 1/17 | دشت و همچنین بین پایه‌های مختلف از نظر غلظت کلر در شاخساره پروندهای مختلف از نظر غلظت کلر در شاخsarه پروندهای مختلف از

(جدول 7)
جدول 8 اثر تبادلی شوری بر غلظت کلر (درصد ماه خشک) در رشته پایه‌های مختلف مراکیت

<table>
<thead>
<tr>
<th>پایه‌های مراکیت</th>
<th>میلی‌مول NaCl در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیموشیرین</td>
<td>1/10 a</td>
</tr>
<tr>
<td>بکراپی</td>
<td>1/10 c</td>
</tr>
</tbody>
</table>

در هر سنتو و ریف سوپرین، میلی‌مول NaCl در رشته‌های مختلف افزایش یافته است. این نتایج با نتایج بستگی به شاخص‌های کاهش می‌یابد. در دیگر پایه‌های مراکیت‌های نیز چنین موردنی در رشته‌های مختلف نیز چنین می‌باشد (1/10 و 1/4).

منابع مورد استفاده