اثر کادمیم اضافه شده و زمان خواباندن بر شکل‌های شیمیایی کادمیم در دو گروه بانی خاک

مجد رجایی و تجویزلی کریمیان

چکیده

در میان فلزات سنگین آلوده کننده خاک، کادمیم از اهمیت ویژه‌ای برخوردار است. زیرا به راحتی به وسیله ریشه گیاه جذب می‌شود و سپس آن تا ۲۰ برابر بیشتر از سایر فلزات سنگین است. بنابراین درک عوامل مؤثر بر قابلیت استفاده این فلز و تغییر و تبدیل آن در خاک از اهمیت قرارگیری برخوردار است. گرچه در سال‌های اخیر عصاره‌گیری دنیاله‌ای علی پروفسور در تیمی از شیمیایی و قابلیت استفاده بالقوه فلزات در خاک‌های ایران به کار رفته است، اما تحقیق اجزاء مختلف خاک برای نگهداری کادمیم و تغییر و تبدیل شکل‌های شیمیایی آن با زمان کمتر مورد توجه قرار قرار نگرفته است. در این پژوهش به منظور بررسی تغییرات زمانی شکل‌های شیمیایی کادمیم و تغییرات فریب‌رسانی اجزاء مختلف خاک برای نگهداری کادمیم در کیلومتر خاک تیمار شدیدن نموده‌ایم. در این مطالعه تعداد ۶۰ خاک استان تهران به کمک گیاهان دنیاله‌ای برداشت و به بهینه‌سازی تغییرات شکل‌های شیمیایی کادمیم بر روی خاک عصاره‌گیری دنیاله‌ای تعمیم شد. نتایج نشان داد که تعداد در بافت‌های لغیس و ارگنیتی و آلت در آبداری و ۸۷ درصد از کادمیم که کار رنگ به شکل‌های محلول + تیتانیت و آلی در آبداری. در بافت‌های لغیس و ارگنیتی و آلت در آبداری مقدار پیشتری از کادمیم که کار رنگ به شکل محلول و بدنی و کربناتی در آمد. برای سایر شکل‌ها (به جز شکل‌های آتشفشانی و تیتانیت‌های مکانیزم کمتر از حد شکل‌های محلول + بدنی) عکس از مطلوب درست‌کرده و باید افزایش می‌شود. کادمیم کمتر به شکل‌های کادمیم در خاک افزایش یافته‌اند. اما درصد این افزایش ها به تغییر اجزاء مختلف خاک برای نگهداری کادمیم در دفع کردن فلز سنگین داشته‌اند. بیشترین هم‌زایی کربناتی کادمیم مربوط به بخش کربناتی بود. تأثیر زمان بر تغییر شکل‌های کادمیم معمولاً بود، اما در اکثر تیمارها بلافاصله پس از افزودن کادمیم به خاک بیش از ۸۰ درصد این فلز وارد شکل‌های کربناتی و آلی گردید. و ناپایان آزمایش این نسبت تغییری نشان می‌دهد.

واژه‌های کلیدی: شکل‌های شیمیایی کادمیم، عصاره‌گیری دنیاله‌ای، خواباندن

1. به ترتیب دانشجوی دکتری و استاد خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز
مقدمه
امروزه آلودگی محیط زیست و از جمله خاک به عوامل یکسانی از مباحث بسیار مهم در زمینه بیش مطرح است. این پیامدهای تجارب ملقع بیشی در زمینه بیش مسائل پیشنهادی برای ساکنین زمین می‌باشد. فلزات سنجش منابع آلودگی خاک هستند که در صورت تجمع در خاک و جلده به وسیله گیاه به ژن‌های خاکی وارد می‌شوند و مسمومیت‌هایی را در ژن‌ها و باید اقدامات در این زمینه ایجاد بکر این‌ها را تغییر و تبدیل با فلزات محیط و تأثیرکننده به روش‌های‌ن گاهان و ساپر جانداران دارند، از همیجی ناصی برخوردار است.

در بین فلزات سنگین، به کادمیم توجه و در به این قراره، با وسیله ریشی گیاه جذب می‌شود و سبب آن تا ۲۰ برابر پیچش از سایر فلزات سنگین است (۲۱). فراهمی زمین بالایی کادمیم و احتیاط ورود آن به ژن‌های غذایی، حتی در سطوح پایین آلودگی خاک با این فلز بسبیته است که ثنا بیشتری نسبت به عوامل مؤثر بیلی‌فلز استفاده این فلز و تغییر و تبدیل آن در خاک احساس شود. به طور کلی قابلیت استفاده کادمیم تحت تأثیر مقدار و منشا کادمیم، pH مقدار ماده آلی، مقدار و نوع رس، ظرفیت نداد که این استفاده‌ها و رقبای سایر عناصر به ویژه روز در خاک می‌باشد (۲۷، ۹، ۸، ۷، ۶، ۵، ۴، ۳، ۲، ۱، ۰).

در رابطه با تغییر و تبدیل فلزات در خاک و از جمله کادمیم، بر آن است که بوجود آلودگی بالاصله پس از افزوده شدن به خاک، دارای بیشترین حلالیت و فراهمی زیستی می‌باشند. با گذشت زمان و ایجاد تعادل بین فلز و خاک به اثر واکنش‌های همکار جدید سطحی، ثبات، کلایی، رسوب، اکسید و احیا، واکنش با سیستم‌ها و هیدروکسید‌های آلی و مگنتی، و ورود به شکلی کیانی قابلیت استفاده کاکس فلزی و فلزات از شکل‌هایی حلالیت خاک به شکل‌هایی کم محلول است تبدیل

می‌شوند (۵، ۳۰، ۲۰، ۱۹، ۱۶، ۱۵، ۱۳، ۱۰، ۷، ۵، ۴ و ۲).
میزان 11 به خاک مذکور خاکی بگرده بانست و لوم شنی لبه شد. نمونه‌هاي از خاک به آزمایشگاه متصل و بعد از ویژگی‌هاي این خاکها، هم‌مون و نابوده و روش نهاده (11). بر اساس این اشتباه کردن اکلیدیک (72)، میانگین نتایج کانوئسی به روش جایگزینی کانوئسی با استاند بی‌ثباتی (13) و کربین الی به روش واکی باک (16) نشان داد (جدول 2).

به منظور بررسی تغییرات زمانی شیمیایی کادیم، آزمایشات فاکتوریل در قالب طرح کامل تصادفی انجام شد. نمونه‌هاي خاک و رهگاه‌ها (پاراگراف) در میانگین خاک و دو گروه بافت، میانگین در 15، 30 و 60 میلی‌گرم خاک دو گروه محلول سوخته کادیم و 90 میلی‌گرم خاک در گروه محلول سوخته کادیم و 2 هفته بود. مقادیر 200 خاک از خاک به طرف بی‌پلاستیک غنچه در سه نکتر در دماي آزمایشگاه (۲۵±۲ درجه سانتی‌گراد) خواندن شد. نمونه‌های خاک در طرف بی‌پلاستیک غنچه در مدت متوالی عبور هوا به شدت این تبخیر سریع آن‌ها جلوگیری شود. مقدار هر طرف بی‌پلاستیک غنچه هر روز یک تا آب مکتی در حکایات مزده رساندند و خاک‌ها در 15 روز یکبار قبل از آبادی به خوبی مخلوط شدند. نمونه‌های خاک در زمان‌های مذکور برداشت و شکل‌های شیمیایی کادیم با روش عصاره‌گیری دانه‌ای سیگک و همکاران (79) انجام شد و در همدانی میانگین زمان کشش رود و کارفکان (79) انجام شد و در همدانی میانگین زمان کشش رود و کارفکان (79) انجام شد و در همدانی میانگین زمان کشش رود و کارفکان (79) انجام شد و در همدانی میانگین زمان کشش رود و کارفکان (79) انجام شد و در همدانی میانگین زمان کشش رود و کارفکان (79) انجام شد و در همدانی میانگین زمان کشش رود و کارفکان (79) انجام شد و در همدانی معادل میانگین زمان‌های بی‌پلاستیک غنچه در سال های اولیه بین ۳۰ میلی‌گرم خاک در گروه محلول سوخته کادیم و 2 هفته بود.

مواد و روش‌ها
در تحقیق حاضر از دو نوع خاک آزمایش دیده شد. برای گروه‌بافی اول، نمونه‌های از خاک‌های مالگون ایرانی (Fine, mixed (calcareous), mesic Typic Calciixerpts) انسجام زراعی تحقیقات دانشگاه شکاروی دانشگاه شیراز از عمق 30 سانتی‌متر می‌تواند که جنگلی و گیاهی در این مدت می‌تواند در آزمایش به کار رفته بگرده باشد. نمونه‌ها به همان طریق از زمان خاک به شکل‌های شیمیایی کادیم در...
جدول 1. خلاصه‌ای از روش عصاره‌گیری دنباله‌ای ارائه شده به وسیله سینگ و همکاران (1988) برای تعیین شکل‌های شیمیایی فلزات در خاک‌های آهکی

<table>
<thead>
<tr>
<th>شکل شیمیایی کادمیم</th>
<th>علامت</th>
<th>ترکیب عصاره‌گیر</th>
<th>درصد</th>
<th>نسبت خاک به عصاره‌گیر</th>
<th>مدت تکان دادن (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>محلول + بادالی</td>
<td>Ex+Sol</td>
<td>1M Mg(NO₃)₂</td>
<td>520</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>کربنات</td>
<td>Car</td>
<td>1M NaOAc (pH=5</td>
<td>520</td>
<td>0.7 NaOCl (pH=8.5)</td>
<td></td>
</tr>
<tr>
<td>آلی</td>
<td>Om`</td>
<td>0.1M NH₂OH.HCl (pH=2 HNO₃)</td>
<td>510</td>
<td>0.1M NH₂OH.HCl (pH=2 HNO₃)</td>
<td></td>
</tr>
<tr>
<td>مفصل به اکسیدهای منگنز</td>
<td>MnOx</td>
<td>0.25M NH₂OH.HCl + 0.25M HCl</td>
<td>550</td>
<td>0.25M NH₂OH.HCl + 0.25M HCl</td>
<td></td>
</tr>
<tr>
<td>مفصل به اکسیدهای آهن بر شکل</td>
<td>AFeOx</td>
<td>0.2M (NH₄)₂C₂O₄ + 0.2M H₂C₂O₄ + 0.1MC₆H₈O₆</td>
<td>550</td>
<td>0.2M (NH₄)₂C₂O₄ + 0.2M H₂C₂O₄ + 0.1MC₆H₈O₆</td>
<td></td>
</tr>
</tbody>
</table>

*: دو بار عصاره‌گیری

جدول 2. بعضی از وزنه‌های فیزیکی و شیمیایی خاک‌های مورد آزمایش

<table>
<thead>
<tr>
<th>خاک</th>
<th>وزنی</th>
<th>بافت لوم رست</th>
<th>قدرت</th>
<th>شن (درصد)</th>
<th>سیلت (درصد)</th>
<th>رس (درصد)</th>
<th>کادمیم کل (میلی گرم در کیلوگرم خاک)</th>
<th>ماده آلی (درصد)</th>
<th>کربنات کلسیم معادل (درصد)</th>
<th>ال‌هیش (خمیر اشباع)</th>
<th>ظرفیت تبادل کاتیونی (سانتی مول بر در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>47</td>
<td>39</td>
<td>40</td>
<td>11</td>
<td>158</td>
<td>19</td>
<td>0.26</td>
<td>0.64</td>
<td>0.56</td>
<td>0.6</td>
<td>0.68</td>
</tr>
</tbody>
</table>

و ترکیب هر عصاره‌گیر در جدول 2 نشان داده شده است. لازم به ذکر است که شکل تیه‌های تفاضل غلظت کادمیم کل عصاره‌گیر ضد به مخلوط سه اسید (91) و مجموع سایر شکل‌ها به دست آمده. تجزیه آماری داده‌ها به وسیله برنامه کامپیوتری نسبت کادمیم کل در عصاره‌گیر 14 0.68 مورد تجزیه Mstastc انجام و با استفاده از آزمون F تأثیر ماده زمینه به حداقل برسد. خلاصه‌ای مراحل عصاره‌گیری تا ناهید ماده زمینه به حداقل برسد. خلاصه‌ای مراحل عصاره‌گیری
جدول ۳ اثرات اصلی بافت‌های مورد آزمایش بر شکل‌های شیمیایی کادمیم

<table>
<thead>
<tr>
<th>شکل‌های شیمیایی (میلی‌گرم در کیلوگرم خاک)</th>
<th>عناصر</th>
<th>Res</th>
<th>CFeOx</th>
<th>AFexOx</th>
<th>MnOx</th>
<th>Om</th>
<th>Car</th>
<th>Ex + Sol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اعادید که در هر سنین دارای یک حرف مشکی هستند. بر اساس آزمون دانکن، قانون آماری مورد استحصال 5 درصد می‌باشد.

شکل ۱۰ اثر تلیف علائم اختصاصی سایر شکل‌ها به جدول ۱ مراجعه شود.

و ارزانیس فراین‌رگفتی می‌انگیزه‌ها مربوط به اثرات اصلی هر یک از عامل‌ها بر همکنش آنها استخراج و با آزمون دانکن مقایسه شدند. رسم نمودار توزیع شکل‌های شیمیایی کادمیم با

برنامه کامپیوتری Excel انجام گرفت.

نتایج و بحث

نتایج مربوط به تجزیه‌فیزیکی و شیمیایی بافت‌های مورد استفاده در جدول ۲ ارائه شده است. حاکی از گزارشی غیر آبود با بانت سیگن، ماده آلی متوسط، کربنات کلسیم با ر پ-باس قبلاً می‌باشد. افزودن شن کوارتز سبب سبک شدن بانت و کاهش در کراده کلم، ماده آلی و کربنات کلسیم

این حاکی توسط مشاهده می‌شود. زیرا می‌توان گفت چه در جدول ۳ ارائه شده است. تأثیر نتایج فراین‌رگفتی در سطح ۵ درصد معنادار بود. میانگین داده‌ها نشان داد که شکل‌های دیگری شیمیایی آلی، اکسیده‌های آهن‌یزی و غیره تأثیر بکریش به شکل‌ها در سطح مورد مطالعه عنوان کردند. همچنین بالاتر بودن شکل محلول + نیتروژن و شکل کربناتی در بافت لوم شی در نزدیکی از قابلیت استفاده بخشی بانت کربنات در حاشیه بانت سیگن است که به وسیله بی‌وزن‌های بی‌وزن‌های هم گزارش شده است

(۸۹۲۴،۱۷۲،۱۷۲،۲۰ و ۷۵). میانگین کمر شکل‌های آلی، اکسیده‌های آهن‌یزی بکریش به شکل و شکل در بافت لوم مشایی توان به رقيق شدن این اجزای بر نظر افروختن شن
جهت نهیه‌گردن بایمه بسک نسبت داد، لازم به ذکر است که در یادداشت‌ها مربوط به آثار اصلی و بر همکنی زمان و سطح کادمی در دو بافت مورد آزمایش در جدول‌های ۴ و ۵ نشان داده شده است. در هر دو بافت و در تمام زمان‌ها با افزایش سطح کادمی افزایش نسبت‌های سهمی‌سازی کادمی به طور معنی‌داری افزایش یافت. افزایش نسبت‌های سهمی‌سازی کادمی در همان ابتدای آزمایش بیانگر دسترسی بسیاری به تعادل و رسوب کادمی به شکل فعال‌های معنی‌داری می‌باشد. این امر افزایش ریز کادمی در ماده طبیعی به‌جرب و نگهداری کادمی نشان می‌دهد. در پژوهش‌های که توسط رنالو همکاران انجام گرفته، جدا سازی شکل‌های سهمی‌سازی کادمی در یک آزمایش خواندن ۶۰۰ روژه نشان داد که در همان ابتدای آزمایش (روز اول) کاربرد مقداری ۳ و ۱۰ میلی‌گرم کادمی در کیلوگرم خاک (به شکل سولفات کادمی) سبب توزیع یک‌واحدی این فلز در بین اجزای مختلف خاک شده است. در زمان مذکور کاربرد ۵۰ میلی‌گرم کادمی در کیلوگرم خاک سبب رسوب کادمی و تشکیل فازهای مهم شده که این امر با افزایش سطح کادمی در شکل تنه‌های مرمری بود.

بر همکنی بافت و سطح کادمی نیز بر این شکل‌ها معنی‌دار بود. با عنوان مثال در زمان ۱۴ هفته و در بافت‌های رنگی با افزایش سطح کادمی از ۴۰ میلی‌گرم در کیلوگرم خاک شکل محلول + تابیده از کمتر از ۳۵/۵ (حد خطای دستگاه گذشته اتمی) به ۱۴/۶ و در بافت‌های رنگی از کمتر از ۵۰/۵ به ۱۹/۴ میلی‌گرم در کیلوگرم خاک رسید که افزایش بیشتری را در بافت‌های رنگی نشان داد. به عبارت دیگر با افزایش سطح کادمی در بافت‌های مقداری بیشتری از کادمی در شکل محلول + تابیده به‌روز رسانید. چنین روندی در مورد شکل‌ها نیز روند تقریباً مشابهی مشاهده شد.
جدول 2. تأثیر زمان و سطح کادیم بر شکل‌های شیمیایی این فاز (میلی گرم در کیلوگرم خاک) در بافت لوم رست

<table>
<thead>
<tr>
<th>زمان (فته)</th>
<th>سطح (میلی گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>محلول + تبادل</td>
</tr>
<tr>
<td></td>
<td>کربناتی</td>
</tr>
<tr>
<td></td>
<td>آلیت</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>1/94</td>
<td>1/94</td>
</tr>
<tr>
<td>2/24</td>
<td>2/24</td>
</tr>
<tr>
<td>2/56</td>
<td>2/56</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>1/94</td>
<td>1/94</td>
</tr>
<tr>
<td>2/24</td>
<td>2/24</td>
</tr>
<tr>
<td>2/56</td>
<td>2/56</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>1/94</td>
<td>1/94</td>
</tr>
<tr>
<td>2/24</td>
<td>2/24</td>
</tr>
<tr>
<td>2/56</td>
<td>2/56</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>1/94</td>
<td>1/94</td>
</tr>
<tr>
<td>2/24</td>
<td>2/24</td>
</tr>
<tr>
<td>2/56</td>
<td>2/56</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>1/94</td>
<td>1/94</td>
</tr>
<tr>
<td>2/24</td>
<td>2/24</td>
</tr>
<tr>
<td>2/56</td>
<td>2/56</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>1/94</td>
<td>1/94</td>
</tr>
<tr>
<td>2/24</td>
<td>2/24</td>
</tr>
<tr>
<td>2/56</td>
<td>2/56</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در هر ستون و با در هر روز دارای یک حرف مشترک هستند، با استاندارد ازون دانسته و می‌تواند مقایسه آماری مبتنی بر سطح احتمال 0.05 داشته باشند. nd: نتیجه‌گیری نمی‌کند.
جدول 5. تأثیر زمان و سطح کادمی بر شکل های شیمیایی این فلز (میلی گرم در کیلوگرم خاک) در بافت لوم شی:

<table>
<thead>
<tr>
<th>سطح (میلی گرم در کیلوگرم خاک)</th>
<th>زمان (هفته)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محلول + باریک</th>
<th>میانگین</th>
<th>تکمیل به اکسیدهای اصلی</th>
<th>تمیز شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>0/17</td>
<td>0/16</td>
<td>0/17</td>
<td>0/19</td>
</tr>
<tr>
<td>0/27</td>
<td>0/25</td>
<td>0/27</td>
<td>0/29</td>
</tr>
<tr>
<td>0/35</td>
<td>0/32</td>
<td>0/35</td>
<td>0/37</td>
</tr>
<tr>
<td>0/39</td>
<td>0/38</td>
<td>0/40</td>
<td>0/42</td>
</tr>
<tr>
<td>0/45</td>
<td>0/44</td>
<td>0/45</td>
<td>0/47</td>
</tr>
<tr>
<td>0/52</td>
<td>0/51</td>
<td>0/52</td>
<td>0/54</td>
</tr>
<tr>
<td>0/59</td>
<td>0/58</td>
<td>0/59</td>
<td>0/61</td>
</tr>
<tr>
<td>0/64</td>
<td>0/63</td>
<td>0/64</td>
<td>0/66</td>
</tr>
<tr>
<td>0/69</td>
<td>0/68</td>
<td>0/69</td>
<td>0/71</td>
</tr>
<tr>
<td>0/74</td>
<td>0/73</td>
<td>0/74</td>
<td>0/76</td>
</tr>
<tr>
<td>0/79</td>
<td>0/78</td>
<td>0/79</td>
<td>0/81</td>
</tr>
<tr>
<td>0/84</td>
<td>0/83</td>
<td>0/84</td>
<td>0/86</td>
</tr>
<tr>
<td>0/89</td>
<td>0/88</td>
<td>0/89</td>
<td>0/91</td>
</tr>
<tr>
<td>0/94</td>
<td>0/93</td>
<td>0/94</td>
<td>0/96</td>
</tr>
<tr>
<td>0/99</td>
<td>0/98</td>
<td>0/99</td>
<td>0/101</td>
</tr>
</tbody>
</table>

میانگین‌های که در هر سیون و یا در هر نریف دارای یک حرف مشترک هستند، بر اساس آزمون میانگین فاوت آماری معنادار در سطح احتمال 5 درصد می‌باشند.
بررسی شکل‌های شیمیایی کادمیم با گذشت زمان نشان می‌دهد تعیین‌گر دوی بود، البته با گذشت زمان بعضی شکل‌ها روند ثابتی را به طور صعودی یا نزولی دنبال می‌کردند و بعضی دیگر در مسیر، نوسانات بودند. به طور مثال در هر دو بافت و در تمام سطوح پس از گذشت ۱۶ هفته شکل محلول + تبادلی به طور معنی‌داری کاهش یافت و به ترتیب برای بافت‌های لوم رسی و لوم شستی میانگین ۸/۷ و ۴/۰ به ۳۴/۰ و ۲۴/۰ می‌گردد در کیلوگرم خاک رسید. در مقابل، در هر دو بافت، غلظت کادمیم می‌تواند به اکسیدهای منگنز یا گذشت زمان نوساناتی داشت و یا کمی کاهش و یا کمی افزایش همراه بود (جدول‌های ۲ و ۳). کاهش غلظت شکل محلول + تبادلی و افزایش غلظت کادمیم مربوط به اکسیدهای منگنز امری دور از انتظار بود، زیرا غلظت شکل‌های محلول فلزات با گذشت زمان و بیشتر آنها به شکل‌های تبادلی بود. کمترین متوسط قرار گرفتن شکل‌های نیترات گرازش شده است (۱/۰، ۱/۵، ۱/۱، ۲/۱ و ۲/۷). هرچند بیای نوسان غلظت سایر شکل‌ها دیلی فاصله کننده وجود نداشت، اما شاید بتواند تعداد ۲۰۰ زمان خواهان‌دان بر شکل‌های شیمیایی کادمیم در...
کوته‌مودت نشان دهنده قابلیت استفاده زیستی بالای کادمیم، به خصوص در خاک‌های سبک‌تر بافت می‌باشد. بنابراین در خاک‌هایی که با کادمیم آلوده شده‌اند نیاز به توجه بیشتر به اثرات زیست محیطی این طنین و ورود آن به زنجیره غذایی احساس می‌شود. توصیه می‌شود که در خاک‌های آلوده شده با کادمیم و یا خاک‌هایی که مقادیری از این فلز را به صورت کمیسیون یا لجن فاضلاب دریافت می‌کنند، هر ساله سطوح قابل استفاده این فلز از اتصال‌های گیری و میزان جذب توسط گیاهان کشت شده در این خاک‌ها تعیین شود. تا این ورود این عنصر به زنجیره غذایی و عبور از حدود بحرانی جلوگیری شود.

نتیجه‌گیری
نتایج این پژوهش نشان داد که طرفیت کربنات کلسیم برای نگهداری کادمیم در خاک‌های مورد مطالعه بالاست و این خاک‌ها قادرند که مقادیر زیاد این فلز را به سرعت تثبیت کرده و به شکل کربناتی تبدیل کنند. در حالت تبدیل یک بخش عمده کادمیم کاهشی به شکل‌های شیمیایی که توسط عصاره گیرش‌های نسبتاً ضعیف عصاره گیری شوند و عدم تغییر این شکل‌ها در متابولیسم استفاده

منابع مورد استفاده
1. حسینی، س. م. ط. و ش. حاج رسولی‌ها. 1374. تعیین فرم‌های شیمیایی غالب عنصر سنگین در خاک اطراف کارخانه‌های ذوب آهن اسفناج و رسوبات تبخیری به روش عصاره‌گیری متوالی. خلاصه مقالات چهارمین کنگره علمی خاک ایران، دانشگاه صنعتی اصفهان، صفحه 168-169.


