برآورد هم‌زمان پارامترهای هیدرولوژیکی و انتقال املاح در خاک
به روش حل معکوس در مقياس مزره

فریبرز عباسی و فواد تاجیک

چکیده
برآورد ویژگی‌های هیدرولوژیکی و پارامترهای انتقال املاح به روش حل معکوس، عمدهاً با تحلیل‌های یک بعدی در آزمایشگاه و با ضریب
شرايط ماندن‌گزار محض شده است. هدف این امر، بهینه‌سازی شاخص‌های جمع‌آوری و توصیف تغییرات زمانی و مکانی
دلهای مزرعه‌ها می‌باشد. در این مقال، ویژگی‌های هیدرولوژیکی و پارامترهای انتقال املاح از آزمایش‌های مزرعه‌ها با
پارامترهای جوی‌چه‌های در مدل HYDRUS-2D و مدل غیر تعادلی روان – ساکن (MIM) (CDE) و سیالی ماندن‌گزار
برآورد گردیده. در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمعی و غلظت املاح مورد بررسی قرار گرفت. مقادیر
Ks در پایه به کار رفت. مقادیر Ks بین 0.996 و 0.389 سانتی‌متر در دقیقه با روش تغییرات (CV) در دست رد متغیر بوده است. مقدار
رطوبت ساکن برآورد شده (θm) کم و بیش در مقدار متوسط (3% ± 2%) تابع ناحیه در حالی که ضریب تبادل مره‌ای اول (ι0)
پسین (Dm/2) پسین (t/180 min) تا 19/52 تا 6/96 ثان و ضریب انتشار میدانی تخلخل (Dm/2) پسین (t/180 min) تا 19/52 تا 6/96
θm سانتی‌متر متغیر بود. مقادیر Dm پسین (t/180 min) تا حدی به عمق آب و زمان کاربرد املاح روی جوی‌چه‌ها و آبی
دو مین و ایستگی در سطح یا مانند دیگری انتقال مشاهده نگردید. تکرار میان شدت نفوذ برآورد و انتدازگیری شده قابل قبول بوده است. در حالی
که مقادیر رطوبت خاک بیشتر از مقدار واقعی برآورد گردید. تقاضاً میان شدت نفوذ برآورد و انتدازگیری شده غلظت
املاح کمتر از مقدار واقعی برآورد گردید. طبق فاصله میان مقادیر برآورد شده غلظت نسبتاً اندک بوده است. این نتایج
در شرایط مدل‌های انتقال MIM و مدل‌های CDE املاح توسط مدل‌های انتقال املاح به عنوان کافی با استفاده از مدل ساده
CDE قابل تعیین بوده و رطوبت ساکن نشان‌دهنده این نتایج است.

واژه‌های کلیدی: آبیاری جوی‌چه‌ها، حل معکوس، انتقال املاح، جریان آب

1. اعضای هیئت علمی مؤسسه تحقیقات فنی و مهندسی کشاورزی کرج
مقدمه

افریچ پیشرفت‌های قبلی توجهی در زمینه توسعه و مدل‌سازی حركت آب و املاح تحت شرایط کنترل شده، عادی‌ترین مدل‌ها و در مقیاس آزمایشگاهی در چند دهه اخیر به دست آمده و لیتو تعداد تحلیل‌های دقیق در مقیاس مزرعه‌ای اندک بوده است.

گفتگوی این امر را پایان داده و در اینجا مورد نظر می‌باشد. هدایت روش‌های نانویی از تأمین‌گری‌های خاک در مقیاس مزرعه‌ای دانسته، توجهی و نتایج این روش‌ها در مقایسه با روش‌های مکانیکی خاک در این منطقه کمک می‌کند. برای تغییر یافته (۲۰) و نباید کاربرد آنها در مطالعات مزرعه‌ای باید بررسی شود.

مدال‌های زیادی برای شیب سازی جریان آب و انتقال املاح در محیط غیر اشباع و وجود دارد. در اینجا به دست آمده‌اند. آنان همچنین درجه‌بندی و انعطاف‌پذیری، تعیین‌پذیری و مفید بودن مدل‌ها در بررسی مزرعه‌ای را مورد بررسی قرار داده‌اند. مدل‌های پیکتی‌جی و کاربرد به دانسته است که فرایند پیکتی‌جی بررسی‌های آماری در انتقال املاح به طور محاسبه‌ای از روش و رشته‌های تأثیر می‌پذیرد.

در بررسی ساختار گفتگوی در زمینه انتقال املاح در شرایط غیرابعادی و در مقیاس مزرعه‌ای مورد بررسی قرار گرفته و نتایج این پژوهش بوده است. ونک و همکاران (۲۵) به استفاده از این مدل تأثیر روش‌ها مختلف ابزاری و تغییرات مکانیکی هیدرولوگی اشاعه را بر انتقال املاح در آب‌های جوی‌خوار مورد بررسی قرار داده‌اند. مطالعات صورت گرفته در زمینه انتقال املاح در شرایط غیراخیاری و در مقیاس مزرعه‌ای انجام شده است. که فرایند انتقال املاح به طور محاسبه‌ای از روش و رشته‌های تأثیر می‌پذیرد.

گفتگوی این مطالعه، برآورده و یک‌تایی‌سازی چهارگانه و نباندی حمل آب و املاح در حین آب‌های با استفاده بررسی به روش‌های جوی‌خوار، قطعه‌ها و لوله‌های تراکمی نسبت به بررسی حین آب و انتقال آب و املاح مستلزم به‌کارگیری مدل‌های چند بعدی می‌باشد.

در حال حاضر مدل‌های مکانیکی جریان بر روی روش‌ها و اجرای محض متفاوت محدود، تصویب و محدود بررسی و روش‌های عقیده‌ای حل می‌کنند.

مدال‌های چند بعدی برای مطالعه تأثیر نگاه‌های مختلف مکانیکی خاک بر
بیان مراحل اول و دوم. آب باقی مانده در جویچه‌ها تخلیه و اندازه‌گیری شد. در ادامه این مقاله همه جا منظور از غلظت املاح، غلظت بروماید می‌باشد.

ترجیحی در خواص مورد استفاده قرار می‌گیرد.

مواد و روش‌ها

1- آزمایش‌های مزرعه‌ای

پنج آزمایش مزرعه‌ای در جویچه‌های انها به‌طور گروهی تحقیقاتی کشاورزی ماریککا در منطقه فیروزک، ایالت آریزونا بر روی خاک لوم شنی فاقد یک‌پوش گیاهی انجام شد. آزمایش‌ها در کرت‌های با سه جویچه به طول 3 متر، عمق دقیقی 20 سانتی‌متر و فاصله یک متر انجام گردید. جویچه وسط هر کرت، گیر خر و بوده است که از آن داده بردایش شده و با جویچه‌های جری رو در طرفین آن احاطه شده است. جزئیات آزمایش‌ها را در مقاله عباسی و همکاران (1) می‌توان بیان کرد.

مشخصات عمومی خاک مزرعه آزمایشی در جدول 1 ارائه گردیده است.

در این تحقیق، در سه آزمایش انجام گردید. در 30 دقیقه به‌طور یکسان در هر سه آزمایش به کار رفته.
ب) انتقال املاح
مدل فیزیکی غیر تعادلی جایی{-}ای است. انتشار به عنوان یک مدل دو ناحیه نیز شناخته می{-}شود. برای انتقال املاح و اکتشاف ناپایدار در محیط منطقه ای توسط وان گونگوئین و واکنت (37) و کلون و همکاران (8) به صورت زیر ارائه شده است:

\[
\frac{\partial (\theta_m C_m)}{\partial t} + \theta_m \frac{\partial C_{im}}{\partial t} = \frac{\partial}{\partial x_i} \left(\theta_m D_j \frac{\partial C_m}{\partial x_j} \right) - \frac{\partial (q_i C_m)}{\partial x_i}
\]

و

\[
\theta_m \frac{\partial C_{im}}{\partial t} = \alpha (C_m - C_{im})
\]

که در آن: \(\theta_m \)، رطوبت ناحیه روان، \(C_m \) (L^{-1})، غلظت املاح موجود در ناحیه روان، \(C_{im} \) (L^{-1})، غلظت املاح موجود در ناحیه ساقه (ML^{-1}) و \(D_j \) ضریب تابع مربوط به \(T \). نمونه ضریب انتشار (L^2 تا) است که از رابطه زیر به دست می{-}آید:

\[
\theta_m D_j = D_T q_i q_j i + (D_L - D_T) \frac{q_i q_j}{k} + \theta_m D_0 \gamma_0 \delta_{ij}
\]
باوجود هیزمان یا پارامترهای هیدرولوژیکی و انتقال املاح در خاک به روش...
جدول ۲. ویژگی‌های هیدرولوژی مدل وان گنوختن به دست آمده از مدل Rosetta و RETC

<table>
<thead>
<tr>
<th>R²</th>
<th>SSQ</th>
<th>n</th>
<th>α (cm³)</th>
<th>β₁ (cm³)</th>
<th>β₂ (cm³)</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.773</td>
<td>0.278</td>
<td>0.00578</td>
<td>0.333</td>
<td>0.510</td>
<td>RETC</td>
</tr>
<tr>
<td>0.89</td>
<td>0.773</td>
<td>0.278</td>
<td>0.00578</td>
<td>0.333</td>
<td>0.510</td>
<td>Rosetta</td>
</tr>
<tr>
<td>0.91</td>
<td>0.773</td>
<td>0.278</td>
<td>0.00578</td>
<td>0.333</td>
<td>0.510</td>
<td>RETC+Rosetta</td>
</tr>
</tbody>
</table>

RETC: مجموع مقادیر ماده‌ها a: برآورد شده با Rosetta
b: برآورد شده با RETC

جدول ۳. خلاصه مقادیر بهینه Kᵢ و پارامترهای مدل MIM و CDE در آزمایش‌های مختلف.

<table>
<thead>
<tr>
<th>R²</th>
<th>SSQ</th>
<th>Dᵢ (cm)</th>
<th>Dᵢ (cm)</th>
<th>ω (day⁻¹)</th>
<th>β₁ (cm³)</th>
<th>β₂ (cm³)</th>
<th>Kᵢ (cm min⁻¹)</th>
<th>ČV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.998</td>
<td>0.998</td>
<td>0.013 cm</td>
<td>0.013 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
</tr>
<tr>
<td>0.998</td>
<td>0.998</td>
<td>0.013 cm</td>
<td>0.013 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
</tr>
<tr>
<td>0.998</td>
<td>0.998</td>
<td>0.013 cm</td>
<td>0.013 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
</tr>
<tr>
<td>0.998</td>
<td>0.998</td>
<td>0.013 cm</td>
<td>0.013 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
<td>0.014 cm</td>
</tr>
</tbody>
</table>

SD: مقادیر با زمان بیشتر مشابه آب و املاح
SWS: مقادیر با زمان آبیاری مشابه

شکل ۱. مقادیر مشاهده و برآورد شده محتوی رطوبتی با مدل Rosetta، RETC و ترکیب مدل‌های Rosetta و RETC.
که مدل دو ناحیه به یا یک آزمایشگاه MIM را مورد بررسی قرار داده (16 و 18) معمولاً شامل مدل های یک بعدی بوده و غالباً در شرایط جبران مانند گزارش یا آزمایش به عنوان گزینه ای نشانگر اثر آن در داده های کمکی است. برای تایید نتایج این تحقیق، بررسی جبران مانند بعنوان در شرایط غیرمانندگار مورد نظر بود که در بررسی منابع یافت شد. مقادیر بهره D1 از 0/4 در 2/8 تا 9/6 و D2 از 2/4 تا 5/8 مقادیر نسبی برای شده با دانه D1، در 0/4 تا 9/6 و D2 در 2/4 تا 5/8 ضریب کاملاً مشابه بوده است. این بر خلاف انظار زمان کاربرد کوتاهتر برای کرک 5 که معمولاً کمتر از هر دوینده و نسبت بین K1 و K2 و ضریب انتقال شدیده حالت نسبی داده است. منابع فاینل هیپستگی کمی K1 و K2 به سیستم فاینل به یکدیگر داده شده است. مانند انتقال های مختلفی از همکاری این کمک است و به سیستم فاینل هیپستگی کمی K1 و K2 که در انتقال شدیده حالت نسبی داده است. منابع فاینل هیپستگی کمی K1 و K2 به سیستم فاینل به یکدیگر داده شده است. مانند انتقال های مختلفی از همکاری این کمک است و به سیستم داده می‌گردد.

برآورد K1 و K2 می‌تواند به همزمان با یک آزمایش هاست یکسین بود. این نتایج با مشاهده مزدهای انتقال دوم، حجم آب فلوئوز به مدت زمان تقریباً یکسایی، در کرتگرهای 3 و 5 آموزنت زمان کاربرد کوتاهتر برای کرک 5 که حجم آب کمتر از هر دوینده و نسبت بین K1 و K2 و ضریب انتقال شدیده حالت نسبی داده است. منابع فاینل هیپستگی کمی K1 و K2 به سیستم فاینل به یکدیگر داده شده است. مانند انتقال های مختلفی از همکاری این کمک است و به سیستم داده می‌گردد.

لیست نتایج مطالعات آخر (13 و 22) و پیشنهاد اینکه وجود آب ساکن نش نشی در مدل سایزی انتقال املاح در مقیاس مزرعه‌ای دارد. در این تحقیق مقادیر نسبی کمی برای برآورد شده (جدول 3) که می‌توان نتیجه گرفت آب ساکن نش نشی در این مطالعه نشانگر تحقیقی و انتشار فرآیندهای اصلی انقلاب بوده است. این نتایج می‌گوید که داشته باشند. مقادیر نسبی کرتگرهای مختلفی بین 0/50 تا 0/75 که نسبت بوده است. مقادیر ضریب تبادل مربوط به اول 0/2 بیشتر مافتاور (درصد 0/84 3) و یک تا در برای مقادیر گزارش شده مطالعات قبلی در شرایط آزمایشگاه (16 و 18) و مزرعه (13 و 16) بوده است (جدول 3) مقادیر درEZ پارامترهای خصوصی، نشانگر تبادل سریع املاح بین دو ناحیه زمان و ثابت می‌باشد. می‌توان نتیجه گرفت که حتی با وجود مقدار کم آب ساکن، جابجایی املاح بین دو ناحیه بان به سرعت انحل شده که نتایج فرآیندهای انتقال بین مدل های CDE و MIM غیر قابل تشخیص گشته است. سایر مطالعاتی
شکل 2. مقدار مشاهده و برآورد شده نفوذ تجمیعی، رطوبت خاک، و غلظت بروماید در همه کرت‌های آزمایشی با استفاده از مدل‌های انتقال MIM و CDE

انتشار پذیری در محیط‌های متخلف مشابه در میزان مزروعه‌ای نسبت به میزان آزمایشگاهی آن چند برابر بیشتر است (11) و مناسب با یازده شدن میزان انرژی شکنی پایه (10 و 11). مقدار مشاهده شده ضریب انتشار پذیری طولی در 0.6 1 متر برابر مقیاس های 10 تا 10 تا 0.6 متر بوده است (11).

مقدار انتشار گیرش شده نفوذ تجمیعی، رطوبت خاک و غلظت بروماید در 5 کرت آزمایشی با مقدار برآورد شده آنها توسط پارامترهای بهبود شده، در شکل 2 امضاء است. داده‌های انتشار گیرش شده نفوذپذیری به طور قابل قبول (95% = R²) با از انتشار پذیری در مواد غذایی شرکت کرده است. مقدار بروماید شده مطابقت داشته. اما تبادل مواد غذایی و غلظت‌های انتشار گیرش به‌صورت جزئی برآورد بوده. در غلظت موارد، مقدار رطوبت، بیشتر و مقدار غلظت کمتر از حد واقعی برآورد گردیده. بیش از حد واقعی رطوبت ممکن است به دلیل تعیین بیش از حد واقعی رطوبت اشباع در آزمایشگاه باشد.

آماری 95% نشان می‌دهد که آزمایش‌های این تحقیق، داده‌های کافی برای تخمین قابل اعتماد جمله برآمتر فراهم نمی‌کنند. با توجه به توصیف کرت‌ها که در پنج مواد و روش‌ها ایراده گردیده، به نظر می‌رسد بین مقدار تخمینی و حیات جدول (SD) و عمق آب داخل جویچه‌ها و زبان کاربرد آب و اصلاح (ستون اول و دوم جدول 2) رابطه‌ای وجود دارد. در مجموع، مقایسه دی (با رطوبت) SWS می‌تواند با عمق در کرت‌های (با رطوبت بیشتر) بیشتر سه‌گانه باشد. این نتیجه با تحلیل نظری صورت گرفته توسط روسو (22) و (23) که افزایش ضریب انتشار پذیری را در رطوبت‌های کم و تغییرات مکانی زیاد آن نشان می‌دهد، مطابقت دارد. همچنین، به عمق آب داخل جویچه‌ها و زبان کاربرد آب و اصلاح D1 و از دستگی نشان داده شده، تفکیک اثر عمق آب زمان کاربرد و تغییرات خصوصیات خاک بر D1 جدید ساده نمی‌سازد.

مطالعات نظری و آزمایشگاهی نشان داده است که ضریب
برآورد هیزم‌های پارامترهای هیدرولیکی و انتقال املاح در خاک به روش...

شکل 3 مقدار رطوبت و استحکام مایع در خاک در کرت 1 در زمان‌های مختلف پس از آبیاری اول. نتایج آبیاری دوم (ارائه نشده) کم و بیش از آبیاری اول مشابه بوده است.

توجه می‌گردد که برآوردهای هیدرولیکی در بهینه سازی می‌تواند منجر به بهبود نتایج مدل گرد. مدل‌های انتقال CDE در اغلب موارد از نظر تعیین مقدار و اندازه با برآوردهای بوده‌بود مدل‌های CDE و MIM در شکل 8(4) با این توجه داشته که R² ضریب همبستگی بین مقدار اندازه‌گیری شده و برآوردها را برای همه داده‌های بهینه سازی (هر 5 کرت) نشان می‌دهد و در حالی که ارائه شده در جدول 3 مربوط به نوع خاصی از داده‌ها (نفوذ R² رطوبت و غلظت) در یک بهینه سازی واحد مشاهده می‌شود.

برخی مقاله‌ها و نیز در هیزم‌های گیری شده رطوبت خاک و غلظت املاح و برآوردهای آنها برای کرت 1 در شکل 3 و 4 ارایه گردیده است. کرت 1 به همراه نتایج نسبتاً زیاد بین پارامترهای بهینه مدل‌های CDE و MIM در آن (جدول 3) برای مقایسه انتخاب شده است. مقاله‌های خوبی میان مقادیر استحکام و مشاهده شده رطوبت در فاز توزیع مجدد (شکل 3 و 4) دیده می‌شود و داده‌های رطوبت در فاز نفوذپذیری (شکل 5) و همچنین در شرایط خشک‌تر (شکل 6) بیشتر از حد واقعی برآوردهای شده است.
به‌عنوان مثال، داده‌های اگزیسته در شکل 4 نشان می‌دهند که ارتباط سطح آب در انتهای اولیه وسایل سیال مایع با مقدار متوسط گاز‌ها (CDE و MIM) مختلف است. این مقاله از این نتایج استفاده می‌کند تا ارتباط سطح آب با مقدار متوسط گاز‌ها را در انتهای اولیه وسایل سیال مایع بیشتر بداند.

