اثر فاصله تیغه از همزن و دیب خروجی بر کیفیت برنج در سفیدکن تیغه‌ای را بیشتر بهبودی شده

محسن حیدری سلطان آبادی و عباس همت

چکیده

مطالعات انجام شده نشان می‌دهد سرگردانی بیش از حد برنج در سفیدکن تیغه‌ای موجب افزایش شکستگی برنج می‌شود. بر این اساس، انجام مهند در حکمت طولی بر روی برنج در سفیدکن می‌تواند موجب افزایش دقت برنج در سفیدکن ب‌تواند کمکی کننده باشد. در این تحقیق ابتدا تری نوید جدیدی مجزه به‌منظور انتقال بار سوختگی تیغه‌ای سطح و سهولت در حکمت طولی برنج در سفیدکن می‌تواند موجب رفع این مشکل گردد. در این تحقیق ابتدا تری نوید جدیدی مجزه به‌منظور انتقال بار سوختگی تیغه‌ای سطح و سهولت در حکمت طولی برنج در سفیدکن می‌تواند موجب رفع این مشکل گردد.

واژه‌های کلیدی: برنج، سفیدکن تیغه‌ای، درصد شکستگی، دارای کارایی کارایی سفیدکن

تبدیل ایجاد می‌شود. در مرحله نهایی، ابتدا شستشو مرطوب تحت تأثیر گرمای شکستگی می‌گردد. سپس وارد و ایجاد تثبیت کن شده و ناخلاصلی و عایق خارجی از آن جدایی می‌گردد. در مرحله بعدی، شستشو تیغه توسط بوست کن غلظت‌گیری (Rubber-roll sheller) یا انواع بوست کنی دیگر بوست کنی می‌شود. حاصل عمل بوست کنی شستشو، برنج بدون بوستکی

مقدمه

امروزه اهمیت برنج به عنوان غذای بسیاری از مردم جهان بر
کسی پوشیده نیست. افزایش روزافزون جمعیت و محدودیت
منابع آب و خاک ضرورت کاهش ضایعات این محسوب را
هرچه بیشتر نشان می‌دهد. ضایعات شامل برنج از دسترس
خارج شده و شکستگی باشد (1). اگر این ضایعات در مرحله

1. عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان
2. استاد مکاتبی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

135
شکل 1. سفیدکن تیغه‌ای رایج و قسمت‌های آن (15). مخزن 2- دریچه تنظیم ورودی 3- پولی محرک توبی 4- توبی سفیدکن
5- آب‌های خمیده قسمت انتقال دهنده 6- آب‌های متضامن قسمت همزن 7- شافت مکانیکی 8- دریچه تنظیم خروجی 9- صفحه مشبک

برنچ فهوهای است. برنچ فهوهای وارد دستگاه سفیدکن شده و تحت تأثیر نیروهایی اصطکاکی و فشاری مقداری از سیبوس ان جدایی به محیط خارج می‌گردد. عملیات پوست‌کنی و سفیدکنی ممکن است در چند سری انجام شود. برنچ سفید شده جهت براقی و شفافیت بیشتر، وارد برای کن (Polisher) می‌شود و نهایتاً توسط الکتریکی مخصوص برحب طول درجه بندی می‌گردد. در برخی از مناطق عمومی پوست‌کن، سفید کردن و ایجاد براقی توسط سفیدکن تیغه‌ای انجام می‌شود.

دستگاه سفیدکن تیغه‌ای (شکل 1) از دو قسمت اصلی تشکیل شده است. اول توبی یا روتور (شکل 2) و دوم محفظه توبی که تابث است. توبی، استوانه‌ای به طول حدود 64 سانتی‌متر است که روی محیط آن آب‌های قرار دارد. در 10 سانتی‌متر اول طول توبی آب خمیده (قسمت انتقال دهنده) وظیفه هدایت و انتقال برنچ فهوهای به جلو را بر عهده دارد. روی طول باقی مانده، شش آج مستقیم و موازی محور توبی قرار دارد که به عوارض همزن عمل کرده و موجب حركت چرخشی برنچ و مایل است. آن به یک تیغه فلزی می‌گردد. تیغه در طول محفظه و موازی محور توبی قرار می‌گیرد. محفظه دستگاه
نهاپاره این درصد شکستگی را در پوست خان انگارنک خاصیت یک و سفید چنین یک درصد بیان کرد. همچنین غلظت سطلیت (12) مقادیر راندمان کل تبدیل برخی در سیستم مرمت های 12 درصد در سیستم تندیسی برخی و 12 درصد در سیستم سفید یک چهارم درصد بیان نمود. این نتایج از بررسی‌های (9) راندمان شکستگی‌های تیغه‌ای را در هر ۲۶ تا ۳۰ درصد، شکستگی پرگنج در ۱۵ تا ۲۵ درصد و راندمان پرگنج سفید سالم در ۲۵ درصد برآورد کردند. به طور کلی سیستم‌های تبدیل برخی را می‌توان به سه سیستم سنتی، سیستم محضر و سیستم رنگارنگ. سیستم تیغه‌ای در سیستم سفید یک چهارم درصد و سیستم سفید در سیستم پوست خان انگارنک انگارنک است. سیستم‌های سفید، ساخته شده و توزیع سیستم‌های تیغه‌ای در این تحقیق ابتدا با استفاده از گذاری موجود، مارپیچی طراحی و ساخته شد و روز نوی سیستم‌های تیغه‌ای نصب گردید (شکل ۳). از آنجا که کلمه شکستگی برخی سفید شده در سیستم تیغه‌ای با نظارت مقدار ورودی و خروجی برخی و تغییر فاصله تیغه از تغییر انجام می‌شود، طی آزمایش‌های مورد وارده در سیستم‌های تیغه‌ای نباید داده شود و تأثیرات آن بر کیفیت پرگنج سفید شده بررسی گردید.

شکل ۲ نویس قدیمی و ابعاد آن

خصوصیات برخی ماند رنگ و رطوبت دانه در زمان برداشت و تبدیل از بررسی سیستم‌های مختلف و با تحقیقات احمد و مارد (۶) نشان می‌دهد. عوامل دینی و مصرف برخی شلوک به برخی سفید در پی‌گلادان شکستگی تیغه‌ای و سیستم سنتی پدادنگ (Home ponding) که یک سر آن می‌خوانند. شکل شداین. در کیسین این می‌تواند در خصوصیات برخی تولید و رطوبت دانه در زمان برداشت و تبدیل را می‌توان نام برد. تحقیقات احمد و مارد (۶) نشان می‌دهد. عوامل دینی و مصرف برخی شلوک به برخی سفید در پی‌گلادان شکستگی تیغه‌ای و سیستم سنتی پدادنگ (Home ponding) که یک سر آن می‌خوانند. شکل شداین. در کیسین این می‌تواند در خصوصیات برخی تولید و رطوبت دانه در زمان برداشت و تبدیل را می‌توان نام برد. T

دانشگاه سیستم‌های سفید چنین یک درصد بیان کرد. همچنین غلظت سطلیت (12) مقادیر راندمان کل تبدیل برخی در سیستم مرمت های 12 درصد در سیستم تندیسی برخی و 12 درصد در سیستم سفید یک چهارم درصد بیان نمود. این نتایج از بررسی‌های (9) راندمان شکستگی‌های تیغه‌ای را در هر ۲۶ تا ۳۰ درصد، شکستگی پرگنج در ۱۵ تا ۲۵ درصد و راندمان پرگنج سفید سالم در ۲۵ درصد برآورد کردند. به طور کلی سیستم‌های تبدیل برخی را می‌توان به سه سیستم سنتی، سیستم محضر و سیستم رنگارنگ. سیستم تیغه‌ای در سیستم سفید یک چهارم درصد و سیستم سفید در سیستم پوست خان انگارنک انگارنک است. سیستم‌های سفید، ساخته شده و توزیع سیستم‌های تیغه‌ای در این تحقیق ابتدا با استفاده از گذاری موجود، مارپیچی طراحی و ساخته شد و روز نوی سیستم‌های تیغه‌ای نصب گردید (شکل ۳). از آنجا که کلمه شکستگی برخی سفید شده در سیستم تیغه‌ای با نظارت مقدار ورودی و خروجی برخی و تغییر فاصله تیغه از تغییر انجام می‌شود، طی آزمایش‌های مورد وارده در سیستم‌های تیغه‌ای نباید داده شود و تأثیرات آن بر کیفیت پرگنج سفید شده بررسی گردید.
مواد و روش‌ها

1. ساختن واحد سفیدکن

به‌همین‌سانی بر روي بک سفیدکن تیغه‌اي رایج با مارک حسنی Engelberg منشور (این سفیدکن برگرفته از مارک اصلی ساخت انگلیس بوده و هم اکنون در کارخانه تولید ادوات برنجکوبی شمال ساخته می‌شود.) انجام گردید. طول بروی این سفیدکن 46 سانتیمتر، قطر آن 10/55 سانتیمتر و ارتفاع هر آنجا 8 میلی‌متر است. این بروی درون یک محفظه به قطر 16 و طول 28 سانتیمتر قرار گرفته است و توسط یک الکترو موتور با توان 11 کیلو‌وات با سرعتی در حدود 900 دور در دقیقه به حرکت در می‌آید. شکل 2 دو قسمت اصلی تپه‌ی را نشان می‌دهد.

2. طراحی قسمت ماریج انتقال در تپه‌ی جدید

به منظور تعیین ابعاد ماریج انتقال از عامل زیست‌سازگاری سفیدکن

\[
T_b = \frac{1}{2} \pi \rho \pi \left(D_{sc}^2 - D_{sh}^2 \right) \frac{K \cdot N \cdot \lambda}{C_f \cdot C_{fm}}
\]

(13)

در این معادله \(m \) قدرت جرم انتقال یافتین و تایید ماریج انتقال برحسب کیلوگرم بر ثانیه‌ی می‌باشد که براساس حداکثر ظرفیت کاری سفیدکن‌های موجود، برای 1000 کیلوگرم در ساعت با 787 کیلوگرم در ثانیه در نظر گرفته شد. یا جرم مخصوص ظاهری بروی برای 800 کیلوگرم بر متر مکعب (13)، قطر

\[
D_{sc} = 0.5 \text{ متر}
\]
شکل 4. مقایسه شکل ظاهری قسمت انتقال دهنده برنج در طرح جدید و قدیمی

شکل 5. مجموعه سفیدکن (ساخت کشور ژاپن) پوستکن شده و برنج فهورهای حامل که دارای 15 درصد میانگین (برنج با پوست) بود. جمع آوری گردد. برای اجرای هر تیمار، 25 کیلوگرم برنج فهورهای (حداکثر تعداد مخزن) در مخزن سفیدکن ریخته می‌شود. در این حالت دریچه ورودی می‌بود. سپس با باز کردن محفظه فاصله نیزه از همزن به صورت دقیق به وسیله کولیس اندازه‌گیری و از طریق پیچ‌های مربوطه نابت‌گردد. برای تنظیم دیب خروجی ابتدا مقدار خروجی چند دقیقه سفیدکن در منطقه اندازه‌گیری شد. دانه‌های تغییرات خروجی این سفیدکنها بین 200 تا 650 ترا بود.
زیر پیشنهاد گردید:

\[
\ln = S_1 \times S_2
\]

در این معادله \(S_1 \) درصد برنج سفید سالم و \(S_2 \) درصد برنج سفید شدگی درصد برنج سفید است. SAS و Excel نوشتاری تجهیزات و تحلیل شده و جداال تجهیزات و ارتباطات و در صورت معنی‌دار شدن اثر مکانیزم در سطح احتمال 5 درصد، مقایسه میانگین‌ها با استفاده از آزمون جادو دانه‌ای دانکن انگام گردید.

نتایج و بحث

1. درصد برنج سفید سالم و شدگی

با توجه به نتایج درصد 1 اثر ساده مقدار دی جرمی خروجی برنج بر درصد برنج سفید سالم در سطح آماری 1% درصد معنی‌دار گردید. همچنین اثر متقابل نوع توبی در فاصله تیغه در سطح آماری 1% درصد و اثر متقابل نوع توبی در دبی جرمی خروجی در سطح آماری 1% درصد معنی‌دار شده است. ضمناً اثر ساده فاصله تیغه از همسان و مقدار دبی جرمی خروجی برنج، اثر متقابل نوع توبی در دبی جرمی خروجی به درصد شکستگی برنج در سطح آماری 1% درصد معنی‌دار شده است. فاصله تیغه یکی از عوامل تغییر دهنده فشار بر برنج در سفیدی‌کن محصول گردید. زیرا برنج مجهز است از فاصله میان تیغه و همزمان عمود نماید. با کاهش فاصله تیغه از همسان این فشار افزایش یافته و در تبیین درصد شکستگی تیغه افزایش می‌یابد مطالعات حاکی است که درصد شکستگی تیغه از همسان در یک سفیدکن نماید مقدار از آزمایشگاهی مقدار برنج سفید سالم کاهش در درصد شکستگی افزایش یافته است. طبق تحقیقات شاکر و همکاران (2)، استفاده از یاده یاد (جدید) کننده شلوتیک از برنجهای موکوب کاهش تیغه وارد بر برنج در سفیدکن و کاهش حدود 8 درصدی شکستگی برنج می‌شورد.

لطفاً بررسی کنید، چرا از برنجهای هر سطح سالم استفاده کنید؟
جدول 1. تجربه واریانس تأیید نوع نویی. فاصله تیغه از همزن و دیب جرمی خروجی برنج بر خصوصیات کیفی برنج سفید شده

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>شاخص کارآیی</th>
<th>درجه سفید</th>
<th>درصد برنج سفید کمیکی</th>
<th>درصد برنج سالم</th>
<th>درصد برنج فاصله تیغه</th>
<th>خطا a</th>
<th>خطا b</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلک 1</td>
<td>0.3</td>
<td>472</td>
<td>33.79</td>
<td>9.77</td>
<td>24/17</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>نوع نویی 2</td>
<td>0.77</td>
<td>3.56</td>
<td>36.74</td>
<td>27</td>
<td>14/77</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>خطا b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فاصله تیغه 3</td>
<td>0.22</td>
<td>2.47</td>
<td>177.22</td>
<td>10/22</td>
<td>178/6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>نوع نویی فاصله تیغه</td>
<td>0.68</td>
<td>1</td>
<td>117/75</td>
<td>17/85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>29/84**</td>
<td>11/10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24/82**</td>
<td>24/82**</td>
<td>29/80**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>28/76**</td>
<td>31/82**</td>
<td>28/72**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>26/36**</td>
<td>6/38**</td>
<td>26/38**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3/52**</td>
<td>12/55**</td>
<td>3/52**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5/52</td>
<td>4/50</td>
<td>5/56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7/29</td>
<td>4/50</td>
<td>7/29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**، *: به ترتیب غیرمعنی‌دار و معنی‌دار در سطح آماری 0.05 و 0.01

جدول 2. مقایسه میانگین های اثر مقیاس نوع نویی و فاصله تیغه بر درصد برنج سفید سلام و درصد شکستگی

<table>
<thead>
<tr>
<th>درصد شکستگی</th>
<th>درصد برنج سفید سلام</th>
<th>تغییر قابلیت</th>
<th>تغییر نویی</th>
<th>فاصله تیغه (میلی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ب</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/19</td>
<td>2/6/76</td>
<td>69/55</td>
<td>65/22</td>
<td>11</td>
</tr>
<tr>
<td>25/35</td>
<td>2/3/34</td>
<td>65/09</td>
<td>63/26</td>
<td>12</td>
</tr>
<tr>
<td>15/24</td>
<td>2/3</td>
<td>5/76</td>
<td>3/21</td>
<td>13</td>
</tr>
</tbody>
</table>

اعاده دارای حرف مشترک برای هر رنگ در سطح آماری 0.05 درصد اختلاف معنی‌داری ندارند (آزمون دانکنز)

نتایج جدول 2 نشان می‌دهد مقدار شکستگی در هر دو فاصله 11 و 12 میلی متر در تغییر نویی بیشتر است. به نظر بیش از مقدار متوسط استفاده از مارک زیستاران، تغییر نویی در پاتیا تغییرات سرعت طولی و کاهش تمام برنج با تغییر در اثر جرخته یا حاد شده و شکستگی را کاهش داده است. در فاصله 13 میلی متر تغیه، به علت حداقل‌بندان فشار وارد بر برنج در تغییر قابلیت، شکستگی برنج به صورت

معنی‌دار کمتر از تغییر نویی است. نتایج جدول 3 نشان می‌دهد:

- تغییر قابلیت در 915 کیلوگرم می‌باشد.
- به نظر رسید استفاده از مارک زیستاران در تغییر نویی، موجب افزایش سرعت طولی می‌شود و کاهش تمام برنج با تغییر در اثر جرخته یا حاد شده و شکستگی را کاهش داده است. در فاصله 13 میلی متر تغیه، به علت حداقل‌بندان فشار وارد بر برنج در تغییر قابلیت، شکستگی برنج به صورت

141
جدول ۳: مقایسه میانگین های اثر منفی نوع توبی و دیب جرمی خروجی بر درصد برنج سفید سالم و درصد شکستگی

<table>
<thead>
<tr>
<th>درصد شکستگی</th>
<th>توبی قدیمی</th>
<th>توبی جدید</th>
<th>دیب جرمی خروجی (کیلو گرم در ساعت)</th>
<th>توبی قدیمی</th>
<th>توبی جدید</th>
<th>دیب جرمی خروجی (کیلو گرم در ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>توبی قدیمی</td>
<td>۱۹/۰۴۴</td>
<td>۱۹/۱۳۴</td>
<td>۹۱۵</td>
<td>۱۹/۰۴۱</td>
<td>۱۹/۱۳۱</td>
<td>۹۱۲</td>
</tr>
<tr>
<td>توبی جدید</td>
<td>۲۲/۸۸Ⅳ</td>
<td>۲۲/۹۴Ⅳ</td>
<td>۹۱۵</td>
<td>۱۹/۰۴۱</td>
<td>۱۹/۱۳۱</td>
<td>۹۱۲</td>
</tr>
</tbody>
</table>

اعداد دارای حرف مشترک برای هر پارامتر در سطح آماری ۵ درصد اختلاف معنی‌دار ندارند (آزمون دانکن).

جدول ۴: مقایسه میانگین های خصوصیات کیفی برنج در سطوح مختلف دیب جرمی خروجی

<table>
<thead>
<tr>
<th>خصوصیات کیفی برنج</th>
<th>سفیدشکنی برنج (%)</th>
<th>دیب جرمی خروجی (کیلو گرم در ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص کارایی سفیدشکنی</td>
<td>۷/۱۱۷</td>
<td>۲۱۲</td>
</tr>
<tr>
<td></td>
<td>۵/۱۴۶</td>
<td>۶۵۴</td>
</tr>
<tr>
<td></td>
<td>۸/۷۷Ⅴ</td>
<td>۹۱۲</td>
</tr>
<tr>
<td></td>
<td>۸/۶۸Ⅶ</td>
<td>۹۱۵</td>
</tr>
</tbody>
</table>

اعداد دارای حرف مشترک در یک ستون در سطح آماری ۵ درصد اختلاف معنی‌دار ندارند (آزمون دانکن).

معنی‌داری بر دچاره سفیدشگی برنج داشته است. در دیب جرمی خروجی ۴۲۴ کیلوگرم در ساعت به‌علت افزایش تیغه، دانه‌های برنج یا یک‌پایگیر سفید شگی برنج جدای شده‌اند. همچنین در دیب جرمی خروجی ۴۲۴ کیلوگرم در ساعت با ایجاد محدودیت در خروج برنج، زمان سفید شدن برنج افزایش می‌یابد. تحقیقات خوش نگاما و همکاران (۳) در بررسی کیفی اثر تیغه و مقدار و رودی برنج در سفیدشگی اصطکاکی نشان دادند که به‌عنوان عامل اصلی، درجه سفید شگی برنج افزایش یافته. افزایش نیا و همکاران (۷) ترکیبات مختلف استخوانی تبدیل برنج را مقایسه کردند و گزارش نمودند استفاده از یک سفیدشگی تیغه‌ای در انتهای خط سفیدشگی سببی محور حصول به یک دچاره سفیدشگی مناسب برنج و کاهش درصد شکستگی آن می‌گردد.

برنج سالم و کاهش میانگین شکستگی شده است در حالی که امکان استفاده از بیان فاصله تیغه به عنوان نمود را در سه درجه سفیدشگی (۱) در نتیجه آزمایش کارایی سفیدگی وجود ندارد. در دیب جرمی خروجی ۴۲۴ کیلوگرم در ساعت درصد شکستگی برنج در سفیدشگی با تیغه جدید کمتر از تیغه قدیمی است که علت آن را می‌توان در یک‌نوایی فشار وارد برنج جستجو کرد. اطراف پرشگی بیشتر سفیدگی باعث کاهش پرتاپ و ایجاد ضربه شکستگی برنج می‌شود. در تحقیقات که فعالیت و همکاران (۵) در برسی اثر دور تیغه و سطح مقطع درجه سفیدشگی (دیب جرمی خروجی برنج) سفیدشگی تیغه‌ای رابطه بین میزان شکستگی برنج دانه‌ی خور انجام دادند به این ترتیب رسیدند که با کاهش سطح مقطع درجه سفیدشگی و افزایش دور تیغه، میزان شکستگی برنج افزایش یافته.

۲. درجه سفیدشگی

براساس نتایج جدول ۱ و ۲ دیب جرمی خروجی برنج تأثیر

۳. شاخص کارایی دستگاه

از سه فاکتور آزمایش، تنها دیب جرمی خروجی بر مقدار
جدول 5: مقایسه حالات مختلف کاری سفید

<table>
<thead>
<tr>
<th>شاخص کارایی سفید</th>
<th>سفید شدگی (برنگ (%))</th>
<th>شکستگی (برنگ (%))</th>
<th>دیز جرم خروجی (کیلوگرم در ساعت)</th>
<th>فالسه تیغه</th>
<th>نوع توبی (میلی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بند</td>
<td>5/65</td>
<td>7/5</td>
<td>23/9</td>
<td>62/5</td>
<td>915</td>
</tr>
<tr>
<td>بند</td>
<td>5/57</td>
<td>9/0</td>
<td>24/2</td>
<td>62/7</td>
<td>954</td>
</tr>
<tr>
<td>بند</td>
<td>7/94</td>
<td>11/0</td>
<td>19/8</td>
<td>71/9</td>
<td>412</td>
</tr>
<tr>
<td>بند</td>
<td>5/22</td>
<td>8/7</td>
<td>23/6</td>
<td>59/8</td>
<td>915</td>
</tr>
<tr>
<td>بند</td>
<td>5/92</td>
<td>9/1</td>
<td>26/1</td>
<td>60/3</td>
<td>954</td>
</tr>
<tr>
<td>بند</td>
<td>7/23</td>
<td>10/4</td>
<td>20/1</td>
<td>59/5</td>
<td>412</td>
</tr>
<tr>
<td>بند</td>
<td>6/52</td>
<td>10/2</td>
<td>24/1</td>
<td>61/6</td>
<td>915</td>
</tr>
<tr>
<td>بند</td>
<td>7/5</td>
<td>22/2</td>
<td>62/1</td>
<td>954</td>
<td>13</td>
</tr>
<tr>
<td>بند</td>
<td>7/4</td>
<td>10/8</td>
<td>21/6</td>
<td>59/3</td>
<td>412</td>
</tr>
<tr>
<td>بند</td>
<td>6/4</td>
<td>10/2</td>
<td>24/1</td>
<td>62/6</td>
<td>915</td>
</tr>
<tr>
<td>بند</td>
<td>6/95</td>
<td>10/8</td>
<td>25/3</td>
<td>64/1</td>
<td>954</td>
</tr>
<tr>
<td>بند</td>
<td>7/76</td>
<td>11/8</td>
<td>28/3</td>
<td>66</td>
<td>412</td>
</tr>
<tr>
<td>بند</td>
<td>2/88</td>
<td>7/5</td>
<td>22/4</td>
<td>64/5</td>
<td>915</td>
</tr>
<tr>
<td>بند</td>
<td>6/42</td>
<td>24/9</td>
<td>61/5</td>
<td>954</td>
<td>12</td>
</tr>
<tr>
<td>بند</td>
<td>7/78</td>
<td>11/2</td>
<td>24/6</td>
<td>69/2</td>
<td>412</td>
</tr>
<tr>
<td>بند</td>
<td>4/63</td>
<td>3/8</td>
<td>21/8</td>
<td>68/1</td>
<td>915</td>
</tr>
<tr>
<td>بند</td>
<td>3/26</td>
<td>5/3</td>
<td>18/3</td>
<td>61/6</td>
<td>954</td>
</tr>
<tr>
<td>بند</td>
<td>4/88</td>
<td>6/7</td>
<td>16/0</td>
<td>72/2</td>
<td>412</td>
</tr>
</tbody>
</table>

سفید شدگی بیشتر استفاده گردید. در این آزمایش ها با فرض وجود نهایی یک عدد سفیدکن و برمابه حداکثر شاخص، تنظیم دستگاه برای هر در توبی با پایه خروجی 412 کیلوگرم در ساعت تعیین کردن (سیستم ها) نمونه با رنگ تیره در جدول 5. فاصله تیغه را می توان روي 11 یا 12 میلی متر تعیین نمود (جدول 2). در این مقدار خروجی اختلاف بین شاخص در توبی جدید و قدمی معنی دار برحسب توبی در حداکثر 30 و 32 میلی متر (جدول 3 و شکل های 6 و 7). تیمار فالسه تیغه 13 میلی متر در توبی قدمی به علت کم بودن سفیدشادگی پررنگ و بعضاً گاهی شلتوک از سفیدکن عضلان. قابل شاخص کارایی دستگاه در سطح آماری پی در دست رد تأثیر گذاش...
شکل 6. مقادیر شاخص کارایی سفیدکن و میزان شکستگی برق در فواصل مختلف تبیه از همزن

شکل 7. مقادیر شاخص کارایی سفیدکن و میزان شکستگی برق در دیهای خروجی برق

استفاده نیست، حال آنکه در این فاصله سفید شدن برق در توپی جدید در حد مناسب می‌باشد (جدول 5). این مقایسه نشان می‌دهد طرح جدید در کاهش ضایعات برق بخصوص در مقادیر خروجی نزدیک به ۴۰۰ کیلوگرم در ساعت، مؤثر واقع شده است. در تحقیق خوشه تغییرات و همکاران (۳) مناسب ترین حالت کاری سفیدکن آزمایشگاهی که در آن از دو تبیه استفاده شده بود، بر اساس مقادیر شاخص سفیدکن، مقدار خروجی

7. Uniconsultant. 1991. Study on the estimation of seed, feed and post harvest of food grain crops in Bangladesh. Food Planning and Monitoring Unit, Ministry of Food, Govt. of Bangladesh.