ساسخت و آزمون کارگاهی دینامومتر اتصال سه نقطه و چرخ پنج سرعت تراکتوری

داود لطفی، عباس همت و محمد رضا اخوان صراف

چکیده

برای اندازه‌گیری مقاومت کششی و ناپایداری مورد نیاز ادوات سوار، به ابزار دقیقی همچون دینامومتر اتصال سه نقطه و ابزار اندازه‌گیری سرعت پیشرو تراکتور نیاز می‌باشد. این ابزار توانایی پاسخگویی و ارزیابی شد. اندازه‌گیری وارده به دینامومتر از طرف استفاده‌کننده، به استفاده از نیرو (که هرکدام یک نیروگیر به شکل U وارونه می‌باشد) که بر روی قابی با قابلیت نصب به اتصال سه نقطه تراکتور قرار داده شده‌اند، اندازه‌گیری می‌شوند. هر مبدل نیرو، نیرو را با استفاده از یک مدار پلی که بر اساس استفاده از کرنش سنگ‌زا طراحی شده‌اند، اندازه‌گیری می‌نماید. هر مبدل نیروی دینامومتر با استفاده از مقدار بر معین به آن و اندازه‌گیری ورودی خروجی انجام گرفته‌است. سپس روش اندازه‌گیری با استفاده از شش نقطه به آن و اندازه‌گیری ورودی خروجی سه‌نقطه‌ای پس‌رال‌سوار انیمیشن گرفته و سپس به نسخه عمودی دینامومتر بر مقدار نیروی اندازه‌گیری ناجی‌بود. برای اندازه‌گیری سرعت پیشرو واقعی تراکتور، یک چرخ پنج سرعت استفاده از یک محدود کرنگه اندازه‌گیری ساخته شد. استفاده‌های انجام گرفته روي سطح آسفالت‌های مختلف و خاکی نتشان داد که یک رابطه خطی با ضریب تبین بالا در سطح‌های کم تراکتور پیشرو در سطح‌های سخت و خشکی محور تراکتور انجام داده‌شد. خلاصه اندازه‌گیری سرعت‌های کم در مزرعه و در سطح‌های زباله (نحو 12 کیلومتر در ساعت) روی سطح آسفالت به ترتیب حدود 3 و 8 درصد بود. واحدهای مختلف کشورهای داده‌ها علاوه بر نمایش نیرو و سرعت پیشرو، به صورت لحظه‌ای می‌توانند اندازه‌گیری نیرو و حسب‌زن و ساختار را روز صفحه نمایش رایانه دستگاه نمایش دهد.

واژه‌های کلیدی: دینامومتر اتصال سه نقطه، چرخ پنج سرعت، مقاومت کششی، سرعت پیشروی، ادوات سوار، ناپایداری

مقدمه

بازده کششی (Tractive efficiency) (کم وسیله زمین گیران)

استفاده از توان مالنی در کشاورزی ممکن‌است، ممکن است ترین روش استفاده از توان موتور تراکتور است. اکثر که به علت

1. به ترتیب دانشجوی سایبان کارشناسی ارشد و استاد مکانیک ماشین‌های کشاورزی، دانشگاه کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

2. مربی پژوهشی، فناوری اطلاعات و ارتباطات، دانشگاه صنعتی اصفهان

147
مودر نیاز ادوات در شرایط مختلف برای بارگذاری بهینه تراکتور و انتخاب ابزار مناسب برای انواع عملیات کشاورزی مفید می‌باشد. کارکرد نیازهای آشنا بیشتری کشاورزی از اطلاعات مورد نیاز و مقامات کشاورزی انتخاب خاصی مختص می‌توانند برای تراکتور صحیح انتخاب ادوات با توجه به نیاز مالیندی موجود در کشور استفاده کنند. تطابق اندازه ادوات با تراکتورها موجود در کشور با اندازه‌گیری پارامترهای عملکردی تراکتور همچون موانع مالیندی آنها می‌سرع است. این اطلاعات همچنین می‌توانند برای ارزیابی مقدار انرژی مورد نیاز انواع سیستم‌های مکانیزه در کشاورزی مورد استفاده قرار گیرد. کشاورزان اغلب از ابزار تجهیزاتی برای تراکتورها و ادوات جدید برای انواع عملیات کشاورزی عمل می‌کنند. تجهیزات قابل مکان است از انتخاب ادوات جدید آنگاه سودمند نیستند. بیان این اطلاعات در خصوص مقامات کشاورزی جدید در خاک‌ها و شرایط مختلف می‌توانند نقش مهمی در انتخاب صحیح تراکتور و ادوات کشاورزی داشته باشند.

برای تعیین نیاز مالیندی ادوات دیالیکه بند، نیاز به اندازه‌گیری مقامات کشاورزی ادوات و سرعت پیشرفت تراکتور می‌باشد. برای اندازه‌گیری مقامات کشاورزی ادوات کشاورزی، یک ترسنمند (دینامومتر مالیندی) بین مالیند تراکتور و مالیندی به طور دقیق، نیاز مناسب می‌شود. همچنین نوع انتقال اکثر ادوات دیالیکه بند مورد استفاده در کشاورزی مکانیزه کشور از نوع سوار می‌باشد. برای اندازه‌گیری مقامات کشاورزی این نوع ادوات نیاز به دینامومتر اتصال به نقطه‌بند (Three-point hitch dynamometer) می‌باشد. در کشور ما به علت عدم دسترسی به دینامومتر اتصال به نقطه، ابزار مکانیزه مقالات کشاورزی ادوات سوار به کمک شکش دیجیتال و استفاده از نیروسنتر مالیندی مطلقی به روش تراکتوری و استفاده از نیروسنتر مالیندی مطلقی به روش تراکتوری و استفاده از نیروسنتر مالیندی مطلقی به روش تراکتوری و استفاده از نیروسنتر مالیندی مطلقی به روش تراکتوری و استفاده از

۱۴۸
هم‌هنس ایزه و تراکتور ایجاد نمی‌کند. این نوع از دیانومترها نیز استفاده از محور توان‌ها قسمتی که اندام‌گیری نیرو را محدود نمی‌کند. این نوع از دیانومترها این است که حسگرهای تراکتور به‌ویژه و بدنین (Sensor) این حسگرهای بین تراکتورها مختلف قابل تبادل نیم‌باشند. بنابراین یک دیانومتر خاص، در هر مدل تراکتور مورد نیاز می‌باشد. این مسئله کاربرد یک دیانومتر را نشان می‌دهد که یک تراکتور محدود می‌کند. بنابراین، این سیستم انعطاف‌پذیری کاملاً دارد. در این دیانومتروها، حس‌سنجی دوگانه و واسطه نیروی توان‌بندی (Cross-sensitivity) باشد.

برای اندام‌گیری سرعت پیشروی واقعی تراکتور، روش‌های مختلف وجود دارد که بر کاهش سختی در جرخ‌های محور تراکتور در نظر گرفته می‌شود. از این جهت چرا اندام‌گیری سرعت پیشروی واقعی، تبدیل که در انجام کارهای پژوهشی توسعه دارد. این سیستم انعطاف‌پذیری کاملاً دارد. در این دیانومتروها، حس‌سنجی دوگانه و واسطه نیروی توان‌بندی (Cross-sensitivity) تراکتوری (Ultrasonic) و رادار (Radar) به اندام‌گیری سرعت (بیشتر) استفاده می‌شود.

مواد و روش‌ها

از آنجا که مواد و ماده‌هایی که در ایران وجود دارند، همگی انیستاده‌اند. مواد فاصله بین نقطه اندازه دیانومتر با این قابل تنظیم باشد که توانایی بسیاری از این استفاده‌ها، بی‌روی این اندازه‌گیری‌ها محدود می‌شود. برای این منظور، دیانومتر باید این قابلیت را داشته باشد که در این مسئله، از این جهت چرا اندام‌گیری سرعت پیشروی، استفاده از جرخ پنج‌بندی می‌باشد. این سیستم انعطاف‌پذیری، طوری طراحی می‌شود که یک تراکتور با راحتی به این تراکتور تربیت شود. بر روی (Encoder shafts) یا برد (Tachometers) نیاز ندارد. این سیستم انعطاف‌پذیری جرخ پنج‌بندی می‌باشد. این سیستم انعطاف‌پذیری جرخ پنج‌بندی می‌باشد. این سیستم انعطاف‌پذیری جرخ پنج‌بندی می‌باشد.
مکانیکی دیتاومتری که جنگل و همکاری (۴) ساخته بودند به عنوان طرح اولیه انتخاب شد.

پیشروی در نظر گرفتن شد، عبارت بودند از:
۱- ساده بودن طراحی و ساخت آن، ۲- هزینه پایین ساخت آن نسبت به روشهای دیگر، ۳- انعطاف پذیری بالا، ۴- قابلیت نصب به شاسی تراکتور، بنابراین در این مسئله، از چرخ پنجم برای اندازه‌گیری سرعت استفاده شد.

۱. دیتاومتری اتصال سه نمایش
در طرح جنگل و همکاران (۶) نیرویی وارد بر ادوات در جهت طولی- حرکتی (مقاومت کششی) اندازه گرفته شد. سکل
۱. طرح و ارتباط سازه‌ای دیتاومتر این دیتاومتر را نشان می‌دهد. همان گونه که ملاحظه می‌شود، این دستگاه شامل سه بازوی کششی می‌باشد که این بازوها در یک قاب T شکل وارده وارد می‌شوند. این آرایه امکان تنظیم عرضی و عمودی قاب ساخته‌گرا به‌هنجام اتصال به سبزی‌ارا از ادوات استاندارد و غیراستاندارد موجود را می‌دهد. در انتهای هر بازو یک مبدل نیرو قرار دارد. هر مبدل نیرو به شکل یک تیر U- شکل وارونه می‌باشد. هر مبدل نیرو از در نیرویی وارد بر ادوات می‌باشد. (شکل ۲) این

شکل ۱. طرح وارونه سازه دیتاومتری (۶)
ولنза تحريك

شکل 5. نحوه تشکیل نیم پل برای اندازه‌گیری خروجی مربوط به نواستا X برای مدل تیروی سمت چپ دینامومتر

شکل 4. نحوه آرایش کره‌بندی شده در پل و توسط برای اندازه‌گیری تیروی اعمال شده در جهت X. به دینامومتر

1-1 واسطه دینامومتر اتصال سده نفط

برای واسطه کارگاهی دستگاه دینامومتر اتصال سده نفط، نیاز به سازه‌ای بود که بتواند هزنمان به سه مدل تیروی دینامومتر بار وارد کند. این سازه می‌بایست توانایی اعمال تیروی در سه جهت X، Y و Z و همچنین تیروها را به دستگاه را دارا می‌آورد. علاوه بر این، سازه بایستی به راحتی به دینامومتر متصل می‌گردد. برای ساخت این قاب از ابعاد مربوط به ادوات گروه II و از استاندارد ASAE استفاده شد. این سازه به دینامومتر اتصال سده نفطه قابل مونتاژ جایگاه تراکتور نشود و پلی به دینامومتر اعمال شود، به طور مثال در بارگذاری افقی (در جهت طولی-حرکتی)، تراکتور از دو نقطه قابل‌توجهی به سیستم حمل‌مره شد. ضمناً ریس‌هایی در پشت انتهای عقب تراکتور گذاشته شد تا از حرکت تراکتور به سمت عقب جلوگیری شود (شکل 2).

با توجه به دلالی که در پشت انتهای دینامومتر در انتهای هر قطره نشان داده شده بود، سازگاری گرفتگی شد که اکنون جمع چندین نیروهای سه‌بعدی به دینامومتر مربوط به هر رأس نیرو به استفاده از پل و نستون (با 6 کرنش سنج فعال و 2 کرنش سنج کمک) امکان پذیر نمی‌باشد. بنابراین، توصیه گرفته شد که هر نیرو وارد به تراکتور یک پل می‌شود و سپس تیروهای در نرم افزار می‌گذرند. جمع نیروی تراکتور در نقطه انتهایی دینامومتر کمکی استفاده شد (شکل 5). در
ساخت و آزمون کارگاهی دیانومتر انتقال سه نقطه و چرخ پنجم سرعت سنج تراکتوری

شکل ۶ نحوه پارگذاری مبدل نیرو سمت چپ در کارگاه

1. برای تعیین حساسیت مبدل‌های نیرو، مربوط به جهت X به عامل شده در جهت عمود بر آن (تعیین حساسیت X) باعث می‌شود که کناره‌گیری شد و مقدار ونزا خروجی پهلوی مربوط به جهت X اندازه‌گیری شود.

2. پارگذاری تک نک مبدل‌های نیرو با زاویه ۴۵ درجه نسبت به افق (راستای X) و قرانت خروجی پیل‌های آنها در جهت Y با تجزیه بر عامل شده X در راستای (F) نمودار Fx = Fcos(۵) Fx  

نمازه و عقبی تی‌کوم‌های مبدل نیروی سمت چپ در اثر اعمال نیرو در جهت X با تریبون تحت فشار و کشت قرار می‌گیرد. می‌باشد که در حالت لحظه‌ای، استفاده در مدت شدت و به همراه نشانگر کرنش سنج‌های کمکی نصب شده روی تیرهای یکسر گیر سمت چپ و راستی می‌باشد (شکل ۳). به عنوان مثال، لحظه R، به تریبون کرنش‌های کمکی نصب شده روی تیرهای X و LXC نمودار مشابه و بادکش. به منظور تعیین هر کهونه آتار نس مانند (هیسترزیس)، واکنش با پاره‌ای افزایشی که به آن انجام گرفت، برای تعیین حساسیت (Sensitivity) تک نک مبدل‌های نیرو در شرایطی که در معادل‌های زیرگویی تمام نقاط به دست آمده با پاره‌های افزایشی و کاهشی استفاده شده و برای تعیین درصد (Hysteresis) برای پاره‌ای افزایشی و کاهشی شکل ۶ تک نک مبدل‌های نیروی پهلوی‌های آنها در سه مرحله به شرح زیر انجام شد:

1. پارگذاری تک نک مبدل‌های X و قرانت خروجی پهلوی آنها در جهت
معادلات رگرسیون به طور چندگانه محاسبه شد.

پس از تعیین حسابی تک تک مدل‌های نیرو، دینامومتر
نیرو در همان‌سازی X واسنجی شد. روش آزمایش بندین
صورت بود که در حین اعمال بار به دینامومتر از طریق قاب،
نیرو هم‌زمان توسط دینامومتر نک محدودی دیجیتالی و از رایانه
سیستم تعیین شد. سپس رابطه بین مقادیر قرانش شده از
دینامومتر نک محدودی و مقادیر لثت شده توسط رایانه دینامومتر
انتصال سه نقطه به دست آمد (۲).

۱. جرخ پنجم
جرخ پنجم ساخته شده برای اندازه‌گیری سرعت از قسمت‌های
زری ترکیب شده بود:
۱- شاسی، ۲- نایر، ۳- سیستم انتقال حرکت دورانی، ۴- فنر،
۵- بلبرینگ‌های موجودی و ۶- حسگر اندازه‌گیری دوران
(انکور شاخته). همان طوری که در شکل ۱ نشان داده شده،
برای انتقال دورانی جرخ به حسگر اندازه‌گیری حرکت دورانی که
بر روی شافی سوار است، نیاز به یک سیستم انتقال دوران
می‌باشد. سیستم انتقال دوران درنظر گرفته شده برازی این
وسیله از نوع Zنجیری است. این سیستم، دوران جرخ را از
طريق شافتی که جرخ روی آن سوار است به شافت حامل

۲. جرخ پنجم
۳-۱ سیستم جمع اوری داده‌های دستگاه دینامومتر انتصال سه نقطه
هدف از این سیستم، جمع اوری داده‌ها، پردازش آنها به شکل
مطابق و لیست نتایج به شکل مناسب برای ذخیره سازی و
نمايش می‌باشد. طراحی این سیستم در دو مرحله انجام گرفت
که این مراحل عبارت بودند از: ۱- طراحی و ساخت
سخت افزار سیستم جمع آوری داده‌ها

سخت افزار سیستم جمع آوری داده‌ها دیتا ماتریکس است و برای اتصال به داده‌هایی که در سیستم جمع‌آوری وجود دارد، که این جمعی را به شکل شمسی این دیتا ماتریکس وارد می‌گردد. از این دیتا ماتریکس برای تهیه نمونه از خروجی‌های قابل استفاده شد. پاسخ‌های مربوط به سرعت از طریق طراحی و توسعه یک اکتیوریزهای به یکی بوده و سرعت ۱۰۰ پالس فرستاده‌شده است. از یک دیتا ماتریکس (Module A 4520) برای تبادل با سی‌سی‌وای راه‌اندازی شد. این دیتا ماتریکس خروجی‌های مربوط به پلاس و پلاس یک مربوط به درون سنج را گذراند. برای سرمایه‌های قابل قرار گرفتن در سیستم افتراق می‌باشد. دلیل این دیتا ماتریکس، راه‌اندازی و مدل استاندارد و پلاس هی سرعت از طریق یک بوده قدرت و مدل استاندارد و پلاس هی سرعت از طریق یک بوده قدرت و نمودار و نمودار به راه اندازی و پلاس هی سرعت از طریق یک بوده قدرت و نمودار به راه اندازی و پلاس هی سرعت از طریق یک بوده قدرت راه دارد.

الف) طراحی و ساخت سخت افزار سیستم جمع آوری داده‌ها

سخت افزار سیستم جمع آوری داده‌ها دیتا ماتریکس است و برای اتصال به داده‌هایی که در سیستم جمع‌آوری وجود دارد، که این جمعی را به شکل شمسی این دیتا ماتریکس وارد می‌گردد. از این دیتا ماتریکس برای تهیه نمونه از خروجی‌های قابل استفاده شد. پاسخ‌های مربوط به سرعت از طریق طراحی و توسعه یک اکتیوریزهای به یکی بوده و سرعت ۱۰۰ پالس فرستاده‌شده است. از یک دیتا ماتریکس (Module A 4520) برای تبادل با سی‌سی‌وای راه‌اندازی شد. این دیتا ماتریکس خروجی‌های مربوط به پلاس و پلاس یک مربوط به درون سنج را گذراند. برای سرمایه‌های قابل قرار گرفتن در سیستم افتراق می‌باشد. دلیل این دیتا ماتریکس، راه‌اندازی و مدل استاندارد و پلاس هی سرعت از طریق یک بوده قدرت و نمودار و نمودار به راه اندازی و پلاس هی سرعت از طریق یک بوده قدرت و نمودار به راه اندازی و پلاس هی سرعت از طریق یک بوده قدرت راه دارد.

ب) طراحی نرم‌افزار سیستم جمع آوری داده‌ها

هدف از طراحی این نرم افزار محاسبه و ثبت نیروهای وارد بر ایستگاه‌های و همچنین ثبت و نمایش سرعت پیشروی تراکتور می‌باشد. بخش نرم افزار شامل یک برنامه کاربردی که
شکل ۹. نقشه اجمالی نرم افزار استولم جمع آوری داده‌های دستگاه دنامومتر اتصال به نقطه‌ی و چرخ پنجم به زبان C** نوشته شده و جهت ارتباط مستقیم کاربر با نرم‌افزار و نتایج آزمون‌ها مورد نظر می‌باشد. شکل ۹، نقشه اجمالی این نرم افزار را نشان می‌دهد.

نتایج و بحث

بارگذاری دستگاه دنامومتر اتصال به نقطه‌ی ای با استفاده از قاب ساخته شده نشان داد که:
1- در بارگذاری در جهت X و اندشه‌گیری خروجی پیل‌های Y و نتایج آزمون‌ها بر روی عکس و ترسیم منحنی و ساختارهای X و Y و برای مقادیر داده‌های طولی - حسانتی، Y - (عمودی) و Z - (اراضي) ملاحظه گردد: اگر رابطه های بین X و Y و نتایج آزمون‌ها در جهت Y و این نتایج در بارگذاری در جهت X و اندشه‌گیری خروجی پیل‌های Y و نتایج آزمون‌ها بر روی عکس و ترسیم منحنی و ساختارهای X و Y و برای مقادیر داده‌های طولی - حسانتی، Y - (عمودی) و Z - (اراضي) ملاحظه گردد: اگر رابطه های بین X و Y و نتایج آزمون‌ها در جهت Y و این نتایج در بارگذاری در جهت X و اندشه‌گیری خروجی پیل‌های Y و نتایج آزمون‌ها بر روی عکس و ترسیم منحنی و ساختارهای X و Y و برای مقادیر داده‌های طولی - حسانتی، Y - (عمودی) و Z - (اراضي) ملاحظه گردد:
2- بارگذاری مالی (تحت زاویه ۳۸ درجه نسبت به افق) (رسانایی و زمان آزمون)
3- ذخیره و بازیابی
4- پردازش اطلاعات و لیست نتایج آزمون
5- برنامه‌ریزی با سخت افزار
6- دنامومتر
7- ماهینه کشوارزی
8- نقشه اجمالی نرم‌افزار استولم جمع آوری داده‌های دستگاه دنامومتر اتصال به نقطه‌ی و چرخ پنجم
ب) مدل نیروی سمت دو مدل نیروی سمت در این مدل نیروی نیز همانند مدل نیروی سمت چی، رابطه خطی بین نیروهای عملی است و دو ایناتری خروجی از پیل مربوط به مدل نیروی سمت راستی برقرار است (شکل 11). همچنین این مدل نیروی کمی کمتر از مدل نیروی سمت چی است و برابر با 1/04 میکرو ولت به ازای هر کیلووات نیروی بود. این اختلاف احتمالاً مربوط به محلی که کرنش سمت‌ها در این دو مدل نیرو باشد.

۱. پاراگذار افقی مدل‌های نیروی دیانومتر
الف) مدل نیروی سمت چی
تغییرات خروجی از پیل و تیستون مربوط به راستی X

امکان‌زایی نود چی (تغییر حساسیت دیانومتر با تغییر نقطه
بارگذاری بیانگر این موضوع بود که حساسیت هر سبد
نیروی دیانومتر بیندیس نوبه و نیروی تابع خروجی
کرنش سمت‌های هر مدل نیروی دیانومتر را در بک‌دام یک
8 اعضای جمع گیری نمود. بنابراین، نتیجه گرفته شد که
برخلاف پیشنهاد پنج‌ها و همکاران (6) با این دیانومتر
اتصال می‌شده فقط نیرو در جهت طول- حکم‌ی (مقاومت
کششی) ادوات سوار کابل اندازه‌گیری است و آن هم به شرط
آنکه مولفه افقی نیرو در نک مدل‌های نیرو با تحقیل
پیل‌های مجزا به طور جداگانه اندازه‌گیری و خروجی پیل‌های
آنها در نرم‌افزار سیستم جمع‌آوری داده‌ها، جمع چری شوند.
بنابراین، تأثیر و استیجی نک تک نیروهای پیل در قسمت‌های
زیر بررسی می‌شود:

۵۵- برای تعیین حساسیت دیانومتر با تغییر نقطه بارگذاری،
ملاحظه گردید که برای اعمال یک مقدار بار معین در جهت
با نیروی افقی بارگذاری و ولتاژ خروجی به نیروی
حساسیت دستگاه تغییر نموده (2). بنابراین، نتایجی که از
واستجی دیانومتر به دست آمده، به صورت میلی متفاوت بود.
این اختلاف احتمالاً به علت ن نحوه بارگذاری و حساسیت
دوره‌های دیانومتر بود (2).

الف) اعمال نیروی در راستای X به دیانومتر، موجب اعمال
گشتاور به تب افقی که کرنش سمت‌های مربوط به پیل و تیستون
اندازه‌گیری نیروی عمومی روا آن تصعب شده بود. شد.
بنابراین، به علت اثر بار اعمالی در جهت X بر ولتاژ خروجی
اندازه‌گیری شده از پیل و تیستون مربوط به راستی X
اندازه‌گیری دقت نیروی عمومی با این طرح دیانومتر اتصال
سپر نقطه امکان‌پذیر نبود. این طرف دیگر به علت کم
بودن حساسیت پیل اندازه‌گیری نیروی جانی و زیادت بودن
ضریب تنش‌های (R1)، اندازه‌گیری نیروی جانی با دقت بقالا
۳. باگذارگاری مایل میدل‌های نیرویی دینامومتر

تغییرات ولتاژ خروجی پل‌های ورودن مربوط به راستائی (F₁) در باگذارگاری مایل میدل‌های نیرویی دینامومتر (۱)

۴. باگذارگاری عمومی میدل‌های نیرویی دینامومتر

حساسیت نیم پل‌های مربوط به راستائی (۱)

۱۵۸
ساخت و آزمون کارگاهی دینامومتر اتصال سه نقطه و چرخ پنجم سرعت سنجر تراکتوری

شکل ۱۴. تغییرات ولتاژ خروجی پی و متون مربوط به راستای X با مولفه افقی (Fy) بار اعمال شده تحت زاویه ۴۵ درجه به مدل نیروی سمت راستی

شکل ۱۳. تغییرات ولتاژ خروجی پی و متون مربوط به راستای X با مولفه افقی (Fx) بار اعمال شده تحت زاویه ۴۵ درجه به مدل نیروی سمت چپی

شکل ۱۵. تغییرات ولتاژ خروجی پی و متون مربوط به راستای X با مولفه افقی (Fy) بار اعمال شده تحت زاویه ۴۵ درجه به مدل نیروی بالایی.

کیلویولن-نیرو است. حساسیت مدل نیروی بالایی دینامومتر در جهت طولی-حرکتی در بارگذاری فقط به صورت افقی (شکل 12) و به صورت مایل (شکل 15) به ترتیب ۶/۸ و ۶/۸ میکرو ولت به ازای هر کیلویولن-نیرو است. این اختلافات اختصاصی به علت نحوه بارگذاری و حساسیت دوجانه این مدل نیروی بالایی باشد. به طور خلاصه، نتایج و استنادی مدل های نیروی دینامومتر اتصال سه نقطه در جدول ۱، آمده است.

مبدل های نیروی سمت چپی، راستی و بالایی به ترتیب در شکل‌های ۱۳، ۱۴ و ۱۵ نشان داده شده است. حساسیت مدل نیروی سمت چپی دینامومتر در جهت طولی-حرکت در بارگذاری فقط به صورت افقی (شکل 10) و به صورت مایل (شکل 13) به ترتیب ۱۵ و ۱۵/۴ میکرو ولت به ازای هر کیلویولن-نیرو است. حساسیت مدل نیروی سمت راستی دینامومتر در جهت طولی-حرکت در بارگذاری فقط به صورت افقی (شکل 11) و به صورت مایل (شکل 12) به ترتیب ۱۴/۴ و ۱۴/۸ میکرو ولت به ازای هر
جدول 1. نتایج واسطنجی میدلهای نیروی دینامومتر اتصال سه نقطه

<table>
<thead>
<tr>
<th>R²</th>
<th>مدل نیرو</th>
<th>حساسیت میدلهای نیرو</th>
<th>حساسیت دو‌جانبه ((\mu)N^{-1}V^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9998</td>
<td>0.924</td>
<td>1/210001 (10^{-2})</td>
<td>1/20001 (10^{-2})</td>
</tr>
<tr>
<td>0.994</td>
<td>0.827</td>
<td>1/801000 (10^{-2})</td>
<td>1/700100 (10^{-2})</td>
</tr>
<tr>
<td>0.980</td>
<td>0.751</td>
<td>1/601000 (10^{-5})</td>
<td>1/500100 (10^{-5})</td>
</tr>
</tbody>
</table>

شکل 16. بارگذاری دینامومتر در راستای X با در نظر گرفتن پلیهای مستقل برای هر مبدل نیرو و

فرات ونیوز خروجی از این سی پل مربوط به راستای X

5. واسطنجی چرخ پنجم جهت اندازه‌گیری سرعت پیشروی واقعی

نتایج طبقه‌بندی واسطنجی چرخ پنجم بر روی سطوح آسفالت و باکتیرویه مزروعه به ترتیب در شکل‌های 17 و 18 نشان داده شده است. این نمونه‌ها نشان می‌دهد که ارتباط خطای بالایی بین سرعت اندازه‌گیری شده با چرخ پنجم و سرعت اندازه‌گیری شده با روش مستقیم و زمان وجود دارد. این ضریب تأخیر بالا نشان‌گر کارکرد صحیح چرخ پنجم می‌باشد. با توجه به تابع‌های دو نمودار، خط در اندازه‌گیری در سرعت‌های کم (شکل 17) درصد و در سرعت‌های زیاد (شکل 18) درصد است. سرعت بهینه شده زنی در عمق‌های خاکورزی معمولاً بین 24 تا 31 متر بر ثانیه می‌باشد. با توجه به این مطلب، طبق نمودار در سرعت‌های بالایی بر ارتباط خطی بین دو سرعت

4. بارگذاری مجدد دینامومتر اتصال سه نقطه در راستای افقی

منحنی واسطنجی دینامومتر اتصال سه نقطه که برای هر مبدل نیروی در نظر گرفته شده و شکل‌های تک‌نک مدل‌های نیروی در واحد برداشته آن جمع‌بندی شده، در نمونه‌های نیرو در واحد و تابع خاصیت بارانی بین بار اعمالی و نیروی توانسته شده از دینامومتر یافته قرار گرفت در اندازه‌گیری نیرو در راستای افقی است. ضمایم این نمونه‌های بی‌گیرین موضوع است که در حالی که ابتدا و حساسیت مدل‌های نیروی متفاوت است، با داده‌های نیروی در هر مبدل نیرو به طور چراغ‌گشای اندازه‌گیری شده و سپس به کمک ترمیم‌سازی سیستم، جمع‌بندی شود.
ساخت و آزمون کارگاهی دینامومتر انتقال سه نقطه و چرخ پنج جرم سنج تراکتوری

تراتور در حین انجام عملیات را لحظه به لحظه اندازه‌گیری کند این دستگاه علاوه بر نمایش نیرو و سرعت به صورت لحظه به لحظه، می‌تواند نمودارهای نیرو بر حسب زمان و نیرو بر حسب مسافت را در رایانه دستگاه نشان دهد. قبلاً از استفاده از این دستگاه در پروژه‌های تحقیقاتی، پیشنهاد می‌شود عملکرد دینامومتر در مزرعه (واسنجی دینامامیکی) از نظر تأثیر ارتعاش تراکتور و کافی بودن نوع برنج برداری سخت افزار دستگاه، ارزیابی شود تا از چگونگی لیست پیوسته تغییرات مقاومت کششی ادوات به هنگام کار اطمینان حاصل شود.

نتیجه‌گیری

قبل از اینکه دستگاه دینامومتر انتقال سه نقطه ساخته شود، از این دستگاه آن‌گونه‌ای که نیرو‌های وارد بر ادوات را در راستاهای افقی، عمودی و جانبي اندازه‌گیري کند اما بعد از ساخت و انجام آزمایش و واسنجی مشخص شد، که این دینامومتر قادر است فقط نیرو افقی را با دقت اندازه‌گیری کند. دلیل اصلی این امر، یکسانی نیروی بار در مدل‌های نیروی دینامومتر و حساسیت دوجانبه بالا برای یک‌باره عمودی و حساسیت کم این برای نیروی جانبي بود.

چرخ پنج جرم طراحی شده، می‌تواند سرعت پیشرو واقعی


