تحليل اثر متقابل زنوتیپ X محیط (مدیریت‌های زراعی) در ارقام پولاف

بر مبانی تجزیه ضرایب مسیر و رگرسیون

قاسم محمدی‌نژاد و عبدالخلیق رضائی

چکیده

این بررسی به منظور ارزیابی پایداری 9 زنوتیپ پولاف و یک رقم جو نسبت به مدیریت‌های زراعی و همچنین برای تعیین سهم هر یک از عوامل زراعی (محیطی) در ایجاد اثر متقابل زنوتیپ X محیط و تعیین پایداری‌ترین چهار عملکرد در سال زراعی 1389 از مزرعه پژوهشی دانشگاه صنعتی اصفهان، واقع در لرکنره تجربه آباد انجام شد. زنوتیپ‌های پولاف شامل 4 رقم کانادایی و 5 لاپین اصلاحی از تركیب بودند. محیط‌های مورد بررسی را سه گروه کاست 202 مهر، 30 آبان و 30 اسفند کاست 2020 و 2021 به ترتیب مترمیک تشکیل دادند. برای هر محیط از طرح پلک‌های کامل (کامپوزیت) در نکران استفاده شد. تجزیه و تحلیل مکانیک تغییرات برای عملکرد دانه تعداد خوزه‌های بارور در مرحله نهایی و درختان دانه و عملکرد دانه تفاوت‌های زنبوری باعث می‌شود. سپس میان 28 با عملکرد بالاتر از میانگین و ضریب رگرسیون خنثی زنوتیپ بی 1 دارای سازگاری مطلوب، نشان داده و عملکرد دانه ارزیابی شد. نتایج مجموع معنی‌داری از کل تغییرات برای عملکرد دانه (27/37) پیشتر از سایر صفات بود. تنها تجزیه پایداری بر باهاي ضرایب رگرسیون خنثی نشان داشت که رقم پایین و لاک 28 با عملکرد بالاتر از میانگین و ضریب رگرسیون خنثی زنوتیپ بی 1 دارای سازگاری خصوصی داشتند. بر مبانی میانگین معاینه‌های احترام از خط رگرسیون رقم پایي‌بای کمترین انتشار پایداری‌ترین نقاط تحقیق زنوتیپ X محیط زنوتیپ بی 1 (وزن دانه) در اثر اثرات جزئی زنوتیپ پایداری و پایداری است. به این اساس رقم پایی‌بای دارای پایداری در مقدار 13 پایداری‌ترین زنوتیپ بی 1 محصول تحقیق داده شد. مقایسه اجرای محیط‌های در روش‌های ماله‌گرده انجام و شکل‌دادن را هم در تحقیق در رشد زنوتیپ‌ها نسبت به عوامل محیطی ممکن، از این‌رو آزمایش‌های پایداری زنوتیپ‌ها با اساس جزئی زنوتیپ‌ها (1376) بوده و تعداد زنوتیپ‌ها در خوزه‌های نهایی و تغییرات و در نهایت بر مبانی نتایج این پژوهش، رقم پایی‌بای عملکرد 7/8 تا در هکتار و واکنش پایی‌بای در همه محیط‌ها به عنوان رقم مناسب شناخته شد.

واژه‌های کلیدی: اثر متقابل زنوتیپ X محیط، تجزیه پایداری، ضرایب مسیر، مدیریت‌های زراعی، پولاف

1. بپردازید دانشجوی ساقه کارشناسی ارشد و استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقدمه

در راستای برنامه معرفی ارقام جدید گیاهان زراعتی از جمله بولاف، مطالعه و شناخت اثر متقابل بولاف‌های محیط با توجه به نمای شرایط آب و هوایی مناطق مختلف اهمیت زیادی است. اهمیت این گونه آثار، مابین زنیته‌ای و نقش تبعیض کشیده‌ها در برنامه‌های بهبودی آب و هوایی مناطق مختلف اصلاح نماینده است (3). این اثر متقابل بولاف‌های محیط به صورت سازگاری و پیاده‌نگری می‌باشد. وجود اثر متقابل زنیته‌ای محیط پایداری ارقام را می‌کاهد و پایداری کشاورزی ارقام در برخی از محیط‌های می‌گردد (10).

برای تعیین پایداری ارقام از روشهای گوناگونی استفاده می‌شود و محققین مختلف معیارهای متفاوتی را جهت تحقیق پایداری ارقام گرفته‌اند (10). برخی از محققین (3)، و (10) گزارش نموده‌اند که اغلب به منظور صفات در زنیته‌های مختلف و اثر محیط که مهم‌ترین عامل مورد بررسی قرار می‌گیرد. متفاوتی مستند می‌شود، رابطه خصوصاً برای بررسی نفوذ دراد دارد. به همین جهت پیشرفت که (4) استفاده از روش رگرسیون را برای ارزیابی واکنش زنیته‌های در شرایط محیطی مختلف پیشنهاد نموده. ابزارهای و راسل (7) از شبکه رگرسیون (9) و میانگین مربعات انحرافات در طبقه‌بندی و رگرسیون (8) نیز در دسترس آنها در این تحقیق روش فیتینه و ویکسمان (9) است. واکنش وجودی زنیته‌ای محیط نسبت به میزان میزان درشت بیشتر می‌باشد. در این مقاله میزان انحرافات از خط رگرسیون و بررسی شده به‌شمار می‌آید. میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی نسیم را در دسترس می‌باشد. در این مقاله میزان معیار دیگر از این نگاه اشکال محیطی Nمحمدرضا سرداری، علیرضا سحیحی و حسن مرادیان

188
تحلیل اثر متقابل زنوتیپ × محیط (مدیریت‌های زراعی) در...

مقامه به زنگ با زهیای سازگاری در ایزولاین‌ها می‌پردازد، درد داده‌های ایستگاه و همچنین (۶) در ارزیابی پایداری زنوتیپ‌های بولاف در ۲۴ محیط مشتمل بر شرایط آتشفشانی و تاریخ‌ها و تراکم‌های مختلف کاشت و سطح متقابل کود اشاره کرده‌اند که فقط یک خشک‌گی که از واریانس اثر متقابل زنوتیپ × محیط مربوط به همانجنسی‌های رگسپورن باشند، نمایانگر بایداچاری ارقام با استفاده از ضریب رگسپورن سودمند نیست.

با توجه به اینکه تعیین‌های محیطی به دو دسته عوامل قابل پیشنهاد کرده، و نیز به تغییرات محیطی، با اعمال متریک‌های مختلف زراعی مانند کاشت در تاریخ‌ها و تراکم‌های متفاوت می‌تواند نتایجی به آن تصادفی سال و مکان دست پایش (۶) همیشه می‌تواند با یکدیگر بیش از ارزیابی واکنش (سازگاری) ارقام و زنوتیپ‌های این پژوهش را برای بولاف در ۶ محیط متفاوتی از لحاظ تاریخ و تراکم کاشت طرح ریزی شده است. همچنین در این پژوهش سعی بر آن است که با بهره‌گیری از روش‌های (۲) و توجه به رشد و نمونه‌گرفت و اجرای عملکرد سه‌پیکر از عوامل محیطی در ایجاد اثر متقابل زنوتیپ × محیط شناسایی گردید و به پایدارترین جزو عملکرد در زنوتیپ‌های مختلف بولاف مشخص شود.

مواد و روش‌ها

در این پژوهش ۹ رقم و لاک بولاف با ساختار زنوتیکی متفاوت به همراه یک رقم (به عنوان شاهد (کنترلی) در سال زراعی ۱۳۷۸–۱۳۸۰ مورد آزمون پایداری قرار گرفته‌اند.

اختلاف رقم شاهد جو به‌دین دلیل بود که از ایران تولید بولاف مرسوم نیست و جو از نظر شرایط تولید و مصرف نیز نسبت به این گیاهی است که مشابه با آن رقابت کند. آزمایش‌ها در مزرعه‌های پژوهشی و همچنین اصفهان واقع در ترکیک زنوتیپ‌های بولاف شماره ۵ و ۶ و ۳ قرار دارند.

در نتایج با استفاده از مدل‌های (۱۱) و تجزیه بایداچار بر
شکل ۱. نمودار تجزیه سیستم با استفاده از اجزای محیطی برای ارزیابی مولکول‌کردن X و T رتبه تکوینی اجزاء از x به z می‌باشد.

سهم جزء X نشان دهنده کارایی زنوتیپ برای استفاده در اجزاء محیطی در طول دوره رشد برای تشکیل مولکول‌کردن می‌باشد و هر یک از اجزاء محیطی، یک نسبت Q برای محیط بر جزء X مربوط است که بر هر محیط تابع می‌باشد و هر چه قدر مطلق Q برای صفتی بیشتر باشد، به عنوان قندیت تثبیت نشان می‌دهد. برای این روش تابع این که کدام زنوتیپ در کدام مرحله رشد بیشتری حساسیت را به عوامل محیطی از جمله نشان داده استفاده می‌شود.

نتایج و بحث

نتایج آزمون بارنامه حاکی از اینکه بین توزیع واریانس و X پیوند قبیل (جدول ۱) برای شکل X و تبار اجزای محیطی داده شده تفاوت سیگنال معنی‌داری را بین زنوتیپ‌ها نشان داد. همچنین از محیط برای کلیه صفات غیر از وضعیت در نظر گرفته، احتمال ۵ درصد معنی‌دار بود. میانگین مربعات اثر متقابل Znottip × محیط برای کلیه صفات معنی‌دار گردید. مجموع مربعات اثر متقابل Znottip × محیط برای مولکول‌کردن X در حدود ۲۴ درصد مجموع مربعات کل را به خود اختصاص داده که از سایر صفات بیشتر بود.

دالیت و همکاران (۱۵) در ارزیابی مولکول‌کردن دائمی زنوتیپ‌های یک‌لیف، گرچه اثرات متقابل Znottip × محیط معنی‌داری مشاهده کردند، ولی درایافتن که میانگین مربعات میان تجزیه ضرایب سیستم سه سم هر یک از اجزاء محیطی برای اختلالات واریانس X است که از تعداد تعداد X نشان دهنده. در این مدل فرض بر آن است که Z رسیدن یک اجزای محیطی بر جزء X مربوط است که در هر محیط تابع می‌باشد و هر چه قدر مطلق Q برای صفتی بیشتر باشد، به عنوان قندیت تثبیت نشان می‌دهد. برای این روش تابع این که کدام زنوتیپ در کدام مرحله رشد بیشتری حساسیت را به عوامل محیطی از جمله نشان داده استفاده می‌شود.

هلمز و فون کشاورزی و منابع طبیعی / سال ۱۳۸۵ / شماره اول (الف) / بهار

۱۹۰
جدول ۱: تجزیه و ارائه عملکرد دانه زنوبیپها در ۴ محیط بر اساس روش ابزارهای و راسل

| منابع تغییر | درجه آزادی | مجموع مربعات | میانگین مربعات | ف
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>محیط (خطی)</td>
<td>۴/۵۷۵</td>
<td>۱۹/۸</td>
<td>۹/۱۸</td>
<td><0.۰۱*</td>
</tr>
<tr>
<td>تکرار در محیط زنوبیپ</td>
<td>۱/۲۰</td>
<td>۰/۵۶</td>
<td>۰/۵۶</td>
<td><0.۰۵*</td>
</tr>
<tr>
<td>زنوبیپ × محیط</td>
<td>۱/۲۸</td>
<td>۸/۸</td>
<td>۴/۴</td>
<td><0.۰۵*</td>
</tr>
<tr>
<td>محیط (خطی)</td>
<td>۲/۴۳</td>
<td>۱۰/۸</td>
<td>۵/۴</td>
<td><0.۰۵*</td>
</tr>
<tr>
<td>زنوبیپ × محیط (خطی)</td>
<td>۱/۲۴</td>
<td>۷/۲۲</td>
<td>۳/۲</td>
<td><0.۰۵*</td>
</tr>
<tr>
<td>انحراف مربوط</td>
<td>۱/۲۴</td>
<td>۵/۲۷</td>
<td>۲/۱</td>
<td><0.۰۵*</td>
</tr>
</tbody>
</table>

امنی: حاصل جمع مجموع مربعات و درجه آزادی محیط به منابع تغیر رابطه‌ها و ۷ جدول تفکیک می‌شود.

جدول ۲: پارامترهای آماری بر مبنای روش رگرسیون

ضریب	انتخاب از ضریب	ضریب	ضریب	انتخاب از ضریب	ضریب									
۲/۱۰	۱/۵۸	۱/۹۱	۱/۴۳	۰/۶۸	۲/۵۴	۰/۵۸	۱/۶۲	۰/۵۰	۱/۶۵	۰/۶۲	۰/۵۰	۰/۵۸	۰/۶۲	۰/۵۰
۲/۱۰	۱/۵۸	۱/۹۱	۱/۴۳	۰/۶۸	۲/۵۴	۰/۵۸	۱/۶۲	۰/۵۰	۱/۶۵	۰/۶۲	۰/۵۰	۰/۵۸	۰/۶۲	۰/۵۰

***: پرتره‌بندی معنی‌دار در سطح ۱ و ۰.۰۱

۱: نتیجه آزمون F برای فرض H₀: b = 0 در سطح احتمال ۵/۰.

۲: نتیجه آزمون F برای فرض H₀: b₁ = b₂ = b₃ = b₄ = b₅ = b₆ = b₇ = 0 در سطح احتمال ۵/۰.

تأمل‌السی نسبت به میانگین مربعات اثر متقابل سیب‌بز از گرگان است.

منابع تغییر زنوبیپ، محیط، زنوبیپ × محیط و انحراف

مربوط در سطح احتمال ۱ درصد معنی‌دار بودند (جدول ۱)

معنی‌دار شدن ارتباطات محیط خطا حاکی از این است که تغییرات عملکرد محیط‌ها از روند خطا قابل توجهی برخوردار
مشخص نمونه که به جز برای لاين های ۳۲ و ارقام کالیر، آزمون F برای بررسی انحراف های انفرادی از رگرسیون اروره شده‌اند. ضرایب رگرسیون درجه ۲ برای هر جهت یک از زنوتیپ‌ها اختلاف معنی‌داری با صفر نداشته‌اند. جوامع‌کوپی با ضریب رگرسیون خطی ۲/۳۲ و آماری به ترتیب وادی کوچک‌ترین و بزرگ‌ترین ضرایب رگرسیون خطی بوده‌اند. البته علی‌ رغم دامنه تغییرات نسبی‌ای در اختلاف ضرایب رگرسیون خطی با یک معنی‌دار نبود. مجموع مربعات رگرسیون خطی برای لاين های ۲۷ و ۳۲ ارقام کالیر و پیسر در سطح احتمال ۰/۵ معنی‌دار شد (جدول ۲) و پیسر به کار رفته خط تغییرات عملکرد این زنوتیپ‌ها را در محیط‌های مختلف توجه می‌کند. این مجموع مربعات برای بهبود زنوتیپ‌ها معنی‌دار نگردید. بر اساس نمونه‌برداری ارقام که بر منابع ضریب رگرسیون خطی سه‌شانه (شکل ۲)، آمار زنوتیپ‌روی خیت به ترتیب نهایی کوچک‌ترین دو و دوم، تراکم کوچک‌ترین تراکم کاوش در دور، تاریخ کاوش سوم و تراکم کاوش سوم با عملکرد ۲/۳۲ و ۵/۲۴،۵/۲۹،۵/۲۱،۵/۲۴،۵/۲۱ در هکتار می‌باشد.

شکل ۲. پراکنش زنوتیپ‌ها بر اساس میانگین و ضریب رگرسیون خطی این‌های و راس.

خط عمودی از نقطه میانگین عملکرد دانه می‌گذارد.
شکل ۳ پراکنش زننی‌پی‌های بر معای میانگین عملکرد دانه و مقدار انحراف از رگرسیون خطی (پارامتر دوم ابهرارت و راسل)
خطوط به هم پوشته گرایبندی‌های حاصل از تجزیه‌گرایشی بر معای واریانس انحراف از رگرسیون
را نشان می‌دهند و خط افقی سمتند از میانگین عملکرد دانه می‌گذرد.

در برای و بی‌بور برای توجه به زننی‌پی‌های معای میانگین عملکرد مربوط به انحراف از خط رگرسیون معنی‌دار است، لذا در این مورد توجه الکرتة خطئ در تجزیه اثر متقابل زننی‌پی × محرکه تنهایی کالیف نمی‌باشد و این نکته بکی از ایرادات روش رگرسیون در تجزیه پایداری است. شکل ۳ پراکنش زننی‌پی‌های بر معای میانگین عملکرد دانه و پارامتر دوم پایداری ابهرارت و راسل (۲۸) نشان می‌دهد. در تجزیه خوش‌گرایی زننی‌پی‌های بر اساس ابهرارت و راسل انحراف از رگرسیون به روش وارد (Ward) زننی‌پی‌ها به صورت تفکیک شدند که در روي شکل ۳ با معنی‌های هسته نامایش داده شدند. زننی‌پی‌های گروه اول را جو ماکونی و پی‌پی‌پلر لین۱۷ تحلیل داندند که بالاترین مقادیر واریانس انحراف از رگرسیون را داشتند و بر معای میانگین عملکرد محسوب شدند. در گروه دوم زننی‌پی‌ها ۵ مقدار واسط داشتند. این نتایج ۲ و ۲۸ درصد موثر بودند. در گروه سوم، نتایج ۲۶ و ۲۸ راز کالیبر، بی‌بور و در برای جای گرفتن که پارامترین زننی‌پی‌ها بودند. در این نتایج فقط بی‌بور عملکردی بالاتر از میانگین دانه و زننی‌پی با پایداری عملکرد مطلق مشخص داده شد. در مجموع، این نتایج به معای میانگین عملکرد و هر دو پارامتر پایداری ابهرارت و راسل

۱۹۳
جدول ۳ ضربای همبستگی بین عملکرد زنوتیپ‌ها و اجزاء عملکرد

زنوتیپ	جووماکونی	بویر	پیسر	دربای	کالیبر	لاين ۶	لاين ۵۶	لاين ۲۸	لاين ۲												
همبستگی عملکرد یا:																					
تعداد خوشه در مترمیع:																					
تعداد دانه در خوشه:																					
وزن دانه:																					
همبستگی تعداد خوشه در مترمیع یا:																					
تعداد دانه در خوشه:																					
وزن هزار دانه:																					
همبستگی تعداد دانه در خوشه یا:																					
وزن هزار دانه																					

* و**: به ترتیب معنی‌دار در سطح احتمال ۰.۰۵ و ۰.۰۱ درصد.
جدول 2. ضرایب مسیر X عملکرد دانه و اجزای عملکرد در زنوتیپ های یولاف

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>a5</th>
<th>a6</th>
<th>انجام</th>
</tr>
</thead>
<tbody>
<tr>
<td>2الی</td>
<td>0/0257</td>
<td>0/0272</td>
<td>0/05865</td>
<td>0/0277</td>
<td>0/0803-</td>
<td>0-4361</td>
<td>17لاین</td>
</tr>
<tr>
<td>17لاین</td>
<td>0/0323</td>
<td>0/0494</td>
<td>0/0332</td>
<td>0/0288</td>
<td>0-0518</td>
<td>0-2490</td>
<td>28لاین</td>
</tr>
<tr>
<td>28لاین</td>
<td>0/0171</td>
<td>0/0214</td>
<td>0/0321</td>
<td>0/0578</td>
<td>0-0078</td>
<td>0-0511</td>
<td>0-0341</td>
</tr>
<tr>
<td>32لاین</td>
<td>0/0154</td>
<td>0/0225</td>
<td>0/0377</td>
<td>0/0593</td>
<td>0-0375</td>
<td>0-0375</td>
<td>0-0375</td>
</tr>
<tr>
<td>36لاین</td>
<td>0/0374</td>
<td>0/0864</td>
<td>0/0378</td>
<td>0/0569</td>
<td>0-1291</td>
<td>0-2149</td>
<td>0-0054</td>
</tr>
<tr>
<td>کالیبیر</td>
<td>0/1924</td>
<td>0/0640</td>
<td>0/1929</td>
<td>0/1925</td>
<td>0-1587</td>
<td>0-1587</td>
<td>0-1587</td>
</tr>
<tr>
<td>بینر</td>
<td>0/1900</td>
<td>0/1900</td>
<td>0/1900</td>
<td>0/1900</td>
<td>0-1900</td>
<td>0-1900</td>
<td>0-1900</td>
</tr>
<tr>
<td>چوگاکویی</td>
<td>0/271</td>
<td>0/9649</td>
<td>0/2501</td>
<td>0/198</td>
<td>0-2771</td>
<td>0-2771</td>
<td>0-2771</td>
</tr>
<tr>
<td>0-0239</td>
<td>0-0239</td>
<td>0-0239</td>
<td>0-0239</td>
<td>0-0239</td>
<td>0-0239</td>
<td>0-0239</td>
<td>0-0239</td>
</tr>
</tbody>
</table>

*ضرایب مسیر تعداد خوشه در متر مربع با واحد دانه در خوشه (a1)، تعداد خوشه در متر مربع با وزن دانه (a2)، تعداد دانه در خوشه با وزن دانه (a3)، تعداد دانه در خوشه با عملکرد (a4) و وزن دانه با عملکرد (a5).

عملکرد در زنوتیپ‌های محصول یولاف و جوگاکویی نشان می‌دهد که در این زنوتیپ‌ها به طور عمده افزایش عملکرد از طریق افزایش وزن هزار دانه با تعداد خوشه در متر مربع مشاهده می‌شود.

اجزای زنوتیپ‌های پایداری (0/070 و 0/07) در جدول 5 آورده شدهاند. زنوتیپ‌های مختلف از نظر اجزاء مختلف عملکرد واکنش‌های پایداری مشابه نشان دادند. در واقع برای هر زنوتیپ‌های مختلف، مقدار جدول 5 ثابت می‌باشد. جدول 6 عملکرد نشان مولوتی در تنظیم اثر متقابل زنوتیپ چه می‌دارد. به عنوان مثال زنوتیپ‌های یولاف، کالیبیر و بینر ۲۳ نسبت به بقیه زنوتیپ‌ها حساسیت بیشتری را نسبت به تغییرات محیطی مؤثر بر وزن دانه در طی مرحله پر شدن دانه نسبت به مراحل آگازین تکوین تعداد خوشه و تشکیل دانه دارد. بنابراین، تاثیر ویژه زنوتیپ‌های مختلف باعث کاهش وزن دانه از اهمیت زیادی برخوردار است و هر گونه تغییر در شرایط محیطی در این مرحله موجب تغییر شدید در عملکرد انجام می‌گردد. ارزیابی بینر و ماکویی بالاترین مقدار ۷۰ را دارند و بینارای خسارت استثنایی ۲۳ همبستگی معنی‌داری بین عملکرد و تعداد دانه در خوشه و وجود ندارد، که بینانه این است که در شرایط اجرای این پژوهش و در زنوتیپ‌های مورد ارزیابی تعداد دانه در خوشه نسبت به سایر اجزای عملکرد از اهمیت کمتری برخوردار است. در زنوتیپ‌های با عملکرد بیشتر از میانگین، همبستگی نمی‌باشد بین عملکرد و وزن دانه مشاهده گردید. برای هر یک از زنوتیپ‌های همبستگی معنی‌داری بین تعداد دانه در خوشه و وزن دانه وجود نداشت. در زنوتیپ‌های مختلف نتایج قابل ملاحظه‌ای از نظر همبستگی اجزای عملکرد با یکدیگر مشاهده شد.

نتایج تجزیه مسیر متاب زنوتیپ برای عملکرد و اجزای عملکرد (جدول 4) در زنوتیپ‌های مختلف تا حدودی متفاوت بود، اما بر طوری که مشاهده می‌شد اثر مثبت وزن دانه بر عملکرد (a5) در تعداد بیشتری از زنوتیپ‌ها بالاتر از اثر مثبت تعداد دانه در خوشه بر عملکرد (a6) و تعداد خوشه در متر مربع بر عملکرد (a7) می‌باشد. با این وجود در مسیر تعداد خوشه با وزن دانه و اثر مستقیم وزن دانه با
جدول ۵. اجزای زنوتیب اثر مقابل زنوتیب × محیط برای زنوتیب‌ها

<table>
<thead>
<tr>
<th>V₀</th>
<th>V₀</th>
<th>V₁</th>
<th>σ₀</th>
<th>μ₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاين</td>
<td>لاين</td>
<td>لاين</td>
<td>لاين</td>
<td>لاين</td>
</tr>
<tr>
<td>0/5</td>
<td>0/7</td>
<td>0/5</td>
<td>0/8</td>
<td>0/9</td>
</tr>
<tr>
<td>0/7</td>
<td>0/8</td>
<td>0/5</td>
<td>0/6</td>
<td>0/7</td>
</tr>
<tr>
<td>0/6</td>
<td>0/8</td>
<td>0/5</td>
<td>0/6</td>
<td>0/7</td>
</tr>
<tr>
<td>0/5</td>
<td>0/6</td>
<td>0/4</td>
<td>0/5</td>
<td>0/6</td>
</tr>
<tr>
<td>0/4</td>
<td>0/5</td>
<td>0/3</td>
<td>0/4</td>
<td>0/5</td>
</tr>
<tr>
<td>0/3</td>
<td>0/4</td>
<td>0/2</td>
<td>0/3</td>
<td>0/4</td>
</tr>
<tr>
<td>0/2</td>
<td>0/3</td>
<td>0/1</td>
<td>0/2</td>
<td>0/3</td>
</tr>
<tr>
<td>0/1</td>
<td>0/2</td>
<td>0/0</td>
<td>0/1</td>
<td>0/2</td>
</tr>
</tbody>
</table>

جدول ۶. اجزای محیطی اثر مقابل زنوتیب × محیط برای محیط‌ها

<table>
<thead>
<tr>
<th>r₀</th>
<th>r₀</th>
<th>r₁</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاريخ کشت اول</td>
<td>0/6</td>
<td>0/1</td>
<td>1/3</td>
</tr>
<tr>
<td>تاريخ کشت دوم</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>تاريخ کشت سوم</td>
<td>1/1</td>
<td>1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>تراکم کشت اول</td>
<td>0/6</td>
<td>0/1</td>
<td>0/3</td>
</tr>
<tr>
<td>تراکم کشت دوم</td>
<td>0/3</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>تراکم کشت سوم</td>
<td>0/0</td>
<td>0/1</td>
<td>0/1</td>
</tr>
</tbody>
</table>

شش دست‌تری را نسبت به تغییرات محیطی در مرحله تکمیل کوچکتر از تعداد خشکه در مزرعه تعداد دانه در خشکه و وزن دانه می‌باشد.

را در مرحله تولید خشکه ایجاد نمود. تاریخ‌های کشت دوم و سوم بیشترین حساسیت محیطی را به ترتیب در مراحل گرده‌افشانی و پر شدن دانه اعمال نمودند؛ و تراکم‌های کشت بیشتری را به تغییرات محیطی در مرحله تکمیل دانه در خشکه دارند.

اجزای محیطی اثر مقابل زنوتیب × محیط در جدول ۶، نشان داده شده‌اند. در اینجا نیز سهم حساسیت محیطی نسبت به بین اثر مقابل زنوتیب × محیط بر اجزای مختلف نسبتاً متفاوت بود، به طوری که تاریخ کشت دوم بیشترین حساسیت محیطی
تحلیل اثر مقابل زنوتیپ X محیط (مدیریت های زراعی) در...

نتیجه‌های آن که روش تجزیه ضرایب می‌تواند در اثر مقایل زنوتیپ X محیط در واقع کاربردی از تجزیه به غول‌هاست. در تجزیه به غول‌ها با استفاده از مانیگار کورلاریس سیستم‌های متغیر و سیستم‌های متغیر و در تیم‌هایی...

محیط موثر بر تعداد دانه در خوشه سهم بیشتری در اثر مقایل این زنوتیپ‌ها با محیط داشته‌اند. در این مطالعه محیط خواهد تغییرات محیطی حتی در کناره مدت اثر قابل توجه بر عملکرد خواهد گذشت. به‌رحیل دلیل قرار گرفتن زنوتیپ‌ها بر سبای جزء زنوتیپ‌ها در اعتبار بالایی برخوردار است. برای مثال لاین 77یا برنت راحتی و لاین 28 که دارای جزء 77یا بالاتری بودند، به‌طور مثال براساس فضایی رگ‌سپاری، ارتباط این بررسی رگ‌سپاری، و هر دو پارامتر پایدار تلقی شدند. لاین 26 و ارتفاع کالیری و بورز در واریانس جزء زنوتیپ‌ها 77یا برتری بودند و پارامتر یک به دو پارامتر در روش ابزاری و راسال به عنوان پایدار شناسانی شدند. نامبرای این پایداری آنها می‌تواند به علم واکنش نسبت به معامل محیطی موثر بر تغییرات وزن دانه باشد.

همچنین با توجه به جزء زنوتیپ‌ها مشاهده می‌شود که زنوتیپ‌های حساس به تغییرات محیطی در مرحله تکنیک تعداد خوش‌های بیرا مربی (ماکیاپی، پیسپر و لاین‌های 42 و 43) بر اساس پارامتری پایداری اثر ندارند و راسال نیز تقابل هستند. با توجه به این که یکی می‌باشد، لذا دیگر یک جزء منعکس کننده هم‌بستگی تعداد خوش‌های در مترمیت با عملکرد است. از طرفی این هم‌بستگی در تعداد زنوتیپ‌ها معنی‌دار نیست ولی براساس نتایج این پژوهش پارامتر 77یا به معنی‌دار کناریت زنوتیپ‌های پایدار و پرعمکردن مفید باشد.

فرشادی (20) نیز در ارزیابی پایداری لاین‌های جایگزینی شده کمک‌زایی گنبد با استفاده از روش نایشن داد که سهم تعداد دانه در سبیله (ب) از اثر مقابل زنوتیپ X محیط بیشتر از سهم نسبی تعداد سبیله در بونه (ب) و وزن دانه (ب) است. همچنین براساس مقایسه ضرایب 2 مشاهده کرد که تعداد دانه در سبیله به تغییرات محیطی کمتر از دو جزء دیگر حساس است، لذا به تنهایی تعداد دانه در سبیله در پایداری عملکرد یکی یا بر.
متابع مورد استفاده

1- آقایی، م. م. مقدم، م. و لی زاده، ج. کاظمی اربی و. ا. بنی. ۱۳۷۵. تجدید پایداری و تجدید علیت عملکرد دانه در بعضی از ارقام جو (Hordeum vulgare L.)(مجله علمی کشاورزی ایران ۱۹ (۱ و ۲):۵۸-۶۲)

2- رضایی، ع. م. و ک. ج. فرای. ۱۳۶۸. مطالعه سازگاری ایزولاین‌های بولاف (Avena sativa L.)(مجله علمی کشاورزی ایران ۱۲ (۳ و ۴):۳۲-۳۱)

3- فرشادفر، ع. ۱۳۷۸. تجدید علیت آثار متقابل زننده و محیط در لاين های جایگزین شده کروموزومی گندم. مجله علمی کشاورزی ایران ۳ (۴):۶۷۵-۶۷۶

