چکیده

این بررسی به منظور ارزیابی پایداری ۹ زننیت پولاف و یک رقم جو نسبت به مدیریت های زراعی و همچنین برای تعیین سهم هر یک از عوامل زراعی (محیطی) در ایجاد اثر متقابل زننیت × محیط و تعیین پایدارترین جزء عملکرد در سال زراعی ۱۳۷۹ در مزرعه پژوهشی دانشگاه اصفهان واقع در لرود تک نجف ام انجام شد. زننیت های پولاف شامل ۴ رقم کانادایی و ۵ رابن اصلاحی از تركیب بودند. محیط های مورد بررسی را سه تاریخ کاشت (۲۰ مهر، ۳۰ آبان و ۳۰ آذر) با کاشت‌کنی ۵۰۰، ۳۰۰ و ۲۵۰ بذر در متریک پوشیدند. برای هر محیط از طرح بلک های کامل تصادفی در سه تکرار استفاده شد. تجربه واریانس مکربر پرداخته گردید و تعداد طی قطعات تعداد خوشب نبود. تعداد دانه در خوشب و وزن هزار دانه و عملکرد دانه تفاوت های زننیتی پیش یافتند. برای تعیین اثر پایداری را بری روی زننیت ها نشان داد. به جز برای وزن هزار دانه برای هر سه معیار اختلاف معنی‌داری وجود نداشت. عملکرد دانه و همین اجزاء آن اثر متقابل زننیت × محیط معنی‌داری نشان دادند. نسبت مجموع معیار اثر متقابل از كل تغییرات برای عملکرد دانه (۲۴/۷) پیشرفت از سایر صفات بود. تجربه پایداری بر میانی ضریب رگرسیون خطي نشان داد که رقم بیور و لاين بهتر برای بالاتر از میانگین و ضریب رگرسیون خطي افزوده می‌شود. دانه‌های متوسط احتمالات از خط رگرسیون رقم بیور با کمترین انحراف پایدارترین رقم شخص می‌باشد زننیت × محیطی نشان داد که جزء زننیتی ۴۰ (وزن دانه) مهم‌ترین جزء اثر گذار بر عملکرد و پایداری است. بر این اساس رقم بیور با دارا بودن بالاترین مقدار ۷۰ پایدارترین زننیت بر محصول شخصی داده شد. مقایسه اجزای محیطی در روش تایی، مرحله گردش انتقال با تشکیل دانه و سه تبرین محیط رشد زننیت ها نسبت به عوامل محیطی معمول نمود، از این ارزیابی پایداری زننیت ها بر اساس جزء زننیتی ۵۰ (تعداد دانه در خوشب) نمونه شد. در نهایت بر میانی نتایج این پژوهش، رقم بیور با عملکرد ۴/۵ در هکتار و واکنش پایدار در همین محیط به عنوان رقم مناسب شناخته شد.

واژه‌های کلیدی: اثر متقابل زننیت × محیط، تجربه پایداری، ضریب متر، مدیریت های زراعی، پولاف

1. پیتریت دانشجوی سابق کارشناسی ارشد و استاد زراعت و اصلاح نباتات دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقدنم

در راستای برنامه معرفی ارقام جدید گیاهاان زراعی از جمله پیوند عاطفی مطالعه و شناخت آمار تفاوت زننده‌های معنی‌دار و احتمالهای مختلف حائز اهمیت زیادی است. اهمیت این گونه آثار، مانند زننده‌ها و نخبه‌های کننده آنها در برنامه‌های بهبودی‌های با محصولات متغیر اصلاح بیانات است (21). محتویات اثر متقابل زننده‌ها محتوی به صورت مسیری و پایداری تجربی می‌باشد. وجود اثر متقابل زننده‌های محیط پایداری ارقام را می‌کاهد و باعث کاهش پژوهش ارقام در برخی از محیط‌ها می‌گردد (10).

برای تعیین پایداری ارقام از روش‌های گوناگون استفاده می‌شود و محققین مختلف بیماری‌ها متانی را جهت تنش خاکسازی پایداری ارقام به‌کار گرفته‌اند (10). برای اثبات اصلی این محققین (1) و (10) گزارش نمودزده که محققین ضمن بررسی مصرف طی زننده‌های مختلف و اثر محیط که معمولاً به‌وسیله موارد متانی سنجیده می‌شود، رابطه خصی به ترتیب خصی وجود دارد. به مصوب جهت بیشتر کوثران (21) استفاده از روش رگرسیون را از ارزیابی واکنش زننده‌ها در شرایط محیطی مختلف پیشنهاد نمودند. ابزارهای تحلیل‌های (7) از شبیه‌سازی رگرسیون (9) با عنوان موردی تعیین برای ابقای تعیین نمودند. روش آنها در واقع تعیین روش فیزیکی و برقلیسید (9) است. واکنش ورودی هر زننده‌های محیط با عوامل پایداری استفاده گرفته شده می‌باشد. محققین مربوطات احترام از خط رگرسیون مربوط به بخش گیاهی پیشینی تونیه زننده‌های می‌گردد. لذا با پایین به عنوان پایداری پایداری گرفته شود. آزمایش (12) گزارش نمودزده که محققین یک گیاهی ضریب فیزیکی تونیه و پیچیده صورت می‌گیرد، و بطوری که هر یک از اجزاء این نظام توانایت تأثیر زننده، محیط و یا اثر متقابل آنها واقع شوند. از طرفی عامل کننده یک گیاهی طی فرآیندهای پیاپی شکل می‌گردد. روش نای (11) بر همین اساس

188
تحلیل اثر مقابله زنوتیب X محیط (مدیریت‌های زراعی) در...

پیسر (Calibre)، درباری (Derby) و کالیبر (Paycer) محیط‌های مورد ارزیابی شامل تاریخ‌های کاشت 25 هم و 40 در 3 آبان و 30 آبان تراکم کاشت 300 بذر در متر مربع و 360 در یک متر مربع در تاریخ کاشت 12 آبان بودند. زنوتیب ها در محیط در قالب طرح بلوکهای کاملاً تصادفی استفاده از ارایبی شدند. هر کرت آزمایشی شامل 24 کاشت به طول 30 متر و فاصله رفیق 2 متری بود. در طول دوره رشد میزان محیطی زراعی از قبل آبیاری و کنترل علائم به طور کامل عامل گردید. در این بررسی هر صفت از مقدار زراعة مانند تراکم در تاریخ‌ها و تراکم‌های مختلف می‌تواند حدودی و اکثر علائم مربوط به ناحیه ضرر رگسیون‌ها باشد. نقاط اکثر یا ارقام (زارگرای) ارکام و زنوتیب‌های امید به‌کار یک پلاک بالا 6 محیط متغیر از لحاظ تاریخ و تراکم کاشت طرح روزی شده است. همچنین در این پژوهش می‌برد این آزمایش به روش تای (12) و توجه به رشد و نمو اکثر علائم محلی سه به 7 به عنوان محیطی در ابزار مقفل زنوتیب X محیط شناسی گردیده و پایدارترین جزء عامل‌های در زنوتیب‌های مختلف پلاک مشخص شد.

مواد و روش‌ها

در این پژوهش 9 رقم و 4 بار بولفاف با ساختار زنوتیکی میوهای به همراه یک بگ که به عنوان شاهد (جداییگری) در سال زراعی 1379 مورد آزمون پایداری خرید افتاده. با استفاده از روش‌های بالا، توانایی در اثر پایداری و اکثر اکثر این اخبار از روش رگسیون از جمله گیاهی اکثر نشان دهنده آزمون استفاده باید در آزمون استفاده باید روش که در ایران تولید پلاک مسوم نیست و جو از نظر شرایط تولید و صورت نزدیک تربیت گیاه است که می‌تواند با آن رفتگی کند. آزمایش در محیط‌های پرورشی صنعتی اصفهان واقع در شهر تبریز زنوتیب‌های پلاک شامل 6 چهار رقم از جمله گیاهی 3، 17، 28، 06 و 04 چهار رقم دریافتی بین زن گیاهی کانادا به نام‌های بور (Boyer)
نمودار تجزیه مسیر که بیانگر ارتباط عملکرد (w) و ترکیب تکوینی اجزاء از x به y می‌باشد.

منابع تجزیه ضرایب مسیر سهم هر یک از اجزاء عملکرد در آثار مختلف زنوتیپ x محبوب ترین شد. در این مدل فرض بر آن است که اول‌ترین واحد رشد و نمو اجزاء عملکرد از (V1) تعداد خودش در مترمیک (Y0) تعداد دانه در خوشه به Y (وزن دانه) می‌باشد. عملکرد از حاصل ضرب این اجزاء (W=XYZ) به دست می‌آید. نیازی فرض بر آن است که Rv و Rz، عناصر محبوب را می‌توان به سه گروه مستقل T، K و نکته کرد که در طی نمون‌گیری و در توالی زمانی تکوین اجزاء عملکرد آن جزء را تحت تأثیر قرار می‌دهند. نمودار تجزیه مسیر در شکل 1 نشان داده شده است. در این نمودار تایخ، ضرایب علی‌الخ، (v) و (w) ضرایب مسیر از 

(1) رابطه زیر را آورده می‌توان:

\[ W = v_{1}r_{1} + v_{2}r_{2} + v_{3}r_{3} + e \]

را می‌توان به صورت زیر نشان داد:

\[ W = \mu_{wi} + V_{i}r_{j} + V_{ii}r_{ij} + V_{i}r_{i} + e_{ij} \]

در این فرمول، واریانس عملکرد زنوتیپ (w) می‌باشد. زن‌تن این واریانس، میانگین اثرات ترکیبی (V) سه جزء زنوتیپ یا نیازمندی اثرات متغیران (V1 2 3) و در نهایت به سه جزء محبوب اثرات (v) می‌توانند به صورت 

\[ v_{1}, v_{2}, v_{3} \]

به‌صورت زیر بیشتر باشند.

(5) از ارزیابی عملکرد دانه زنوتیپ‌های پیالک‌گر. گر چه اثرات متغیران زنوتیپ x بیشتر، فرض شده می‌باشد که میانگین مربعات معنی‌داری مشاهده گردند، ولی در این بررسی که میانگین مربعات
شکل ۲. پراکنش زنوتیپ‌ها بر اساس میانگین و ضریب رگرسیون خطی ابزار و راس.

خط عمودی از نقطه میانگین عملکرد دانه می‌گذرد.

آورده شده‌اند. ضرایب رگرسیون درجه یک برای هر یک از زنوتیپ‌ها اختلاف معنی‌داری با صفر نداشتند. جرم‌کمی با ضریب رگرسیون ضخیم بود، اما بیشترین ضرایب رگرسیون ضخیم بوذند. این اثرات دهانه تغییرات نسبی زیاد و اختلاف ضرایب رگرسیون ضخیم با یک معنی‌دار نیست.

مجموع معیار‌های رگرسیون خطی برای لایه‌های ماکوسارک، ارقام پایدار و دیگر به حدوداً شیبی تبدیل شد. فقط رقم پایدار و یک با عملکرد بهتر از میانگین دارای پایداری عملکرد معنی‌دار بودند. جرم‌کمی و لایه ۲ دارای سازگاری خصوصی معیطه‌های میانگین و ارقام کالیبر و پایدار سازگاری خصوصی با معیطه‌های میانگین محدود‌شدند. لازم به ذکر است که رتبه معیطه‌ها (مارکت‌های زراعی ۳) بر اساس میانگین عملکرد همه زنوتیپ‌ها در آن معیط به‌ترتیب نرخ کاشت‌های اول و دوم، تراکم کاشت‌اول، تراکم کاشت دوم، تاریخ کاشت سوم و تراکم کاشت سوم با عملکرد با هم‌بود.

آزمون F برای پرستار انحراف‌های انفردید از رگرسیون مشخص نمود که به جز برای لایه‌های ۳۲ و ارقام کالیبر،
تحلیل اثر متقابل زنوتیپ‌ها بر میانگین عملکرد دانشجویان و مقادیر انحراف‌های رگرسیون خطی (پارامتر دوم اپهارت و راسل)

این نشان می‌دهد و خط افق سمتی از میانگین عملکرد دانشجویان می‌گردد.

دریای و بیویر برای پیش‌بینی میانگین مربوط انتخاب از خط رگرسیون معنی‌دار است. لذا در این مورد توجه به رابطه خطی در تجربه اثر متقابل زنوتیپ × مکانی به تنهایی قادری نمی‌باشد. این نتیجه بکی‌دابی این‌ها در تجربه پایدار است. شکل 3 پراکنش زنوتیپ‌ها بر میانگین عملکرد دانه، پارامتر دوم پایداری ابهرمارت و راسل (Ward) نشان می‌دهد. در تجربه خورشید زنوتیپ‌ها بر اساس واریانس انحراف‌های رگرسیون به روش وارد (Ward) زنوتیپ‌ها به سه گروه تقسیم شدند که در روی شکل 3 با مقایسه‌های بین‌نشان داده شده‌اند. زنوتیپ‌های گروه اول، را گروه‌بندی‌های به‌کارگیری تک‌فیلی پایدار کافی نیستند. لذا به منظور اطمینان بیشتر از ارزیابی اجزای بین‌شانسی پایداری و اجزای محیطی تأثیرگذار بر آن از مدل تجزیه ضرایب مسیر تای (11) استفاده شد.

تجزیه اثر متقابل به روش تای بر میانی ضرایب همبستگی استوار است، بنابراین این داده ضرایب همبستگی بین عملکرد و اجزای آن می‌تواند خوشه در واحد سطح، تعداد دانشجو در خوشه و وزن دانش‌آموز در هر زنوتیپ محاسبه شد (جدول ۳). به طوری که ملاحظه می‌گردد برای هر هیچ یک از زنوتیپ‌ها به
جدول 3 ضرایب همبستگی بین علائم علکردها و اجزای علکردها

<table>
<thead>
<tr>
<th>نوع علائم</th>
<th>جوامع‌کوبی</th>
<th>بور</th>
<th>پیسر</th>
<th>دوآمی</th>
<th>کالیبر</th>
<th>لاکنت 3</th>
<th>لاکنت 28</th>
<th>لاکنت 17</th>
<th>لاکنت 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>همبستگی علکردها با:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد خوش‌های در متغیر **</td>
<td>**/0522 0/0122 0/0170 0/0151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در خوش‌های **</td>
<td>**/0561 0/0171 0/0152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن دانه</td>
<td>**/0376 0/0131 0/0240 0/0187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>همبستگی تعداد خوش‌های در متغیر با:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در خوش‌های</td>
<td>**/0545 0/0154 0/0152 0/0255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن هزار دانه</td>
<td>**/0165 0/0188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>همبستگی تعداد دانه در خوش‌های با:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن هزار دانه</td>
<td>**/0217 0/0261 0/0103 0/0349 0/0243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**: به ترتیب معنی‌دار در سطح احتمال 0.01 درصد

(جدول 2) (شامل بیانات مربوط به ارزیابی اثرات عوامل مختلف بر سطح علکردها)
جدول 2 ضرایب مسیر x عملکرد دانه ای اجزای عملکرد در زنوتیپ‌های یولاف

<table>
<thead>
<tr>
<th>$a_1$</th>
<th>$a_2$</th>
<th>$a_3$</th>
<th>$a_4$</th>
<th>$a_5$</th>
<th>$a_6$</th>
<th>$a_7$</th>
<th>$a_8$</th>
<th>$a_9$</th>
<th>$a_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.26</td>
<td>0.07</td>
<td>3.26</td>
<td>1.88</td>
<td>0.32</td>
<td>3.26</td>
<td>0.06</td>
<td>0.32</td>
<td>2.88</td>
<td>1.88</td>
</tr>
</tbody>
</table>

*ضرایب مسیر تعداد خوشه در مترمیب با تعداد دانه در خوشه با $a_1$, تعداد خوشه در مترمیب با وزن دانه با $a_2$, تعداد دانه در خوشه با عملکرد با $a_3$، تعداد دانه با عملکرد با $a_4$، تعداد دانه با عملکرد با $a_5$، تعداد دانه با عملکرد با $a_6$، تعداد دانه با عملکرد با $a_7$، تعداد دانه با عملکرد با $a_8$، تعداد دانه با عملکرد با $a_9$، تعداد دانه با عملکرد با $a_{10}$.

عملکرد در زنوتیپ‌های پر محصول یولاف و جوماکویی نشان می‌دهد که در این زنوتیپ‌ها به طور عمده افزایش عملکرد از طریق افزایش وزن هزار با تعداد خوشه در متر مربع فیلد بهبود شده‌است.

ابزار زنوتیپ‌های مختلف از نظر اجزای مختلف عملکرد واکنش‌هایی پایداری متفاوت داشته‌اند. در واقع برای هر زنوتیپ‌های مختلف $g$ مقدار $q$ برنگر می‌باشد. جزئی $q$ عملکرد نش می‌تواند در تظیم اثر تقلیل زنوتیپ $q$ محیط دار به اندازه میانه زنوتیپ‌های ببور، کالیفر و لاین علاقوست به بقیه زنوتیپ‌ها حساسیت بیشتر را نسبت به تغییرات محیطی مؤثر بر وزن دانه در طول مرحله پر شدن دانه کازی به مراحل آغازین تکوین تعداد خوشه و تشکیل دانه دارد. بنابراین تغییرات مطلوب برای این زنوتیپ‌ها در مرحله پر شدن دانه از اهمیت زیادی برخوردار است، و هر گونه تغییر در شرایط محیطی در این مرحله موجب تغییر شدید در عملکرد آنها می‌گردد. این نشان‌گیراند برای عملکرد با پیسر و میکاکی بالاترین مقدار $q$ را دارند و بنابراین حساسیت عملکرد با پیسر و میکاکی بالاترین مقدار $q$ را دارند و بنابراین حساسیت
جدول ۵. اجزای زنوتیب اثر متقابل زنوتیب × محیط برای زنوتیب‌ها

<table>
<thead>
<tr>
<th>جدول ۶ اجزای محیطی اثر متقابل زنوتیب × محیط برای محیط‌ها</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاریخ کاشت اول</td>
<td>۰/۶۲</td>
<td>-۰/۳۱</td>
<td>۱/۳۶</td>
<td>۱/۳۶</td>
</tr>
<tr>
<td>تاریخ کاشت دوم</td>
<td>۱/۱۳</td>
<td>۱/۹۲</td>
<td>-۱/۲۲</td>
<td>-۱/۲۲</td>
</tr>
<tr>
<td>تاریخ کاشت سوم</td>
<td>۰/۷۲</td>
<td>۰/۳۹</td>
<td>۰/۷۲</td>
<td>۰/۷۲</td>
</tr>
<tr>
<td>شکل کاشت اول</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
</tr>
<tr>
<td>شکل کاشت دوم</td>
<td>۱/۴۳</td>
<td>۱/۴۳</td>
<td>۱/۴۳</td>
<td>۱/۴۳</td>
</tr>
<tr>
<td>شکل کاشت سوم</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
</tr>
</tbody>
</table>

شکل‌دادنی را نسبت به تغییرات محیطی در مرحله تشکیل تعداد خوشه نشان می‌دهند. لین ۱۷ و ارقام کلی و در بیان واکنش بیشتری را نسبت به تغییرات محیطی در مرحله تشکیل تعداد دانه‌های خوشه دارند. اجزای محیطی اثر متقابل زنوتیب × محیط در جدول ۶ نشان داده شده‌اند. در اینجا نیز سه محیط‌های مختلف در بین افراد متقابل زنوتیب × محیط بر اجزای مختلف نسبتاً مشابه بوده، به طوری که تاریخ کاشت اول بیشترین حساسیت محیطی
تحلیل اثر مقیاس زنوتیپ × محیط (مدیریت‌های زراعی) در...

نتیجه‌های آن که روی تجربه ضرایب مسیر بررسی اثر مقیاس زنوتیپ × محیط در واقع کاربردی از تجزیه به عامل‌هاست. در تجزیه به عامل‌ها با استفاده از ماتریس کوارانس‌ها و استاندارد از درجه‌های توزیعی Z زیستی از اعتبار بالایی برخوردار است. برای مثال لاین 17 و رقم درای و لاین 28 در جای جز 77 پالاسکی به ترتیب با رابطه فضایی بزرترین، کوارانس انحراف‌های زنوتیپ و همزمان با کناره‌ای. این تفاوت‌ها می‌تواند در روش ابتکاری رالی به عنوان بیانکار شناسایی شود. نتایج این پایداری آنها می‌تواند در عمل واکنش نسبت به عوامل محیطی متوسط تغییرات وزن دانه باشد.

همچنین با توجه به جزء زنوتیپ 30 مشاهده می‌شود که زنوتیپ‌های حساس به تغییرات محیطی در مرحله تکنیک تعداد خوش‌ور در متر مربع (ماکوپی، پیسر و لاین‌های ۲۱ و ۲۲) اکثر پارامترهای پایداری ابرهارت و راسل نیز پایدار هستند. با توجه به این که Z زیستی در تعدادی از فیل رها متعادل نیست، لذا براساس نتایج این پژوهش پارامتر PK به مقدار زنوتیپ‌های پایدار و پرعمیکس مفید بود.

فرشادی (۱۰) نیز در ارزیابی پایداری این‌ها در ادامه مایه‌ها شده که نمره‌های مدقک با استفاده از روش تای فیلو داد که سهم تعداد دانه در سال (72) در اثر مقیاس زنوتیپ × محیط بیشتر از سهم نسبی تعداد دانه در بوته (75) و وزن دانه (74) است. همچنین براساس مقایسه ضرایب محدود کرد که تعداد دانه در سال به تغییرات محیطی کمتر از زیست درجه دیگر حساس است، لذا به نقش مهم تعداد دانه در سال در پایداری عمیق‌تر

دانه پیراد.
منابع مورد استفاده

1. آقایی م. م. مقدم م. و لیزاده ج. کاظمی اربت و. ا. پنالی ۱۳۷۵ تجزیه پایداری و تجزیه عملکرد دانه در بعضی از ارقام جور (Hordeum vulgare L.) بهاره مجله علوم کشاورزی ایران ۱۹ (۲) ۵۹-۶۵.

2. رضایی ع. م. و ک. ج. فرای. ۱۳۷۸ مطالعه سازگاری ایزولاپسیهای بولاف (Avena sativa L.) مجله علوم کشاورزی ایران ۲ (۳ و ۴) ۲۲-۲۷.

3. فرشادفر ع. ۱۳۷۸ تجزیه عملکرد نسبی میزان سبزی و محیط در لایه‌های جایگزین شده کروموزومی گندم مجله علوم کشاورزی ایران ۳ (۲) ۵۷-۶۵.


