جعفر احمدی، صدیقه فاربی کی اورنگ، عباسعلی زالی، بهمن یزدی صمیمی، محمد رضا قنادی، و علیرضا طالعی

چکیده

به منظور تعیین نحوه عمل زن و توارث عملکرد دانه گندم و اجزای آن تحت شرایط تنها و عدم تنها خشکی، ترکیب‌پذیری زنوتیپ‌ها می‌تواند در رابطه با انتخاب روش‌های اصلاحی و انتخاب لایی‌ها برای ایجاد ترکیبات دوگانه مفید و افزایش گردی (2). اصلاح غیر مستقیم برای مقاومت به خشکی، همواره می‌تواند مفید گردد. این روش‌ها احتمالاً بهبود می‌بخشد و بهبود می‌کنند. استفاده از اصول و ترکیب‌پذیری در تعیین روش‌های اصلاحی اهمیت ویژه‌ای در برخورد است. اطلاعات و مطالعه دیگر

مقدمه

مطالعات زنوتیپی و دانستن نوع عمل زنوهای دانه‌ای مبتنی بر تنکیه یک صفت و ترکیب‌پذیری، در تعیین روش‌های اصلاحی اهمیت ویژه‌ای برخورد است. اطلاعات و مطالعه دیگر

1. استفاده اصلاح نباتات، دانشگاه کشاورزی، دانشگاه ایلام
2. به ترتیب دانشجوی سابق کارشناسی ارشد، استاد و دانشیاران زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه ایلام

مطالعه توارث عملکرد دانه گندم و اجزای آن تحت شرایط تنها و عدم تنها خشکی

واژه‌های کلیدی: گندم، توارث، عمل زن، مقاومت، تنها خشکی
مستقیماً از نظر مقاومن به خشکی آزمایشی تمایل می‌شود، بلکه این موارد در طی سال‌های زیاد و در چندین منطقه مورد ارزیابی قرار می‌گیرند، این هم فرض که زنون‌های در طی این افزایش‌ها در معرض نش خشکی و سایر نش خشکی محیطی دیگر نیز قرار می‌گیرند. زنون‌هایی که تحت این شرایط خوب عمل می‌کنند، در حالی صفات مطلوبی خواهند بود که آنها را قادر می‌سازد در مراحل مختلف نمو خود از نش خشکی فرار کرده با آن را تحمل کنند. همچنین بسیاری از خصوصیات گیاهی ممکن است با بهبود رشد و عملکرد گیاه زراعی شرایط نش خشک که از جمله می‌توان به سازگاری فتوخلوژیکی، اعتیاد‌پذیری نمو، نگهداری زراعی، زاویه برگ، سیستم ریشه‌ای کامده و میزان روش اولیه خشک خشکی تحت شرایط دم و بارندگی نشان داده می‌شود. از جمله شاخص برداشت بالا که می‌توانند در بهبود عملکرد اقتصادی افزایشی در افزایش‌های افزایشی، غالبیت و ایپینتازی در گندم زمان انجام دادن، نتایج نشان دادند که برای صفات مقدار پروتئین، تعداد سیستم‌های سبیل در سبیل و تعداد دانه در سبیل اثر افزایشی زن‌های مهم بود. برای صفات تعداد پنج ان ویژه افزایشی در افزایشی زن‌های قدرت از عمل غالبیت مشاهده شد. این مطالعات نشان داد که انتخاب برای اثر عملکرد بعضی تعداد سبیله در سبیل، تعداد دانه و پنج ان ویژه افزایشی زن‌های مهم بود و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه نان برای صفات افزایشی، بهبود اکثری افزایشی با استفاده از روش‌های گیاهی‌سازی و همچنین افزایشی دو گونه N

202
مطالعه توارث عملکرد دانه گندم و اجزای آن تحت شرایط نش و عدم نش خشکی

در بررسی صبا (1) در مورد نحوه توارث عملکرد و صفات زراعی دیگر و نوع اثر زئینتیک افرازی و غلیبی سهیم بودند ولی سهیم جزو افرازی بیشتر از جزو غلیبی بود و از میان صفات زراعی، صفات وزن هزار دانه، تعداد نهج بار، طول رشک و تعداد روز تا ظهور شلبه و تعداد روز تا کله براق بهبود غير مستقیم عملکرد دانه و مقاومت به خشکی توصیه شد. چارنا و همکاران (19) در تعمیم عمل زن و پارامترهای انتخاب در گند نان تیشه گرفتن که واریانس زئینتیک افرازی برای صفات زمان رسیدن، طول شلبه و تعداد سبیلچه در سبیل مهم هستند و پیشبرد زئینتیک مورد انظار براق بهبود غیر مستقیم عملکرد دانه و مقاومت به خشکی براق در زمان انتخاب دانه، تعداد دانه و سبیل و ارتفاع گیاه بالاست. در مطالعه آنها اثر فوق غلیبی در هر دو نسل F1 و پارامترهای انتخاب دانه، تعداد دانه، سبیل، ارتفاع گیاه بالا، مقدار مؤثر عملکرد از طریق روش تجربی میانگین تخلیه نش و عدم نش خشکی ناقص گزارش شد.

اطلاعات از نحوه توارث مقاومت و ارایب و انتخاب نسل‌های مناسب برای به‌بدارنگ‌های زئینتیک چاپیده است. به طوری که بررسی و ارایب اجزای زئینتیک دخیل در مقاومت‌های کلی اعمال می‌شوند و اصلی برای موثر و بهره‌مندی از هر برنامه اصلاحی می‌باشد. باید این است که بررسی شناسایی اثرات زئینتیک بر نحوه توارث عملکرد و اجزای عملکرد از طریق روش تجربی میانگین نسل‌ها مهم‌ترین هدف تحقیق حاضر را تشکیل می‌دهد.

مواد و روش‌ها

بذر‌های نسل‌های مورد نیاز برای انجام آزمایش تجربی میانگین

BC_1 و BC_2، F_{1}، F_{2}، (P_1)، (P_2) و (P_3) در واحدی (بازه 7600 تا 8700) ارگام و ارگام 5595 تا 7100 تهیه شدند. ارگام سرداری 78200 در هر دانه و هر دانه 500 دانه به‌کار گرفته شد. این تحقیق در مزرعه پژوهشی دانشکده کشاورزی دانشگاه تهران واقع در کرج انجام گرفت. زئینتیک P_1 و نسلهای هشته شده مربوط به هر تکاء به طور جداگانه در یک طرح آزمایشی مورد ارائه تاریک
برآورد پارامترها با استفاده از حداقل مربعات آزمون کا و برآورد پارامترها با استفاده از حداقل مربعات وزنی به دست آمده‌اند. در این مطالعه هر شش نسل با مدل دو، سه، چهار، پنج و شش پارامتری آزمون شده‌اند تا مناسب‌ترین مدل همانند مدل کاملاً مناسب جایگاهی مشاهده شده را تشریح نماید. این مدل‌ها برای میانگین‌های مشاهده شده به وسیله آزمون کا دو (٩٧) و یک درجه آزادی برای نیکوتو برای روزوانی شدن که این روش به آزمون مقياس مشترک نام گرفته است.

نتایج و بحث
تعدادی میانگین نسل‌ها و برآورد پارامترها شرکانه سن‌تیزی که برای تماشای نسل‌ها (سدراری ٠/٧٠ و ٠/٧٠) در شرایط معامله‌ای و نش رطوبت برای صفت وزن بوبه در جدول ١ ارائه شده است. با توجه به عدم معنی‌دار شدن آزمون کا اسکور در هر ٣ تلاقی و در شرایط رطوبت برای مدل سن‌تیزی در آثار ایستگاهی جدول ١ عدم تطبیق مدل ساده افراشی - غالیبی برای صفت وزن بوبه دیده شد، و برای دیگر مدل ساده افراشی - غالیبی نتایج آزمون سن‌تیزی بین میانگین نسل‌ها را نشان داد. با این‌نیاز به طور کلی می‌توان نتیجه بروز که زن‌هایی که استرس این صفت در هر گروه تلاقی در دو شرایط محدوب به صورت دو گروه تلاقی (یک نسل‌تیزی) و مدل افراشی - غالیبی (یک نسل‌تیزی) و همگیه‌ای (یک نسل‌تیزی) و غالیبی (یک نسل‌تیزی) از نظر توانایی توانایی خودروهای اصلی افراشی و غالیبی در کنترل این صفت داشته‌اند ولذا بین اثرات افراشی و غالیبی وزنها و اثرات مقابل آنها اختلاف وجود داشته. نتایج به دست آمده برای صفت وزن بوبه نشان داده‌اند وجود این تلاقی زن‌ها و اثرات مقابل آنها اندکی جدید و وجود این تلاقی زن‌ها در کنترل این صفت بود به توانایی با تیجان بوده‌است. علی‌رغم تسهیلات و لی (٢٩) میله بر فناوری مدل افراشی - غالیبی در کنترل این صفت می‌باشد که این عدم تطبیق می‌تواند به دلیل نوع و ولایت استفاده شده در تلاقی‌ها باشد. مطالعات زوالوسکی و همکران (٠٢) اثرات ایستگاهی زن‌ها
جدول 1: برآورد پارامترها و اجزای واریانس زنیکی پرای صفت وزن بوته در سه تلاش در دو محيط معمولی (N) و دارای رطوبت (S) بر اساس تجزیه منگین نسل‌ها

<table>
<thead>
<tr>
<th>محيط تلاش</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>√H/D</th>
<th>F√H²/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(38h) N</td>
<td>30/4</td>
<td>13/9</td>
<td>72/7</td>
<td>21/5</td>
<td>3/5</td>
<td>2/5</td>
<td>4/5</td>
<td>22/5</td>
<td>18/9</td>
<td>12/1</td>
<td>1/16</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>(38h) S</td>
<td>30/4</td>
<td>13/9</td>
<td>72/7</td>
<td>21/5</td>
<td>3/5</td>
<td>2/5</td>
<td>4/5</td>
<td>22/5</td>
<td>18/9</td>
<td>12/1</td>
<td>1/16</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>(38h) N</td>
<td>30/4</td>
<td>13/9</td>
<td>72/7</td>
<td>21/5</td>
<td>3/5</td>
<td>2/5</td>
<td>4/5</td>
<td>22/5</td>
<td>18/9</td>
<td>12/1</td>
<td>1/16</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>(38h) S</td>
<td>30/4</td>
<td>13/9</td>
<td>72/7</td>
<td>21/5</td>
<td>3/5</td>
<td>2/5</td>
<td>4/5</td>
<td>22/5</td>
<td>18/9</td>
<td>12/1</td>
<td>1/16</td>
<td>1/16</td>
<td></td>
</tr>
</tbody>
</table>

* به ترتیب غیر معنی‌دار، معنی‌دار در سطح احتمال 5 و یک درصد.

(5) (155937/2) (5) (1) (55937/2) (5) (1) (5) (1)
پیش‌تره‌ی صورت بی‌گیرد(۱۸)، منفی بودن در اثر افزایش (d) در
سه گروه بالاتر ۴ و ۶ (هر سه گروه بالاتر در شرایط تنش
رطوبتی) نشان دهنده غلیبی آن‌های کاهش دهنده وزن بوده.

می‌باشد.

در مورد صفت تعداد نبه (جدول ۲) غیر معنی‌دار بودن
کاک اسکور برا ی مدل دارای اثرهای ایستایی در هر ۶ گروه
نشان دهنده عدم کارایی مدل افزایشی- غلیبی در تعیین نحوه
کنترل این صفت بوده. چنانچه کنترل این صفت مستقل
عمل تکه‌روی، اثرهای مقابل ایستایی زنی نقص مهمی را در
کنترل یک این صفت نشان داده است. این یک مدل غلیبی به این صفت
در بخش موارد منفی پرآورده شد (یعنی اعداد منفی برای
ویژگی‌ها در جدول آورده نمی‌شود) که این می‌توانند تاثیز
از خاطر ایستایی دائمی (۱۸) با توجه به ضریب، F ملاحظه
می‌شود که در ترکیه (۳۷) سرداری در شرایط معمول
رطوبتی ضریب F منفی بود و بانگر غلیب بدول آلیه والد
با میانگین برگر (سرداری) نسبت به آلیه والد با میانگین
کوچک‌تر (۷۷) است. ولی در حالی‌های دیگر علامت
گاهی سال (با توجه از میان شماره ۳) و نکته (۶) تنها
مشابه با این آزمایش گزارش کرده‌اند.

در جدول ۶ ملاحظه می‌شود که مدل افزایشی- غلیبی
برای توجه به بستگی صفت تعداد نبه در سبک اصلی کفاپیت
نرکه و اثرهای مقابل ایستایی زنی در کنترل آن سهم
بوده‌اند. به طوری که ایستایی های نوع ۱ و ۲ اثرهای
متناسب در کنترل این صفت می‌باشند. تابعی
از آزمایش‌های جدیدترین (۱۸) نرخ‌‌های (5)، به‌هنا و لانا
نقش از (فرشادفر)، (۱۶) لونک (۱۴)، کامیل و ساحل (نقش از
فرشادفر)، (۳) چاده‌زار و همکاران (۹) و نکته (۶) برای
صفت تعداد نبه سبب در شرایط تنش و عدم تنش رطوبتی
در تقاضا کامل با تولید حاشیه ای آزمایش‌های می‌باشند. با
توجه به به نر نشان داده جدول ۷ ملاحظه می‌شود که
اگر اثرهای ایستایی زنی در کنترل صفت عملکرد‌های حاصل
همیشه بوده و با توجه به بزرگی ضریب h نسبت به d
به ۱۵ تکه‌روی اثرهای ایستایی را در کنترل این
صفت نشان داده است. خاصیت اثرهای ایستایی زنی در هر ۶
گروه نشان دهنده عدم کارایی مدل افزایشی- غلیبی در تعیین نحوه
کنترل این صفت بوده. چنانچه کنترل این صفت مستقل
عمل تکه‌روی، اثرهای مقابل ایستایی زنی نقص مهمی را در
کنترل یک این صفت نشان داده است. این یک مدل غلیبی به این صفت
در بخش موارد منفی پرآورده شد (یعنی اعداد منفی برای
ویژگی‌ها در جدول آورده نمی‌شود) که این می‌توانند تاثیز
از خاطر ایستایی دائمی (۱۸) با توجه به ضریب، F ملاحظه
می‌شود که در ترکیه (۳۷) سرداری در شرایط معمول
رطوبتی ضریب F منفی بود و بانگر غلیب بدول آلیه والد
با میانگین برگر (سرداری) نسبت به آلیه والد با میانگین
کوچک‌تر (۷۷) است. ولی در حالی‌های دیگر علامت
گاهی سال (با توجه از میان شماره ۳) و نکته (۶) تنها
مشابه با این آزمایش گزارش کرده‌اند.

در جدول ۶ ملاحظه می‌شود که مدل افزایشی- غلیبی
برای توجه به بستگی صفت تعداد نبه در سبک اصلی کفاپیت
نرکه و اثرهای مقابل ایستایی زنی در کنترل آن سهم
بوده‌اند. به طوری که ایستایی های نوع ۱ و ۲ اثرهای
متناسب در کنترل این صفت می‌باشند. تابعی
از آزمایش‌های جدیدترین (۱۸) نرخ‌‌های (5)، به‌هنا و لانا
نقش از (فرشادفر)، (۱۶) لونک (۱۴)، کامیل و ساحل (نقش از
فرشادفر)، (۳) چاده‌زار و همکاران (۹) و نکته (۶) برای
صفت تعداد نبه سبب در شرایط تنش و عدم تنش رطوبتی
در تقاضا کامل با تولید حاشیه ای آزمایش‌های می‌باشند. با
توجه به به نر نشان داده جدول ۷ ملاحظه می‌شود که
اگر اثرهای ایستایی زنی در کنترل صفت عملکرد‌های حاصل
همیشه بوده و با توجه به بزرگی ضریب h نسبت به d
 به ۱۵ تکه‌روی اثرهای ایستایی را در کنترل این
صفت نشان داده است. خاصیت اثرهای ایستایی زنی در هر ۶
گروه نشان دهنده عدم کارایی مدل افزایشی- غلیبی در تعیین نحوه
کنترل این صفت بوده. چنانچه کنترل این صفت مستقل
عمل تکه‌روی، اثرهای مقابل ایستایی زنی نقص مهمی را در
کنترل یک این صفت نشان داده است. این یک مدل غلیبی به این صفت
در بخش موارد منفی پرآورده شد (یعنی اعداد منفی برای
ویژگی‌ها در جدول آورده نمی‌شود) که این می‌توانند تاثیز
از خاطر ایستایی دائمی (۱۸) با توجه به ضریب، F ملاحظه
می‌شود که در ترکیه (۳۷) سرداری در شرایط معمول
رطوبتی ضریب F منفی بود و بانگر غلیب بدول آلیه والد
با میانگین برگر (سرداری) نسبت به آلیه والد با میانگین
کوچک‌تر (۷۷) است. ولی در حالی‌های دیگر علامت
گاهی سال (با توجه از میان شماره ۳) و نکته (۶) تنها
مشابه با این آزمایش گزارش کرده‌اند.
جدول ۲. برآوردهای پارامترها و اجزای واریانس واریانس برای صفت تعداد پنجه در سه تلاقی در دو محيط معمولی (N) و دارای تنش رطوبی (S) بر اساس تجزیه میانگین نسل‌ها

<table>
<thead>
<tr>
<th>محیط</th>
<th>تلاقی</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>H</th>
<th>D</th>
<th>$F / \sqrt{H \times D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(203) N</td>
<td>3/4</td>
<td>1/4</td>
<td>1/5</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(203) S</td>
<td>1/4</td>
<td>1/4</td>
<td>1/5</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(204) N</td>
<td>2/3</td>
<td>1/3</td>
<td>1/4</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(204) S</td>
<td>1/3</td>
<td>1/3</td>
<td>1/4</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(205) N</td>
<td>1/2</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(205) S</td>
<td>1/2</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
</tbody>
</table>

* به ترتیب غیر معنی‌دار، معنی‌دار در سطوح احتمال ۰/۰۵ و ۰/۰۱

جدول ۳. برآوردهای پارامترها و اجزای واریانس واریانس برای صفت ارتفاع پنجه در سه تلاقی در دو محيط معمولی (N) و دارای تنش رطوبی (S) بر اساس تجزیه میانگین نسل‌ها

<table>
<thead>
<tr>
<th>محیط</th>
<th>تلاقی</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>H</th>
<th>D</th>
<th>$F / \sqrt{H \times D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(203) N</td>
<td>3/4</td>
<td>1/4</td>
<td>1/5</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(203) S</td>
<td>1/4</td>
<td>1/4</td>
<td>1/5</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(204) N</td>
<td>2/3</td>
<td>1/3</td>
<td>1/4</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(204) S</td>
<td>1/3</td>
<td>1/3</td>
<td>1/4</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(205) N</td>
<td>1/2</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>(205) S</td>
<td>1/2</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>3/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>2/3</td>
<td></td>
</tr>
</tbody>
</table>

* به ترتیب غیر معنی‌دار، معنی‌دار در سطوح احتمال ۰/۰۵ و ۰/۰۱
جدول 4. برآورد پارامترهای و اجزای واریانس زننیکی برای صفت طول ستیل در دو محیط معمولی (N) و دارای نش رطوبتی (S) بر اساس تجزیه مانگنیئر نسل‌ها

<table>
<thead>
<tr>
<th>محیط تولید</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>[H/V D]</th>
<th>F/V^HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>13/5/3 ± 3</td>
<td>1/4/3 ± 1/3</td>
<td>1/3/5 ± 1/3</td>
<td>1/2/3 ± 1/3</td>
<td>1/1/3 ± 1/3</td>
<td>1/0 ± 0</td>
<td>0/7 ± 0</td>
<td>1/8 ± 0</td>
<td>0/7 ± 0</td>
<td>2/1</td>
<td>1/2</td>
<td>1/0 ± 0</td>
<td>2/0</td>
</tr>
<tr>
<td>(N)</td>
<td>19/4/3 ± 1/3</td>
<td>1/4/3 ± 1/3</td>
<td>1/3/5 ± 1/3</td>
<td>1/2/3 ± 1/3</td>
<td>1/1/3 ± 1/3</td>
<td>1/0 ± 0</td>
<td>0/7 ± 0</td>
<td>1/8 ± 0</td>
<td>0/7 ± 0</td>
<td>2/1</td>
<td>1/2</td>
<td>1/0 ± 0</td>
<td>2/0</td>
</tr>
</tbody>
</table>

* و ** به ترتیب وجود معنی‌دار در سطوح احتمال 0.1 و 0.05 درصد

جدول 5. برآورد پارامترهای و اجزای واریانس زننیکی برای صفت وزن ستیل‌های هر بوته در دو محیط معمولی (N) و دارای نش رطوبتی (S) بر اساس تجزیه مانگنیئر نسل‌ها

<table>
<thead>
<tr>
<th>محیط تولید</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>[H/V D]</th>
<th>F/V^HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>13/5/3 ± 3</td>
<td>1/4/3 ± 1/3</td>
<td>1/3/5 ± 1/3</td>
<td>1/2/3 ± 1/3</td>
<td>1/1/3 ± 1/3</td>
<td>1/0 ± 0</td>
<td>0/7 ± 0</td>
<td>1/8 ± 0</td>
<td>0/7 ± 0</td>
<td>2/1</td>
<td>1/2</td>
<td>1/0 ± 0</td>
<td>2/0</td>
</tr>
<tr>
<td>(N)</td>
<td>19/4/3 ± 1/3</td>
<td>1/4/3 ± 1/3</td>
<td>1/3/5 ± 1/3</td>
<td>1/2/3 ± 1/3</td>
<td>1/1/3 ± 1/3</td>
<td>1/0 ± 0</td>
<td>0/7 ± 0</td>
<td>1/8 ± 0</td>
<td>0/7 ± 0</td>
<td>2/1</td>
<td>1/2</td>
<td>1/0 ± 0</td>
<td>2/0</td>
</tr>
</tbody>
</table>

* و ** به ترتیب وجود معنی‌دار در سطوح احتمال 0.1 و 0.05 درصد
جدول ۶ بر اساس پارامترها و اجزای واریانس زنتیکی برای صفت تعداد دانه در سنبله در سه تلاقی در دو محیط معمولی (N) و دارای نش رطوبتی (S) به اساس تجزیه میانگین نسل‌ها

<table>
<thead>
<tr>
<th>محیط</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>فورواردی</th>
</tr>
</thead>
</table>

*** به ترتیب غیر معنی‌دار، معنی‌دار در سطوح احتمال ۵ و ۱ درصد

جدول ۷ بر اساس پارامترها و اجزای واریانس زنتیکی برای صفت عملکرد دانه تک بوته در سه تلاقی در دو محیط معمولی (N) و دارای نش رطوبتی (S) به اساس تجزیه میانگین نسل‌ها

<table>
<thead>
<tr>
<th>محیط</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>J</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>فورواردی</th>
</tr>
</thead>
</table>

*** به ترتیب غیر معنی‌دار، معنی‌دار در سطوح احتمال ۵ و ۱ درصد

*ns
علوم فیزیک کشوری و منابع طبیعی/سال پایش در حیات انسان/شناسه اول(الف)/پایه 1386

هر شش حالت نقش بیشتر اثرهای غلیط نسبت به اثرهای
افزایشی در وراثت این صفت دیده می‌شود. بر اثرهای
درجه غلیطت در هر سه گروه تلاقی در دو شرایط رطوبتی,
اثر فوق غلیطت را در کنترل عاملکره دانه در هر دو شرایط
معلوم و نشان آبی نشان دادن. نتایج آزمایش‌های لیاقی و
والتر در سوئیچ دانه‌ای (۱۵) نورمحمدی در گندم (۵)،
و جداح در گندم تان (۷)، پانهاه و لپا در گندم (نقطه از
فرشادفر، ۳)، چاده‌هاری و همکاران در گندم تان (۹)،
زالوسکی و همکاران در گندم تان (۲۲)، لاریک و همکاران
در گندم (۱۶)، لینکه و همکاران در گندم (۱۶)، همکاران
در توانایی کالا نسبت انسان آزمایش، برای
صفر عملکرد دانه در میان‌های تان مانند و بست توانایی
بوداند. در حالی که مردمان (۱۷) در گندم دوره عملا
افزایشی یک را برای کنترل عملکرد دانه گزارش کردند.

در مورد صفت وزن دانه اهمیت اثر متقابل نوع
افزایشی غلیطت (۸) با توجه به معنی دار بودن در هر ۶
گروه مهمتر از دو متقابل دیگر می‌باشد (جدول ۸، و
نتایج گزارش‌ها پیاده و همکاران (۳۲)، چاده‌هاری
(۴)، چاده‌هاری و همکاران (۹)، لونک(۱۶)، زالوسکی و همکاران (۲۲)،)
نکه و همکاران (نقطه است از فرشادفر، ۳)، نتایج
ان از امرای براى صفت وزن دانه در شرایط مختلف را تایید
می‌کند.

معنی دار نشان اثر متقابل افزایشی غلیطت که در
بعضی تلاقی‌ها مشاهده می‌شود ممکن است به عمل
زنه آشنا است. استراژی انتخاب و روش اصلاحی مناسب را برای
یک صفت مشخص می‌کند. به طوری که در برآورد افزایشی
غلیطت که اثرهای غلیطت و اطمینان اهمیت بیشتری
نسبت به اثرهای افزایشی داشته باشد، روش‌های اصلاحی
نیاز به هدایت و در صورتی که اثرهای افزایشی اهمیت
بیشتری نسبت به اثرهای غلیطت و اطمینان داشته باشد،
روش‌های اصلاحی غلیطتی تغییر کنیشی توجه به عوامل
استراتژی‌ای اصلاحی صفت به کار برده
می‌شود (۱۸).

به طور کلی اطلاعاتی و دانشی در مورد نهایه عمل
زن‌ها استراتژی انتخاب و روش اصلاحی مناسب را برای
یک صفت مشخص می‌کند. به طوری که در برآورد افزایشی
غلیطت که اثرهای غلیطت و اطمینان اهمیت بیشتری
نسبت به اثرهای افزایشی داشته باشد، روش‌های اصلاحی
نیاز به هدایت و در صورتی که اثرهای افزایشی اهمیت
بیشتری نسبت به اثرهای غلیطت و اطمینان داشته باشد،
روش‌های اصلاحی غلیطتی تغییر کنیشی توجه به عوامل
استراتژی‌ای اصلاحی صفت به کار برده
می‌شود (۱۸)
جدول 8 برآوردها و اجزای واریانس ژنتیکی برای صفت وزن صد دانه در سه نیانی در دو محیط معمولی (N) و دارای تنش رطوبتی (S) بر اساس تجزیه میانگین نسل‌ها

<table>
<thead>
<tr>
<th>محیط</th>
<th>m</th>
<th>d</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>l</th>
<th>χ²</th>
<th>Ew</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>(\frac{V}{D})</th>
<th>(\frac{F}{\sqrt{V/D}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(س)</td>
<td>N</td>
<td>3/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(س)</td>
<td>S</td>
<td>3/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(س)</td>
<td>N</td>
<td>3/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(س)</td>
<td>S</td>
<td>3/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(س)</td>
<td>N</td>
<td>3/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(س)</td>
<td>S</td>
<td>3/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

* و ** به ترتیب غیر معنی‌دار، معنی‌دار در سطح احتمال 0.05 و 0.01 درصد
متایع مورد استفاده

1. صیبا، ج. 1379. وراثت واریانس های مقاومت به نش خشکی و صفات مرتبط با آن در گندم. پایان نامه دکتری اصلاح نباتات، دانشگاه ایران.
2. برویس، ام. 1375. بررسی میزان ترکیب ژنتیکی و هتروژزی در ارقام گندم نان به روش دورگ کری. مجله علم کشاورزی ایران.
3. فرشاور، ح. 1376. کارتون خنجک کمی در اصلاح نباتات. جلد اول. انتشارات طاق بستان، کرمانشاه.
4. قادریه، ح. 1378. عمل زن برای مقاومت در محله بلوغ نسبت به نگین زرد در گندم. مجله علم کشاورزی ایران.
5. نورمحمدی، س. 1371. محاسبه وراثت پذیری و نوع عمل زن برای صفات آکرونومیک گندم در سه تالقی. پایان نامه کارشناسی ارشد اصلاح نباتات، دانشگاه ایران.
6. تیکهو، ح. 1377. مطالعه نحوه تورتک عامل عاملک در اجزای آن در سه تالقی گندم نان تحت شرایط نان آبی. پایان نامه کارشناسی ارشد اصلاح نباتات، دانشگاه ایران.
7. وجدانی، پ. و. نعیمی، س. 1373. بررسی قدرت ترکیب پذیری عمومی و خصوصی ارقام گندم نان به روش دورگ کری.

length and spikelets per spike in a spring wheat cross. Indian J. Genet. & Plant Breed. 44: 522-524.