ثبت نتایج پتاسیم و ویژگی‌های بار الکتریکی رس خاک در شماری از خاک‌های منطقه مرکزی و شمال ایران

علیرضا حسین‌پور و محمدرضا کلیسا

چکیده
ثبت وزن و آزادسازی پتاسیم به وسیله کاتیون‌های رس فیلورسپاتیک بر پاسیم قابل جلب گیاه تأثیر زیادی دارد. این پژوهش با هدف تعیین ظرفیت کتیسیم و آزادسازی آن با ویژگی‌های بار الکتریکی رس خاک در 15 نمونه خاک سطحی (۱۰۰-۳۰۰ سانتی‌متر) از مناطق مرکزی و شمال ایران انجام شد. پس از تعیین اجزای ذرات خاک، کتیسیم نیلاد کاتیونی کل رس و لی‌گهار و چهار شیکه ساختاری در رس‌های تعمیم گردید. کتیسیم نیلاد کاتیونی ۲ لی‌گهار و چهار شیکه ساختاری در رس‌های تعمیم گردید. کتیسیم نیلاد کاتیونی ۲ لی‌گهار و چهار شیکه ساختاری در رس‌های تعمیم گردید. ۲۳ نمونه در محدوده ۱۰۰-۳۰۰ سانتی‌متر در دامنه ۴۰ درجه سانتی‌گراد با استفاده از سطح پتاسیم اضافه شده اندازه‌گیری و میانگین ثبت نتایج محاسبه گردید. نتایج نشان داد که در رس‌های تعمیم گردید، میانگین قرار دادن نتایج ثبت شده رس‌های خاک استان‌های بررسی شده به ترتیب زیر بود:

۱- استاندارد خاک‌شناسی
۲- استاندارد خاک‌شناسی

و از هدای کلیدی: ثبت نتایج، بررسی رس، صفحات رس
مقدمه
ثبتپتاسیم به وسیله کانی‌های رس در خاک، بر پتاسیم قابل استفاده تأثیر دارد. تأثیر نوع کانی‌های رس بر ثبت پتاسیم توسط دانشمندان خاک و کانی‌شناس مطالعه شده است (19 و 20). بررسی‌ها نشان می‌دهند که ثبت پتاسیم عبارت از قرارگیری پتاسیم فراهم‌آوران در اکثر کانی‌های سیلیکاتی می‌باشد. دو گروه از کانی‌های اسکلتی به ترتیب با یکسان با یک زمان یا به جهت بیشتر بود پتاسیم بیشتر ثبت‌گردد. در مورد ویژگی‌های پتاسیم کربنیک رس خاک‌ها به روش ثبت‌گردد. در این روش ویژگی‌های پتاسیم یا یک قواعدی به روش پتاسیم خاک در ایران تاکنون روزهایی انجام شده است.

1. ثبت‌گردد ویژگی‌های پتاسیم بار رس‌های خاک.
2. ثبت‌گردد ویژگی‌های پتاسیم رس‌های خاک در شرایط مختلف.
3. ثبت‌گردد ویژگی‌های پتاسیم این رس‌ها و همچنین پتاسیم در برخی از خاک‌های مناطق مزکری، در شمال ایران.

مواد و روش‌ها

پانزده نمونه خاک سطحی (50-30 سنیت متر از گروه‌های گرگ خاک (زه‌های آتی سول، زردی سول، بسته سول، آلیتی) و رس و وریت سول (منشی‌های صفر و 1 تا 6) و گیلند شماره‌های 11 تا 15) از خاک‌شناسی شده و انتخاب شده. نمونه‌های پس از خشک‌شدن در هوا و غیر از الک دیلی متری برای اندازه‌گیری آزمایشی آماده شد. ب‌هشیش در نمونه‌ها گل‌اشیب و قابلیت هدایت الکتریکی در صعوبات ال‌اشیب (18) بافت خاک با روش پتاسیم ثبت (19)، ماده آلی با روش اکسپرس تر (20) و نیچارش تبدیل کاتیونی خاک کل رس از نیچارش انجام می‌گردد. در اکثر استان‌های مالزیایی (21)، ثبت پتاسیم محلول صعوبات ال‌اشیب و پتاسیم ثابت با روش استاندارد آمونیوم یک مولار(15) و

1. Hydration energy
تنبیه پتاسیم و ویژگی‌های بار الکتریکی رس خاک در شماری از خاک‌های...
جدول 1. کاتیهای غالب بخش رس در خاک‌های بررسی شده

<table>
<thead>
<tr>
<th>کاتیه غالب</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, Ch, K, V, Q</td>
<td>1</td>
</tr>
<tr>
<td>Pa, M, Ch, Q</td>
<td>4</td>
</tr>
<tr>
<td>M, K, Ch, (Sm+V), Q</td>
<td>5</td>
</tr>
<tr>
<td>M, Ch, (Sm+V), Q, K</td>
<td>6</td>
</tr>
<tr>
<td>M, V=Ch, K, Sm, Q</td>
<td>8</td>
</tr>
<tr>
<td>M, Ch=V, Sm, K, Q</td>
<td>9</td>
</tr>
<tr>
<td>(Sm+V), M, Ch, Q</td>
<td>10</td>
</tr>
<tr>
<td>Sm, M, Mixed, Ch</td>
<td>12</td>
</tr>
<tr>
<td>M, Ch, K, Q</td>
<td>15</td>
</tr>
</tbody>
</table>

ویژگی‌های بار الکتریکی رس‌ها

(جدول 1. بین‌المللی گنجشی تبدیل کاتیونی کل رس و لاشه)

<table>
<thead>
<tr>
<th>کاتیون</th>
<th>وزن کل ریز (Mg)</th>
<th>کاتیون</th>
<th>وزن کل ریز (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاتیون</td>
<td>4.35</td>
<td>کاتیون</td>
<td>4.35</td>
</tr>
<tr>
<td>Sm</td>
<td>3.45</td>
<td>Sm</td>
<td>3.45</td>
</tr>
<tr>
<td>میکا</td>
<td>3.45</td>
<td>میکا</td>
<td>3.45</td>
</tr>
<tr>
<td>Mixed</td>
<td>3.45</td>
<td>Mixed</td>
<td>3.45</td>
</tr>
</tbody>
</table>

دانه تغییرات گنجشی تبدیل کاتیونی در رس‌های اصفهان 22/11/2019-2021 و گنجشی تبدیل کاتیونی لايه چهار و جویی بخش رس 17/17/2019-2021 مول در کیلوگرم می‌باشد (جدول 1. بین‌المللی گنجشی تبدیل کاتیونی کل رس و لاشه) و در رس 14 و 15 متری از رس 4 روج دارد (جدول 1. بین‌المللی گنجشی تبدیل کاتیونی لايه چهار و جویی در خاک‌های اصفهان زاید 11/2019) و در رس‌های زیادی از پایدار رس از رجگ چهار و جویی مشابه می‌گردد و به طوری که بیشترین دمای گنجشی تبدیل کاتیونی لايه چهار و جویی در رس 14 و 15 متری از رس 4 می‌باشد. این نتایج با نتایج تعیین‌های کامی‌انالیز هم‌خوانی دارد (جدول 2). کاتیون غالب در این رس‌ها (بیشین رس 4 میکا کاتیون غالب آن؛ الکتروریکی است) کاتیون میکا است. در کاتیون میکا بیشینی هم‌شکل می‌باشد مربوط به لايه چهار و جویی است و مقدار جانشینی هم‌شکل در لايه چهار و جویی ناشی است (9).
باشند. این تأثیر با تناقض تجزیه‌های کانونی شناسایی (جدول ۲) هم‌خوانی دارد.

گنجایش‌های بیولوگیکال در بازه‌های صحرایی و ترکیب‌های قرار گرفته‌ای است که برای تبدیل در دسترس می‌باشد. این بار شرایط بین پایدار ۱، بار لیاقی ۳ و بار سطح هوا یا هوا است. برای رس‌های نظیر اسمکتیو و کولرت که فضاهای نیروی در دسترس است، گنجایش‌های بیولوگیکال ممکن بارهای نیاز به علاوه بار لیاقی است. برای این رس‌ها بارهای نیاز به از ۹۰ درصد کل بار می‌باشند (۱۷ و ۲۵). برای رس‌های با فضاهای بین لایه‌ای مسند شده، منظور ایستادگی، که می‌تواند بدلیل اینکه بیشتر فضاهای بین لایه‌ای در محیط تبدیل به میزان قرار نگیرند، گنجایش‌های بیولوگیکال همیشه از بین لایه‌ای کمتر است.

تئوری تفکیک

تئوری تفکیک به اثربخشی رس‌های خاک در حالت تر و خشک در سه مقدار تا نسبت به کارهای در شکل‌های ۱ تا ۳ و میانگین تئوری تفکیک در جدول ۳ ارائه شده است. در رس های اصلی تئوری تفکیک در حالت تر و خشک با افزایش خشکی، تئوری تفکیک در حالت دمای کمتر و سطح بارهای نیاز به علاوه بار لیاقی است. این بار شرایط بین پایدار ۱، بار لیاقی ۳ و بار سطح هوا یا هوا است. برای رس‌های نظیر اسمکتیو و کولرت که فضاهای نیروی در دسترس است، گنجایش‌های بیولوگیکال ممکن بارهای نیاز به علاوه بار لیاقی است. برای این رس‌ها بارهای نیاز به از ۹۰ درصد کل بار می‌باشند (۱۷ و ۲۵). برای رس‌های با فضاهای بین لایه‌ای مسند شده، منظور ایستادگی، که می‌تواند بدلیل اینکه بیشتر فضاهای بین لایه‌ای در محیط تبدیل به میزان قرار نگیرند، گنجایش‌های بیولوگیکال همیشه از بین لایه‌ای کمتر است.

1. Interlayer charges 2. Edge charges 3. Planar surface charges
شکل 1. مقدار تکثیف پتاسیم در شرایط تر (A) و خشک (B) برای سه غلظت پتاسیم در رس های اصفهان
شکل ۲. مقدار تهیه پتاسیم در شرایط تر (A) و خشک (B) برای سه فازت پتاسیم در رسه‌های چهارمحال و بختیاری
شکل ۳. مقدار تپاسیم در شرایط تر (A) و خشک (B) برای سه غلظت تپاسیم در رس مای گیلان...
جدول 3: میزان‌گین مقدار پتاسیم تثبیت شده در رس‌های بررسی شده

<table>
<thead>
<tr>
<th>شماره حالت</th>
<th>میزان‌گین تثبیت پتاسیم</th>
<th>میزان‌گین تثبیت پتاسیم در حالت خشک</th>
<th>cmol kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12/73</td>
<td>5/35</td>
<td>9/12</td>
</tr>
<tr>
<td>2</td>
<td>8/66</td>
<td>4/35</td>
<td>6/50</td>
</tr>
<tr>
<td>3</td>
<td>9/93</td>
<td>5/25</td>
<td>7/69</td>
</tr>
<tr>
<td>4</td>
<td>7/94</td>
<td>3/25</td>
<td>5/44</td>
</tr>
<tr>
<td>5</td>
<td>6/99</td>
<td>1/25</td>
<td>5/89</td>
</tr>
<tr>
<td>6</td>
<td>9/99</td>
<td>9/25</td>
<td>6/92</td>
</tr>
</tbody>
</table>

چهارمحال و بختیاری

<table>
<thead>
<tr>
<th>میزان‌گین</th>
<th>چهارمایه</th>
<th>گیلان</th>
<th>یزد</th>
<th>فارس</th>
<th>لرستان</th>
<th>آذربایجان شرقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/66</td>
<td>7/15</td>
<td>8/62</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>7/24</td>
<td>12/25</td>
<td>8/82</td>
<td>7</td>
<td>10/1</td>
<td>10/1</td>
<td>12/25</td>
</tr>
<tr>
<td>12/37</td>
<td>12/97</td>
<td>5/20</td>
<td>11</td>
<td>12/85</td>
<td>12/85</td>
<td>12/37</td>
</tr>
<tr>
<td>13/41</td>
<td>6/73</td>
<td>10/1</td>
<td>13</td>
<td>13/41</td>
<td>13/41</td>
<td>13/41</td>
</tr>
<tr>
<td>12/95</td>
<td>9/81</td>
<td>9/81</td>
<td>15</td>
<td>12/95</td>
<td>12/95</td>
<td>12/95</td>
</tr>
</tbody>
</table>

میکان است مقداری کاتیونهای انتی‌سیس پذیری نیز داشته باشد. در رس‌های چهارمحال و بختیاری، پتاسیم تثبیت شده در حالت تر و خشک با انزایش مقدار پتاسیم به کار و برای افزایش یافته است (شکل 3). میزان‌گین‌های تبادل کاتیونی بیشترین مقدار بوده و این در حالت است که گنجایش تبادل کاتیونی لایه
تئیین پتاسیم و ریزوگه های بار الکتریکی رُس خاک در شماری از خَاکهای اسماکبیت و ورمی کولوئیت، و کانی های غالب در رس 6 میکا، ورمی کولوئیت و کلریت می باشند. به دلیل همین تنش در کانی های رس، میانگین های تئیین پتاسیم رسها متفاوتند.

در رُس های گیلان نیز همانند دو استان دیگر، پتاسیم تئیین شده در حالی است که افزایش پتاسیم به کار رفته افزایش یافته است (شکل). در رس 11 به رغم این که گنجایش نیابت کاتیونی کل رس و لایه چهار و پنج کلریت مقدار نیست، میانگین تئیین پتاسیم و میانگین حالت نر پیشین مقدار می باشد، ولی پیشین میانگین حالت عرض در رس 15 و 20 دارد. در این استان کمترین میانگین تئیین پتاسیم در رس شماره 12 که گنجایش گیلان بیانیج کل رس و لایه چهار و پنج کلریت مقدار نیابت را دارد. در رس رُس گیلان کانی رسی از تونو پیشتری برخوردی در طوری که روند ناگهانی که پتاسیم (جدول) نشان می دهد کانی های رسی در رس 13 اسماکبیت و میکا و در رس 15 میکا و کلریت می باشد. و در رس نسبت به رسی مقایسه مقدار پتاسیم غیر تبدیل رسها (جدول) نشان می دهد که دامنه تغییرات آن زیاد است، که این توجه نز تأییدی بر نوع کانی های رسی می باشد.

دانلای که یکی از این است که در این رس ها گ‌چ با افزایش مقدار پتاسیم به کار رفته تئیین پتاسیم در دو حالت تو خشک افزایش یافته، ولی مقدار این افزایش در تمام رسها یکسان نیست. این امر نشان دهنده اثر متقابل پتاسیم به کار رفته و نوع رس بر تئیین پتاسیم می باشد. همچنین اگر چه خشک کردن سبب افزایش تئیین پتاسیم شده ولی مقدار این افزایش در تمام رسها یکسان نیست، که این امر نشان دهنده اثر متقابل خشک کردن و نوع رس بر تئیین پتاسیم می باشد. به طوری که اگر رس شماره 2 از مطالعات رگرسیون حذف شود ضریب همیشه در به مقدار زیادی افزایش می یابد.

اگر چه گنجایش نسبی سایر کانیونی لاچ حس و جهی به نهایی با تئیین پتاسیم ارتقاء ندارد (0.05، P<.05)، ولی از طریق اثر فر تراکم بار، و تفاوت بار به طور غیر مستقیم اثر

1. Mixed mineralogy
مقاله: دینامیک شیب گراند، یک نظرسنجی

پیشینه

در تحقیقات مختلفی در زمینه شیب‌های گراند، اهمیت بالایی برای شیب‌های قابل شناسایی و شیب‌های مستقیم دارد. این تحقیقات به این ترتیب، تأکید کرده‌اند که شیب‌های قابل شناسایی در شیب‌های مستقیم دارای اهمیت بالایی باشند. این تحقیقات نشان داده‌اند که در شیب‌های مستقیم، شیب‌های قابل شناسایی در شیب‌های مستقیم دارای اهمیت بالایی باشند.

بحث

در این بخش، تلاش می‌شود تا تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم داشته باشیم. این تکرار تأکید شده‌است که شیب‌های قابل شناسایی در شیب‌های مستقیم دارای اهمیت بالایی باشند.

مراحل تحقیق

1- شیب‌های قابل شناسایی و شیب‌های مستقیم در یک نمونه‌گیری شده بررسی و شناسایی می‌شوند.

2- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

3- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

4- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

5- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

6- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

7- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

8- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

9- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

10- تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌شود.

نتایج

نتایج نشان می‌دهد که در شیب‌های مستقیم، شیب‌های قابل شناسایی در شیب‌های مستقیم دارای اهمیت بالایی باشند. این نتایج نشان می‌دهد که تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌باشد.

کلیه شیب‌های قابل شناسایی در شیب‌های مستقیم دارای اهمیت بالایی می‌باشند. این نتایج نشان می‌دهد که تأکید بر اهمیت بالایی شیب‌های قابل شناسایی در شیب‌های مستقیم می‌باشد.
تثبت پتاسیم و ویژگی‌های بار الکتریکی رس خاک در شماری از خاک‌های...


