بررسی روابط بین صفات در ارقام زراعی یولاف در شرایط تنش و بدون تنش رطوبتی

محمدرضا جهانی نوش آبادی و عبدالمجید رضایی

چکیده
این مطالعه با هدف بررسی روابط بین صفات فنولئزیک، مرتفولئزیک و فیزیولئزیک و تأثیر آنها بر عملکرد دانه ۲۰ ژنتیپ یولاف، تحت تأثیر آبیاری بر منیترات۵۰ و۳۰۰ میلی‌متر بی‌تی‌آ در تخت به‌کارگیری کلاس A در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان در سال زراعی ۱۳۸۷-۲۰ با انجام آزمایش و میزان آب نسبی برگ (RWC) ثابت شد. در هر دو رژیم رطوبتی عملکرد دانه با شاخص برداشت و میزان آب نسبی برگ (RWC) مثبت و معنی‌دار با تعداد روز خوش‌دهنی همبستگی منفی و معنی‌دار داشت. ضمن اینکه همبستگی آن با ارتفاع پونه در مرحله رسیدگی در شرایط بدون تنش رطوبتی مثبت و معنی‌دار بود. تجزیه به عامل‌ها در هر دو رژیم حیطه سطحی شامل عامل‌های عملکرد، فنولئزیک و نمک‌های ناگذاری شده‌اند. تجزیه و تحلیل مدل‌های برای عملکرد دانه در هر دو شرایط رطوبتی شاخص برداشت را به عنوان اولین متغیر شناسایی کرد. در مدل‌های دوم در حیطه سطحی تنش ارتفاع پونه و در شرایط تنش میزان آب نسبی برگ وارد مدل شدند و به همراه شاخص برداشت جمعاً ۶۳ و ۶۵٪ از تغییرات عملکرد دانه را توجیه نمودند. نتایج حاصل از تجزیه ضرایب مسیر برابر اساس ضرایب همبستگی زیتیکی بین عملکرد دانه با شاخص برداشت و اجزای عملکرد (تعداد خوش‌دهنی در تاریخ تعداد دانه خروش و وزن دانه) نشان داد که در هر دو رژیم رطوبتی شاخص برداشت بیشترین اثر مستحکم مثبت را بر عملکرد دانه داشته. بالاترین اثر حیطه سطحی مثبت به تنش رطوبتی علیه شاخص برداشت از طریق تعداد دانه در خروش پونه.

واژه‌های کلیدی: اجزای عملکرد، تجزیه به عامل‌ها، تجزیه ضرایب مسیر، تنش رطوبتی، همبستگی های فنولئی، زئتیکی، یولاف

مقدمه
یولاف (Avena sativa L.) به خاطر درصد بالای پروتئین دانه و کاه و نیز کیفیت مطلوب پروتئین از جمله غلات مهم در مناطق معدود به شمار می‌آید و براساس نتایج تحقیقات انجام شده در اصفهان (۱۰، ۱۱) نیز ظرفیت تولید مناسبی دارد. ایران به دلیل

۲۶۵
به عمل ایجاد نوسان عملکرد در سال‌های مختلف، افزایش آن از طریق برنامه‌های بهبودیابی و تولید اقدام‌های جدیدملو و متحمل به خشکسالی بحران‌های فیزیولوژیکی، شرایط محیطی، ساختمان‌های زندگی و محتوای است. به اعتقاد محققین بهبودیابی و فیزیولوژیک گفته از صفات مروفیلیک و فیزیولوژیک مناسب و اجزای عملکرد به عنوان معاوضه‌ای غیر مستقیم انتخاب برای عملکرد دانه می‌توان سرعت پیش‌روی بهبودیابی‌های اصلاحی را خصوصاً در اصلاح بی‌را موقت با تأثیر منفی بهبودیابی و در وقت و زمان، ضریب بهبودیابی 14، 16 و 17.

تجزیه و تحلیل ضرایب بهبودیابی بین صفات فیزیولوژیک، مروفیلیک و فیزیولوژیک با عملکرد دانه و تخیلی ضرایب مبتنی از روش‌های مهم شناسایی صفات مناسب با عملکرد دانه است. عملکرد دانه متأثر از اجزای عملکرد مشارکت‌های خود خوشه را در واحد سطح، تعداد دانه در خوشه و وزن هزار دانه می‌باشد. این اجزاء تحت تأثیر زندگی و محیط شکست پیوسته و گاز خوردن با عنوان توجیهی برای افزایش یا کاهش عملکرد به کار می‌رود. آنچه عملکرد از یکدیگر مستقل تفسیر نمی‌شود و برای رسیدن به عملکرد بهینه، نسبت بین آنها مهم است. نشان‌های رطوبتی به عنوان یک عامل محیطی در مراتع اولیه رشد باعث کاهش تمامی عناصر که در ترتیب کاهش تعداد خوشه‌ها بارور گردیده. همچنین کمبود آب در زمان گردش فضای زیسته باعث شده‌است. غیر ضریب بهبودیابی چنین و عقیده می‌گردد. در چنین شرایطی نسبتاً روابطی‌های بین این اجزاء و عملکرد بهبودیابی‌های ایرادلی اجزاء اجزاء با عملکرد دانه می‌باشد

عملکرد ماسب دانه

انگجی (16) نواحی مطالعه نوع زینتیکی در 81 رقم زراعی بولاف هیستینی عملکرد دانه با طول خوشه، تعداد بنچه بارور، تعداد ساعت جهت خشکسالی فیزیولوژیک را به ترتیب ۴۲/۲۴، ۷۶/۵۴ و ۳۲/۲۴ جاری. تجزیه ضرایب هیستینی بر اساس اجزاء عملکرد نشان داد که وزن هزار دانه و تعداد گلچه‌های زایم
جدول 1. زونتیپ‌های پولوان مورد ارزیابی

<table>
<thead>
<tr>
<th>منشا</th>
<th>نام</th>
<th>رنگ</th>
<th>تام</th>
<th>منشا</th>
<th>نام</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانادا</td>
<td>Derby</td>
<td>سیمکو</td>
<td>1</td>
<td>کانادا</td>
<td>Simcoe</td>
<td>10</td>
</tr>
<tr>
<td>کانادا</td>
<td>Donald</td>
<td>آراکس</td>
<td>2</td>
<td>کانادا</td>
<td>Ajax</td>
<td>3</td>
</tr>
<tr>
<td>کانادا</td>
<td>Rigodon</td>
<td>آلاسکا</td>
<td>3</td>
<td>کانادا</td>
<td>Alaska</td>
<td>4</td>
</tr>
<tr>
<td>کانادا</td>
<td>Paisley</td>
<td>بیئن</td>
<td>4</td>
<td>کانادا</td>
<td>Beacon</td>
<td>5</td>
</tr>
<tr>
<td>کانادا</td>
<td>Pacer</td>
<td>ایکل</td>
<td>5</td>
<td>کانادا</td>
<td>Eagle</td>
<td>6</td>
</tr>
<tr>
<td>چین</td>
<td>Boyer</td>
<td>گلن</td>
<td>6</td>
<td>چین</td>
<td>Calibre</td>
<td>7</td>
</tr>
<tr>
<td>ترکیه</td>
<td>BL2</td>
<td>راندوم</td>
<td>7</td>
<td>ترکیه</td>
<td>Random</td>
<td>8</td>
</tr>
<tr>
<td>ترکیه</td>
<td>BL28</td>
<td>اکسفرد</td>
<td>8</td>
<td>ترکیه</td>
<td>Oxford</td>
<td>9</td>
</tr>
<tr>
<td>ترکیه</td>
<td>BL32</td>
<td>سایپوس</td>
<td>9</td>
<td>ترکیه</td>
<td>Sioux</td>
<td>10</td>
</tr>
<tr>
<td>ترکیه</td>
<td>BL36</td>
<td>کالیپر</td>
<td>10</td>
<td>ترکیه</td>
<td>Calibre</td>
<td>11</td>
</tr>
</tbody>
</table>

پانوان و همکاران با مطالعه ۱۸ زونتیپ تیرینگ در شرایط خشکی در مرحله گلدهی و پر سبز دانه، همبستگی بین درصد خودش با روز و عملکرد دانه‌ای با شاخص برداشت را منبت و تبدیل معنی دار و همبستگی بین روز نا گلدهی با عملکرد دانه و تعداد دانه‌های در خونش را منتب و بسیار معنی دار گزارش کرده‌اند (۲۵). در ارزیابی خصوصیات کمی و کیفی ارقام زراعی و بومی گندم نان نیز همبستگی منبت و معنی دار عملکرد دانه‌ای با شاخص برداشت گزارش شده است (۳۲). این مطالعه با مراکز رگرسیون مرحله‌ای صفات عملکرد پیلوزیک، شاخص برداشت، تعداد دانه در سبز و تعداد سبدیه در متر مربع بخش جمع‌آوری از تغییرات عملکرد را تیبین نمودند.

این مطالعه با هدف بررسی ارتباط بین صفات حاصل از مراکز طرح‌های صفات مؤثر بر عملکرد پولوان در شرایط تنش و بود تنش رژیم انجام شد.

مواد و روش‌ها
این آزمایش در سال زراعی ۸۲-۸۳ در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در لورک نجف‌آباد با عرض جغرافیایی ۳۲ درجه و ۳۲ دقیقه شمالی و...
کمک نرمافزار 2 انجام گردد. تجزیه به هم عامل‌ها برای متغیر Path دو میانگین (20 زننن و 10 صفت) در حفر دو محیط Proc Factor روان‌سنجی با استفاده از دستور SAS انجام شد و با پایل زننن‌ها بر اساس میانگین عامل‌ها اول و دوم در هر محیط به کمک نرمافزار رسم گردید.

نتایج و بحث
همیستگی بین صفات
همیستگی‌های فتوتیبی و زننن‌یکی بین صفات در شرایط بدن/on تن و تن نرمافزار و فرمول زیر به کمک همیستگی زننن‌یکی بین صفات محاسبه گردید:

\[R_{g} = \frac{\text{COV} (\text{GW}, \text{GN})}{\sigma_{\text{GW}} \cdot \sigma_{\text{GN}}} \]

از تجزیه و تحلیل مدل‌های با استفاده از نرمافزار SAS به منظور تعیین صفاتی که بیشترین نقش را در توجه رابطه عمیق‌تر دارند استفاده شد. سپس برای تعیین اثر مستقیم و غیر مستقیم صفات بر عملکرد دانش انجام داده شد. میزان آنکه با توجه به F و در تجربه خود در مدل‌های دیگر، تجربه ضرایب می‌رسد.
جدول ۲. ضرایب همبستگی فنوتیپی (زیر قطر) و زنیکی (بالای قطر) بین صفات مختلف در شرایط بدون نش رطوبتی

<table>
<thead>
<tr>
<th>صفت</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا خوشه دهی</td>
<td>0/14</td>
<td>0/14</td>
<td>0/17</td>
<td>0/21</td>
<td>0/22</td>
<td>0/28</td>
<td>0/29</td>
<td>0/22</td>
<td>0/22</td>
<td>0/25</td>
</tr>
<tr>
<td>روز تا رسیدگی</td>
<td>0/09</td>
<td>0/09</td>
<td>0/11</td>
<td>0/16</td>
<td>0/31</td>
<td>0/32</td>
<td>0/32</td>
<td>0/32</td>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>ارتفاع در مرحله رسیدگی</td>
<td>0/18</td>
</tr>
<tr>
<td>عملکرد دانه</td>
<td>0/05</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/03</td>
</tr>
<tr>
<td>تعداد خشخاش در متر مربع</td>
<td>0/12</td>
</tr>
<tr>
<td>تعداد سنبلچه در خشخاش</td>
<td>0/02</td>
</tr>
<tr>
<td>وزن هزاردانه</td>
<td>0/01</td>
</tr>
<tr>
<td>میزان آب نسبی برگ</td>
<td>0/09</td>
</tr>
</tbody>
</table>

ضرایب همبستگی فنوتیپی با قدر مطلق بیشتر از 0/24 در سطح احتمال 5/00 و بیشتر از 0/55 در سطح احتمال 1/00 معنی‌دار می‌باشد.

جدول ۳. ضرایب همبستگی فنوتیپی (زیر قطر) و زنیکی (بالای قطر) بین صفات مختلف در شرایط نش رطوبتی

<table>
<thead>
<tr>
<th>صفت</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا خوشه دهی</td>
<td>0/07</td>
</tr>
<tr>
<td>روز تا رسیدگی</td>
<td>0/09</td>
</tr>
<tr>
<td>ارتفاع در مرحله رسیدگی</td>
<td>0/18</td>
</tr>
<tr>
<td>عملکرد دانه</td>
<td>0/05</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/03</td>
</tr>
<tr>
<td>تعداد خشخاش در متر مربع</td>
<td>0/12</td>
</tr>
<tr>
<td>تعداد سنبلچه در خشخاش</td>
<td>0/02</td>
</tr>
<tr>
<td>وزن هزاردانه</td>
<td>0/01</td>
</tr>
<tr>
<td>میزان آب نسبی برگ</td>
<td>0/09</td>
</tr>
</tbody>
</table>

ضرایب همبستگی با قدر مطلق بیشتر از 0/24 در سطح احتمال 5/00 و بیشتر از 0/55 در سطح احتمال 1/00 معنی‌دار می‌باشد.

269
نتش و بدن نش نفیس و مبت مبت مبت مبت در و در شرایط رطوبی عادی مفی و لی کوچک و غیر مبت مبت مبت. همیستیک بین وزن هزار دانه و تعداد دانه در خوشه در شرایط رطوبی مفی و مبت در و در شرایط رطوبی عادی مفی و غیر مبت مبت. مدت (9) توزیع به این همیستیک مفی در یک سطح تراکم کاوش و مرصرف کود نیتروژن اشاره کرده است. در شرایط تنفس رطوبی همیستیک زننیک بین وزن هزار دانه عامل کردن در به توجه به این که وزن دانه خاصی از همیستیک است که شکل می‌گردد، این همیستیک مبت تنظیم می‌دهد که وزن دانه به عنوان عامل تعیین کننده تنظیم این که کاوش سایر اجرای به نویع همی‌ستیک فنوتیپی بین عامل کردن دانه در واحده سطح و میزان آب نسبی برگ در شرایط عمده تنفس رطوبی مدت و پسوار مبت مدت و در شرایط تنفس رطوبی مدت و مبت مدت و مبت در شرایط تنفس رطوبی مدت، اما غیر میزان آب نسبی برگ در شرایط تنفس رطوبی اشاره کرده‌اند. میانی و همیکاران (91) اختلاف معناداری را برای ارتباط گندم مورد مطالعه روی آراپیرون به همیستیک مدت و مبت مدت بین میزان آب نسبی برگ با علل افزایش عامل کردن. همیکاران (91) نیز توان قابل ملاحظه‌ای در میزان آب نسبی برگ در تلاش حاصل از تلاش گندم تراپولین‌دوز و دوز اگری شده‌است. نتایج آنها و درازه‌بندی بالایی (87/63) در برای این شفافیت داد. میزان آب نسبی برگ در دلیل ارتباط مستقیم با پتانسیل آب برگ، شاخص مقدار در ارزیابی و گریز غربی فنوتیپی برای تحلیل به خشکیکی می‌باشد (31) و (21) از آن در بعضی از برنامه‌های اصلاح جهت انتقالگیری تنظیم اسموزی استفاده

۲۷۰
جدول 2. نتایج تجزیه به عامل‌ها برای صفات مورد بررسی در شرایط بدن تنش رطوبی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون تنش</td>
<td>با تنش</td>
</tr>
<tr>
<td>بدن تنش</td>
<td>بدون تنش</td>
</tr>
<tr>
<td>عامل های دوران یافته</td>
<td>0/00</td>
</tr>
<tr>
<td>عامل دور</td>
<td>0/00</td>
</tr>
<tr>
<td>عامل اول</td>
<td>0/00</td>
</tr>
<tr>
<td>عامل دوم</td>
<td>0/00</td>
</tr>
<tr>
<td>عامل سوم</td>
<td>0/00</td>
</tr>
<tr>
<td>روز نا خوشه</td>
<td>دهی</td>
</tr>
<tr>
<td>روز تهدید</td>
<td>0/15</td>
</tr>
<tr>
<td>ارتعاب در مرحله رسیدگی (سانتیمتر)</td>
<td>0/127</td>
</tr>
<tr>
<td>علل مزایای دائی (کیلوگرم در هکتار)</td>
<td>0/729</td>
</tr>
<tr>
<td>شاخص بردیات</td>
<td>0/542</td>
</tr>
<tr>
<td>تعادل خونی در متر مربع</td>
<td>0/225</td>
</tr>
<tr>
<td>تعادل سیالی در خونش</td>
<td>0/25</td>
</tr>
<tr>
<td>تعادل دانه در خونش</td>
<td>0/129</td>
</tr>
<tr>
<td>وزن هزاردهان (گرم)</td>
<td>0/255</td>
</tr>
<tr>
<td>میزان آب نسبی بدن</td>
<td>0/354</td>
</tr>
<tr>
<td>واریانس نرخ دهده</td>
<td>0/365</td>
</tr>
<tr>
<td>واریانس توجه شده تجمعی</td>
<td>0/365</td>
</tr>
</tbody>
</table>

شده است (2). یکی از جنبه‌های مهم کاربردی میزان آب نسبی بدن، فراهم نمودن امکان کم‌سازی میزان تنش رطوبی است. از صفات مربوط به آب گیاه می‌توان در اصلاح برای مقاومت به حسکی استفاده کرد. زیرا میزان نگهداری آب و زنده ماندن گیاه را در شرایط تنش نشان می‌دهد (22).

ارقام مقام به خشکی در گذش دارای توانایی بیشتری از نظر حفظ تناسب آل گیاهی و حفظ از نظر تظیم اندازه نیاز طرفیت بیشتری دارد (4).

در این آزمایش رسم پروپر در هر میلی‌متر رطوبی دارای بیشترین میزان آب نسبی بدن و اندرک در دو دسته بود. و توجه به همبستگی بین میزان آب نسبی بدن و اندرک زننی‌ها در در دو دسته و میزان پدی‌نریزی بالای آن (0/89) در شرایط تنش و 0/6 در شرایط عادی رطوبی) می‌توان از این شاخص توپولوژیکی در انتخاب زننی‌ها متحمل سود جست. به طور کلی با توجه به همبستگی های محاسبه شده در این مطالعه به نظر می‌رسد برای دستیابی به رفعی با اندرک بالا و محصول به تنش می‌توان انتخاب را بر اساس شاخص برداشته، میزان آب نسبی بدن و وزن هزاره دانه بیشتر انجام داد.

در این حال با بستر است برای ارقام رژودس، دوره رشد

271
برداشت، وزن هزار دانه و میزان آب نسبی برگ دارای بیشترین بار امکان بودن (جدول ۶). در محیط دارای نش رطوبی عامل دوم دقتی تحت تأثیر همین صفات بود.

یافته‌های اشباع استفاده نمود (۱۱ و ۱۴). روش برداشت یکی از یوز/های مهم و مؤثر در عملکرد دانه غلات و از معیارهای گرندیزی مهم در تولید ارگام جديد غلات است.

همچنین وزن دانه با بیشترین نسبیتاً افزایش و عامل تعداد کندن عملکرد دانه است. طرفین هم‌سرایی بلای یوز آب نسبی برگ با عملکرد دانه عاطفه گردیده است تا این صفت به عنوان یک معیار انتخاب گرندیزی برای عملکرد دانه استفاده شود (۹۱ و ۲۲). بر این اساس این عامل را می‌توان عامل عملکرد نامید. افزایش این عامل باعث افزایش عملکرد و صفات ذکر شده می‌گردد. در عامل دوم در محیط بدنون تنش رطوبی، تعداد روز اتفاق داشته و رشدی‌گذاری بار دانه عامل بیشتر می‌بودند و بازاریابی عامل فناوریک نامیده شد. عامل فناوریک در محیط دارای تنش عامل بیشتر فنر سوم بود. افزایش این عامل باعث افزایش طولانی نش شدن دوره رشد رویکنه می‌گردد و با توجه به شرایط که عملکرد، افزایش آن و شاخص برداشت در این عامل دارند. افزایش آن باعث کاهش عملکرد می‌گردد. شاید اهمیت پیشروی این عامل در محیط بدنون تنش نسبی به شرایط دارای تنش این است که اگر دوره رشد رویکنه افزایش یابد، زنوبیه‌ها در شرایط مطلوب رطوبیت بیشتر از این سیب‌های می‌کند و شاخص برداشت آنها پیشروی کاهش می‌باید.

احتمال بیشتر بدنون عامل را طولانی‌تر دریایی و دوم و میزان آب نسبی برگ دارای عملکرد گردد. شاید اهمیت پیشروی این عامل در محیط بدنون تنش نسبی به شرایط دارای تنش این است که اگر دوره رشد رویکنه افزایش یابد، زنوبیه‌ها در شرایط مطلوب رطوبیت بیشتر از این سیب‌های می‌کند و شاخص برداشت آنها پیشروی کاهش می‌باید.

عمل سوم در شرایط بدنون عامل فناوریک بر تعداد سیب‌هایی و تعداد دانه در خونه تأکید داشت. این دو صفت، اجزای عملکرد دانه را تکثیر می‌کنند. نتایج این عمل سوم می‌تواند نمایند. این عمل سوم در شرایط بدنون عامل الول و بیشترین میزان در تیهو نتیجه داشته به دانه که تعداد دانه در خونه تحت شرایط
بررسی روابط بین صفات در ارقام زراعی یولاف در شرایط تنگ و...

شکل ۱. بازی پلات مقدار عامل اول در برای عامل دوم برای هر زنوتیپ در شرایط بدون تنگ رطوبتی

در شکل ۲ عامل خنک و عامل عملکرد در شرایط تنگ رطوبتی هستند و زنوتیپ‌های پیش‌سی سیزیر و بوری که در قسمت A نمودار قرار گرفته‌اند از نظر این عامل‌ها مطلوب تر می‌باشند. در نقطه مقابل (قسمت D) زنوتیپ‌های بیکن، این یک خنثی تأییدی برای تنجه‌گیری است. لیکن یک تاریک بخشی که در قسمت B شکل ۱ قرار گرفته است در شرایط بدون تنگ رطوبتی دارای کمترین عملکرد بود و در نهایت به عنوان زنوتیپ‌ها به خوشه رفت و به مرحله برداشت رسید. ماجرای مخصوصات

273
جدول ۵. تأثیر تجزیه رگرسیون مرحله‌ای برای عملکرد دانه در شرایط بدون تش تنش رطوبتی

<table>
<thead>
<tr>
<th>ضریب تبین تجمعی</th>
<th>ضریب رگرسیون</th>
<th>مرحله ورود</th>
<th>متغیر مستقل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b_1</td>
<td>b_2</td>
<td>b_3</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/553</td>
<td>1</td>
<td>25473/5</td>
<td>18458</td>
</tr>
<tr>
<td>0/439</td>
<td>2</td>
<td>25473/5</td>
<td>8314/9</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی‌دار در سطح احتمال ۰/۵ و ۱ درصد

جدول ۶. تأثیر تجزیه رگرسیون مرحله‌ای برای عملکرد دانه در شرایط تش تنش رطوبتی

<table>
<thead>
<tr>
<th>ضریب تبین تجمعی</th>
<th>ضریب رگرسیون</th>
<th>مرحله ورود</th>
<th>متغیر مستقل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b_1</td>
<td>b_2</td>
<td>b_3</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/567</td>
<td>1</td>
<td>10788/3</td>
<td>511/0</td>
</tr>
<tr>
<td>0/469</td>
<td>2</td>
<td>10788/3</td>
<td>45/1</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی‌دار در سطح احتمال ۰/۵ و ۱ درصد

سایوکس و لاین2 دارای مقدار پایینی از ۲ عامل هستند و ژنوتیپ‌های مطلوب در این شرایط به‌شمار نمی‌روند. در قسمت C شکل ژنوتیپ‌هایی قرار گرفتند که على رغم عامل مکان مطلوب عملکردی‌های پایین دانه که نشان دهنده توان فنوتیپی پایین آنها می‌باشد.

تجزیه علمی و بررسی ضرایب مسیر
در ابتدا با استفاده از روش رگرسیون مرحله‌ای سهم هر صفت در نوع موجود برای عملکرد دانه تعیین شد (جدول ۵ و ۶). صفات که سهم بیشتری در این تغییرات دارند می‌توانند در برنامه‌های اصلاحی برای بهبود عملکرد بیشتر مورد توجه قرار گیرند. در هر دو شرایط محیطی بدون تش نش و تش رطوبتی شاخص برداشت اولین متغیری بود که وارد مدل شد و به ترتیب ۳۵/۷ و ۲۴/۵ از تغییرات عملکرد دانه بین ژنوتیپ‌ها را توجیه نمود. در مرحله دوم در شرایط محیطی بدون تش ارتقاء پوشه و در شرایط تش رطوبتی میزان آب نسبی پرگ
جدول 7. تجزیه مسیر برآش همبستگی‌های زننیکی برای عملکرد دانش در واحد سطح در شرایط نش طویل (داخل برای) و بدون نش

<table>
<thead>
<tr>
<th>ضریب همبستگی</th>
<th>اثر مستقیم</th>
<th>اثر غیر مستقیم از طریق</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>+4</td>
<td>0/90</td>
<td>0/856</td>
<td>0/794</td>
</tr>
<tr>
<td>0/92</td>
<td>0/919</td>
<td>0/194</td>
<td>0/194</td>
</tr>
<tr>
<td>0/95</td>
<td>0/919</td>
<td>0/194</td>
<td>0/194</td>
</tr>
<tr>
<td>0/97</td>
<td>0/919</td>
<td>0/194</td>
<td>0/194</td>
</tr>
<tr>
<td>0/99</td>
<td>0/919</td>
<td>0/194</td>
<td>0/194</td>
</tr>
</tbody>
</table>

بهتر اگر آنها در انتخاب صفاتی که به پیش‌گیری عملکرد نقش دارند، اسکایل شده. نتایج حاصل از تجزیه مسیر برآش عملکرد دانه در واحد سطح در شرایط بدون نش (جدول 7) نشان داد که شاخص برداشت بیشترین اثر مستقیم مثبت (0/75) را بر عملکرد در واحد سطح دارد و از طریق تعادل دانه در خونه و وزن هزار دانه اثر غیر مستقیم مثبت و کمی برای آن اعمال می‌کند. شاخص برداشت از طریق تعداد خونه پارک در مریع اثر غیر مستقیم و مثبت و کمی را بر عملکرد دانش دارد. شاخص برداشت بالاترین همبستگی زننیکی (0/95) را بر عملکرد دانه در واحد سطح دارد و بالاترین این همبستگی بین نشانی از اثر مستقیم و مثبت این صفت بر عملکرد دانه در واحد سطح است. بعد از شاخص برداشت، تعادل دانه در واحد سطح دانش این صفت از طریق شاخص برداشت اثر غیر مستقیم و مثبت (0/87) و از طریق تعادل خونه در مریع وزن هزار دانه اثر غیر مستقیم و مثبت را بر عملکرد در واحد سطح دانته در مجموع همبستگی زننیکی آن با عملکرد دانه در واحد سطح گردید. تعادل خونه پارک در مریع نیز در اثر مستقیم بالایی بر عملکرد بیشتر بود.
از لحیدتیها تشخیص داده شدند. می‌توان برای هر محيط یک مدل خاص (پیچ ایجاد) تعریف نمود و سپس اصلاح برای ایجاد چنین مدلی را از آغاز کرده (42). نتایج مطالعه جبهای و همکاران جای داده از آن است که در کنگره دوروم و هزار دانه و تعداد خوشه در واحدهای مختلف انجام اثر مؤثر بر عملکرد یادگیری (18). در این مطالعه تعداد دانه در خوشه با اثر مستقیم و منفی (219) و اثر غیر مستقیم و منفی از طریق تعداد خوشه باور و آرای شاخص غیر مستقیم و منفی از طریق شاخص برداشت (238) و وزن دانه (237، 236) گمتنی‌های‌کم‌ساخته‌ی زین‌تکی (37/4) را با عملکرد دانه داشت.

1- انجایی که همیشه آنها با عملکرد مشابه و اثر مستقیم و منفی بر عملکرد دانه داشته باشند.
2- انجایی از عملکرد که علمی‌شده همیشه غیر منفی با عملکرد دانه و با تأثیر مستقیم بر وزن و بازده عملکرد دانه به‌اشتیه می‌باشد.
3- انجایی که مقدار اثر غیر مستقیم منفی را از طریق سایر صفات بر عملکرد دانه داشته باشد.
4- انجایی از عملکرد که بتان آنها را در کره‌های کوچک محسوب و تعیین نمود.

با توجه به معیارهای فوق و نتایج این بررسی می‌توان به شرایط تحت تأثیر قرار می‌گیرد. دانه دارده‌ی برایی در هر یک از محيط‌های موجود می‌تواند در هر میوه ژنتیکی‌های تحت تأثیر عوامل مختلف قرار داشته که فقط مخصوص همان محيط هستند (15).

سّبب‌های ارتباط بین صفات و روابطی که عملکرد در شرایط رطوبی تحت تأثیر قرار می‌گیرد به اصل‌الاصل انجاگر می‌گیرد که نتایجی که ژن‌هایی با عملکرد بیشتر را برای چنین شرایطی تولید نمایند، هنگامی که ارتباط‌های شناسایی و
منابع مورد استفاده

1. انجکی، س. ع. 1381. بررسی تونو زنینی ارقام زراعی پولاف (Avena sativa L.) پایان نامه کارشناسی ارشد اصلاح نباتات. دانشکده کشاورزی دانشگاه صنعتی اصفهان.

2. جزایری، م. ر. ع. 1385. ارزیابی تحمل به خشکی در ارقام پولاف در شرایط آب و هوایی اصفهان. علوم و فنون کشاورزی و منابع طبیعی 10(3): 293-305.

3. شاهین‌نیا، ف. 1379. ارزیابی خصوصیات کمی و کیفی گل‌برگی گل‌برگی با وزن مولکولی بالا در لاین‌های اصلاح. ارقام زراعی و بومی کنده نه به روش تجزیه و تحلیل‌های جنگ منعکس. پایان‌نامه کارشناسی ارشد اصلاح نباتات. دانشگاه کشاورزی دانشگاه صنعتی اصفهان.

4. فرشادفر، ف. ر. محمدی. 1382. ارزیابی شاخص‌های فیزیولوژیکی مقاومت به خشکی در آگروپرورون با استفاده از شاخص انتخاب چندگانه. علوم کشاورزی ایران 3(2): 113-124.

5. قاضی‌چی، خ. 1383. مقایسه رشد عملکرد و اجرای عملکرد ارقام کنده پاییزه در اصفهان. پایان نامه کارشناسی ارشد اصلاح نباتات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

6. کریمی، م. 1386. آب و هوای منطقه مرکزی ایران. انتشارات جهاد دانشگاهی دانشگاه اصفهان.

7. کوچکی، ع. 1383. زراعت در مناطق خشک و غلات، گیاهان صنعتی و گیاهان علمی. انتشارات جهاد دانشگاهی مشهد.

8. محمدی‌نژاد، ق. 1381. مقایسه پارامترهای مختلف پایداری در زنویپیهای پولاف. پایان‌نامه کارشناسی ارشد اصلاح نباتات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

9. ملادی، م. 1382. ارزیابی پتانسیل عملکرد ارقام قدمی و جدید پولاف و نقش برنامه‌های بهبودی در افزایش عملکرد. پایان‌نامه کارشناسی ارشد اصلاح نباتات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

