ارزیابی ویژگی‌های جوانه‌زنی زنتوپ‌های مختلف گندم در شرایط تنش اسمری و هم‌پستگی آنها با سرعت سیزشده و مقاومت به خشکی در شرایط مزره‌ای

محسن سعیدی، علی احمدی، کاظم پوستینی و محمد رضا جهاندوز

چکیده

روطیت خاک بکی از عوامل محدود کننده جوانه‌زنی، سیزشده و استقرار گیاهان رزاعی خصوصاً در شرایط دم و در نهایت شکل‌گیری علمکرد در مناطق خشک و در نهایت شکست (مانند ایران) است. در چنین مناطقی انتخاب ارقتایی ها علاوه بر مقاومت به خشکی در مرحله جوانه‌زنی و سیزشده، پتانسیل علمکرد بالایی نیز داشته باشند از این دست و جهت قرار دادن پس از خروج در مرحله سطح مزرعه‌ای امکانپذیر بوده، گلخانه‌ای و آزمایشگاهی و بر روی زنتوپ‌های مختلف گندم به‌عنوان فرآیند اصلاح شده بیشتری داشته باشند. این در اثر عمل انتخاب (امید، سرداری، روشان) ارقام اصلاح شده‌ای داشته باشد که در مراحل مختلف تولید جوانه‌زنی و سرعت خود را در شرایط مختلف شرایط خشک افزایش دهد.

واژه‌های کلیدی: گندم، علمکرد، جوانه‌زنی، سرعت جوانه‌زنی

صبرت خشک‌کاری است (خصوصاً در شرایط کشت دم)، از ویژگی‌های مناسب می‌باشد. لازم است این امر توان بالایی استقرار گیاهی است. مقاومت به حساسیت به تنش خشکی در این مقدمه

1. به ترتیب دانشجوی دوم دکتری، استادیار، دانشیار و استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران

281
1. مقاومت به خشکی در گونه‌های غیرزراعی به معنا بستگی به شرایط نسبی یافت و در شرایط نسبی تاریخی می‌تواند این مقاومت را در اندازه‌ای مختلف بی‌یاد گیرد.
2. نتایج این تحقیق نشان می‌دهد که استفاده از نوع خاصی از گیاه‌های اطراف خشکی به قطعه‌ای از اندازه‌های مختلف در شرایط مختلف و در اندازه‌ای مختلف از توده‌ی آب نسبی در سیستم زراعی باعث می‌شود که خشکی را بازسازی کند.

شاخص‌های مقاومت به خشکی:

- TI (Tolerance Index)
- MP (Potential Yield)
- MPp (Potential Yield per Unit)

شاخص‌های محیطی:

- STI (Stress Tolerance Index)
- SSI (Stress Susceptibility Index)

شاخص‌های عملکرد:

- Ys (Stress Yield)
- Ym (Mean Productivity)

شاخص‌های حساسیت به یک‌پات:

- GMP (Geometric Mean Productivity)

شاخص‌های سیستمی:

- STI (Stress Tolerance Index)
- SSI (Stress Susceptibility Index)

شاخص‌های نسبی:

- FSR (Fraction of Survival Rate)

شاخص‌های مشابه:

- FSR (Fraction of Survival Rate)

شاخص‌های نسبی:

- FSR (Fraction of Survival Rate)

شاخص‌های مشابه:

- FSR (Fraction of Survival Rate)

شاخص‌های نسبی:

- FSR (Fraction of Survival Rate)

شاخص‌های مشابه:

- FSR (Fraction of Survival Rate)

شاخص‌های نسبی:

- FSR (Fraction of Survival Rate)

شاخص‌های مشابه:

- FSR (Fraction of Survival Rate)
ارزیابی ویژگی‌های جوان‌زنی زنوت‌پی‌های مختلف گندم در شرایط نش امسوزی و...

خشکی زنوت‌پی‌های مختلف به صورت طرح کرت‌های خرد شده در قالب بلوک‌های کامل تصادفی و در چهار تکرار در مزرعه دانشگاه کشاورزی دانشگاه تهران طرح‌بری شد. بافت خاک محل جلو آزمایش. لوم، ریس بود و بر اساس نتیجه آزمایش انجام شد. روز خاک مقدار 150 کیلوگرم در هکتار کود نیتروژن در مخلوط دمای کالری، لیم و گل‌دهی به زمین داده شد و با توجه به بالای مقدار نسبت و پیامبری قابل جدید از دادن یا قرص به خاک جعیسی شد. مقدار بذر مصرفی نیز 120 کیلوگرم در هکتار و نتیجه اصلی به عنوان فاکتور

\[R = \frac{Y_S}{Y_p} \]

به عنوان فاکتور در نظر گرفته شدند. آماری ابزاری هیان‌های مهندسی و تیمار کنترل و نش در مرحله اولیه ساقه‌ریز

\[T = \frac{Y_S}{Y_p} \]

اجام شد. پس از آن ابزاری تیم‌گردی برای وضع خشکی کادمی در حالی که تیمار تنش براساس پتانسیل آبی خاک و به کمک منحنی رطوبتی خاک مزرعه آزمایشی ابزاری گردید.

\[MP = \frac{Y_S + Y_P}{Y_S - Y_P} \]

پتانسیل آبی خاک بالاصله قبل از ابزاری اول، دوم و سوم در تیمار تنش به ترتیب 0/0، 0/1 و 0/2/0/0، 0/1 و 0/2 میلی‌گرم با سه متراً تیماری عامل‌های مختلف در محیط صورت حال مشکل کم آبی زنوت‌پی‌های مختلف، هرچند بیشترین پایان آزمایش و پس از رسیدگی

\[SSI = \frac{Y_S}{Y_p} \]

از خطوط کاسته‌های مرتب دانه و عملکرد بولیوژیک، 1/5 متر از فیزیولوژیکی برداشت شد و با استفاده از عملکرد زنوت‌پی‌ها در شرایط کنترل و تنش رطوبتی شاخص‌های مقوایت به خشکی

\[STI = \frac{Y_S - Y_P}{Y_S + Y_P} \]

به شرح ذیل محاسبه می‌شود:

\[GMP = \sqrt{(Y_S - Y_P)} \]

که به ترتیب عملکرد و \(Y_p \) و \(Y_s \) میانگین عملکرد زنوت‌پی‌های مختلف تحت شرایط کنترل و تنش

\[TOL = \frac{Y_S - Y_P}{Y_p} \]

مواد و روش‌ها

این بررسی در سال 1380 و در قالب مجموعه‌ای از آزمایش‌های مرزه‌ای، گلخانه‌ای و آزمایشگاهی انجام شد. آزمایش‌های مرزه‌ای به مظهر بروز عملکرد و مقاومت‌های...
کلاکیول در اطراف بذرها می‌شود. در هر یک از بذرهای حذف 9 میلیتر از محلول‌های مورد نظر ریخته شد. چند تری بذرهای
در نظر گرفته شده و روزی در برابری شدند و کاهش وزن بذر
بر اثر تیره شدن وچرخه بذری و بدن و سیستم کمکی آب که از طریق تیشه‌ای ایجاد می‌شود جریان گردید
و سعی شد تا بذرهای آزمایش از تغییرات محاسبه در پتانسیل
آمپلیکیول شود. در مرحله بعد بذری‌ها درون آنکوئیت‌های مدل
لایه‌های پوشانه كرتون مدل
1. Kottermann-KG
دادره شده و صفات زیر در فاصله 10 م ساعت میانی اندامگیر
طراحی می‌باشد (Stress Index) SI.

در بررسی آزمایشگاهی برای دست‌بیابی بین پتانسیل‌های
استاندارد مختلف (صفر- سه‌میلی‌گرمی) (MPU)، حل کردن مقدار مختلف
بی‌شیوه کلاکیول 6600 (PEG) 6000 (نوسیب معادله بی‌شیوه
که همان (به صورت زیر انجام شد:)

\[
\text{SI} = \frac{\text{PEG} \times \text{MSH} \times 100}{\theta}
\]

در این فرمول 6000 پین 4 بدر بزرگ در PEG بر حسب گرم در
کیلوهور این و تا دما بر حسب درجه سانتی‌گراد است. بذرها
در پتاین آزمایش (13) روز 30 درجه سانتی‌گراد 40 درای با دمای 5 درجه سانتی‌گراد قرار
شده 30 درجه زیر صورت گرفته. بعد از ضعیف شدن ردی
در زیر شیوهCL 2 (ZAP) با 25% süreت گذشته، با در
درصد جوانه‌زنی درصد جوانه‌زنی برای نمایش‌های هر رقم با توجه
در روز 30 درجه آزمایش (13) روز 30 درجه سانتی‌گراد 40 درای با دمای 5 درجه سانتی‌گراد قرار
شده 30 درجه زیر صورت گرفته. بعد از ضعیف شدن ردی

سرعت جوانه‌زنی تعداد البته‌های جوانه‌زنی زده از هر زنوتیب بعد از کاشت‌های هر روز
یک بر شمارش شدند. آخرین شمارش زمانی بود که سه روز
پشت سرعت تغییری در جوانه‌زنی دیده نشد. در پتاین آزمایش
با استفاده از فرمول چپ و سمت (12) که به عنوان شاخصی از
جوانه‌زنی حداکثری از سرعت گذشته می‌شود سرعت جوانه‌زنی تخمین زده
شد.

\[
R_s = \frac{\sum S_i}{k \times D_i}
\]

سرعت جوانه‌زنی (تعداد بذری‌های جوانه‌زنی زده در روز) = Rs
تعداد بذری‌های جوانه‌زنی زده در هر شمارش = Si
تعداد روز شمارش = Di
ن ف دقایق شمارش می‌باشد.

بنیه جوانه‌زنی
با استفاده از فرمول عیدالیکی و آندرسین (8) بنیه بذری‌های
زنوتیب‌های مختلف نیز محاسبه شد:

\[
VI = \frac{\% \text{Gr} \times \text{MSH}}{100}
\]

در این فرمول 6000 پین 4 بدر بزرگ در PEG بر حسب گرم در
کیلوهور این و تا دما بر حسب درجه سانتی‌گراد است. بذرها
در پتاین آزمایش (13) روز 30 درجه سانتی‌گراد 40 درای با دمای 5 درجه سانتی‌گراد قرار
شده 30 درجه زیر صورت گرفته. بعد از ضعیف شدن ردی

سرعت جوانه‌زنی تعداد البته‌های جوانه‌زنی زده از هر زنوتیب بعد از کاشت‌های هر روز
یک بر شمارش شدند. آخرین شمارش زمانی بود که سه روز
پشت سرعت تغییری در جوانه‌زنی دیده نشد. در پتاین آزمایش
با استفاده از فرمول چپ و سمت (12) که به عنوان شاخصی از
جوانه‌زنی حداکثری از سرعت گذشته می‌شود سرعت جوانه‌زنی تخمین زده
شد.

\[
R_s = \frac{\sum S_i}{k \times D_i}
\]

سرعت جوانه‌زنی (تعداد بذری‌های جوانه‌زنی زده در روز) = Rs
تعداد بذری‌های جوانه‌زنی زده در هر شمارش = Si
تعداد روز شمارش = Di
ن ف دقایق شمارش می‌باشد.

بنیه جوانه‌زنی
با استفاده از فرمول عیدالیکی و آندرسین (8) بنیه بذری‌های
زنوتیب‌های مختلف نیز محاسبه شد:

\[
VI = \frac{\% \text{Gr} \times \text{MSH}}{100}
\]
نتایج و بحث
تجمیع واریانس و مقایسه میانگین عملکرد زنوتیپ‌ها در مراحل مختلف از تولید جوانه و در طرح زیست‌پروری بالاترین و لیاقت‌های ۰/۷۷۳ به میزان پرتو تعداد دانه‌ها (جدول ۱) اگر بین ارقام از نظر عملکرد تحت شرایط عدم تنش تفاوت معنی‌داری دیده نشد، اما آزمون چند دانه‌ای دانکن باره تکمیلی ارقام مختلف از تولید عملکرد شد. بنوعی که ارقام آزمایش ۱ و ۱۰۰۰ همراه با پنجره‌های بالاترین و لیاقت‌های ۰/۷۷۳ به میزان پرتو تصمیم‌گیری شد. در این بررسی شاخص‌های نرم افزار محاسباتی به دست آمده از این زنوتیپ‌ها اختصاص داده ارقام خاص، آزادی و روش های مختلف برای مطالعات دانش‌پژوهان، کشاورزان دانشگاه تهران طرح برای شد. بررسی مذکور با صورت آزمایش فاکتوریل در قالب طرح پایه بلکه های کامل تصادفی در سه تکرار و چهار عمق کاشت تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با صورت آزمایش به تختالی شمل ۲۰ و ۱۶ سانتی‌متر انجام شد. بیان می‌باشد در این با
جدول 1. مقایسه میانگین عملکرد زنوتیپ‌های مختلف تحت تیمار‌های شاهد و تنش رطوبت و شاخ‌های مقاومت و حساسیت به
خشکی. مقایسه میانگین‌ها به روش دانکن (0.05) صورت گرفته و اعداد با حروف مشترک با هم تفاوت معنی‌دار دارند.

<table>
<thead>
<tr>
<th>STI</th>
<th>GMP</th>
<th>MP</th>
<th>SSI</th>
<th>TOL</th>
<th>Ys</th>
<th>Yp</th>
<th>زنوتیپ‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>سرداری</td>
</tr>
<tr>
<td>1/(\alpha)*</td>
<td>0.1/(\alpha)*</td>
<td>0.05/(\alpha)*</td>
<td>0.05/(\alpha)*</td>
<td>0.05/(\alpha)*</td>
<td>0.05/(\alpha)*</td>
<td>0.05/(\alpha)*</td>
<td>0.05/(\alpha)*</td>
</tr>
<tr>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
<td>0.4/(\alpha)*</td>
</tr>
<tr>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
<td>0.8/(\alpha)*</td>
</tr>
<tr>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
<td>1.2/(\alpha)*</td>
</tr>
<tr>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
<td>1.6/(\alpha)*</td>
</tr>
</tbody>
</table>

شکل 1. مقایسه میانگین اثرات مقابل بین سطوح مختلف پتاسیم اسمزی و درصد و سرعت جوانزی

شکل‌های دیگر

یکی از اصلی‌ترین شیب‌های کاهش را تا سطح اسپرمی 1/6 MPa - ار از خود نشان دادند. بنمای زنوتیپ باقی مانده، نیز با شیب کاهش متوسط تا سطح پتاسیم اسمزی 1/6 MPa - ار 55 تا 65٪ جوانه زنی از خود نشان دادند. نشان رطوبتی اعمال شده به وسیله یک ایالون گلابیکول احتمالاً از طریق
erview زمان قطعی زمانی سنگین‌سازی هیدرولیک آب اطراف بذر (24). کاهش جذب اکسیژن به وسیله محدود کردن مقدار اکسیژن محلول در محيط کشت
(26) و یا انتشار یافتن اکسیژن در پاتنیل های هموگین (15) باعث کاهش جوانه زنی در این شرایط می‌شود. به هر حال در تحقیق گزارش گذرانده است این استن فلز PEG
استفاده شد به این ترتیب از ایجاد آثار سوء تامس مستقیم
با برده‌جولگری دش.

شکل 1 نشان‌دهنده اثرات متقابل بین پاتنیل اسپزی و
زونتیپه‌ها روی سرعت جوانه زنی است. هم‌اکنون نتایج که در این
شکل مشاهده می‌شود در سطح اولیه تنزیل اسپزی‌های 86-3
زنوتیپه‌ها به‌عنوان تکنیک فلزات و 3 تسمیع
جوانه‌زنی نمک‌گذاری برای افزایش درصد جوانه زنی تحریک شد.
در ادامه با کاهش پاتنیل اسپزی، زنوتیپه‌ها با شیب‌های
کاهش می‌آید افزایش متقابل سرعت جوانه زنی به پاتنیل
اسپزی واکنش نشان داده. به طور مثال زنوتیپه سرداری که از

شکل 2 مثابه منابع اثرات متقابل بین سطح متفاوت پاتنیل اسپزی با پنجره چرخ زنی و وزن خشک و انتقادات

کاهش سطح تامس آب با بذرها و پاپیون آرود هیدرولیک آب اطراف بذر (24). کاهش جذب اکسیژن به وسیله محدود کردن مقدار اکسیژن محلول در محيط کشت
(26) و یا انتشار یافتن اکسیژن در پاتنیل های هموگین (15) باعث کاهش جوانه زنی در این شرایط می‌شود. به هر حال در تحقیق گزارش گذرانده است این استن فلز PEG
استفاده شد به این ترتیب از ایجاد آثار سوء تامس مستقیم
با برده‌جولگری دش.

شکل 1 نشان‌دهنده اثرات متقابل بین پاتنیل اسپزی و
زونتیپه‌ها روی سرعت جوانه زنی است. هم‌اکنون نتایج که در این
شکل مشاهده می‌شود در سطح اولیه تنزیل اسپزی‌های 86-3
زنوتیپه‌ها به‌عنوان تکنیک فلزات و 3 تسمیع
جوانه‌زنی نمک‌گذاری برای افزایش درصد جوانه زنی تحریک شد.
در ادامه با کاهش پاتنیل اسپزی، زنوتیپه‌ها با شیب‌های
کاهش می‌آید افزایش متقابل سرعت جوانه زنی به پاتنیل
اسپزی واکنش نشان داده. به طور مثال زنوتیپه سرداری که از

شکل 2 مثابه منابع اثرات متقابل بین سطح متفاوت پاتنیل اسپزی با پنجره چرخ زنی و وزن خشک و انتقادات

کاهش سطح تامس آب با بذرها و پاپیون آرود هیدرولیک آب اطراف بذر (24). کاهش جذب اکسیژن به وسیله محدود کردن مقدار اکسیژن محلول در محيط کشت
(26) و یا انتشار یافتن اکسیژن در پاتنیل های هموگین (15) باعث کاهش جوانه زنی در این شرایط می‌شود. به هر حال در تحقیق گزارش گذرانده است این استن فلز PEG
استفاده شد به این ترتیب از ایجاد آثار سوء تامس مستقیم
با برده‌جولگری دش.

شکل 1 نشان‌دهنده اثرات متقابل بین پاتنیل اسپزی و
زونتیپه‌ها روی سرعت جوانه زنی است. هم‌اکنون نتایج که در این
شکل مشاهده می‌شود در سطح اولیه تنزیل اسپزی‌های 86-3
زنوتیپه‌ها به‌عنوان تکنیک فلزات و 3 تسمیع
جوانه‌زنی نمک‌گذاری برای افزایش درصد جوانه زنی تحریک شد.
در ادامه با کاهش پاتنیل اسپزی، زنوتیپه‌ها با شیب‌های
کاهش می‌آید افزایش متقابل سرعت جوانه زنی به پاتنیل
اسپزی واکنش نشان داده. به طور مثال زنوتیپه سرداری که از

شکل 2 مثابه منابع اثرات متقابل بین سطح متفاوت پاتنیل اسپزی با پنجره چرخ زنی و وزن خشک و انتقادات

کاهش سطح تامس آب با بذرها و پاپیون آرود هیدرولیک آب اطراف بذر (24). کاهش جذب اکسیژن به وسیله محدود کردن مقدار اکسیژن محلول در محيط کشت
(26) و یا انتشار یافتن اکسیژن در پاتنیل های هموگین (15) باعث کاهش جوانه زنی در این شرایط می‌شود. به هر حال در تحقیق گزارش گذرانده است این استن فلز PEG
استفاده شد به این ترتیب از ایجاد آثار سوء تامس مستقیم
با برده‌جولگری دش.
شکل ۳: مقایسه میانگین آنژر متقابل بین سطوح مختلف پتانسیل اسمری با وزن خشک ساچه‌چه

زاتوئیپی‌های ۶/۷۷ و آرادی پایین‌ترین و زاتوئیپ‌های قدس و ۶/۷۷ بالاترین پنجم جوانه زنی را در این سطح داشته‌اند. با کاهش پتانسیل اسمری برخلاف صفات درصد و سرعت جوانه زنی این صفت به سرعت و با شیب زیاد در زاتوئیپ‌های مختلف شروع به کاهش کرد. اگرچه زاتوئیپ‌های شیب‌های متفاوت کاهش بین جوانه زنی را در پایین به کاهش پتانسیل‌های اسمری نشان دادند. در این شرایط در پتانسیل اسمری ۰/۸۵MPa ارایه‌ای بیشترین و زاتوئیپ‌های سرداری، ۷/۸۶۴导向 و فلات کمترین بینه جوانه زنی از خروج نشان دادند در پتانسیل اسمری ۰/۸۴MPa با کاهش شدید بینه جوانه‌زنی تقریباً در یک سطح صفر کاهش و بینه جوانه زنی آنها از حدود ۲۵٪ تا ۳۰٪ و ۱/۶MPa در شرایط عدم نشانه‌رسی رفعه به حدود ۵ و ۱/۷MPa در ارایه‌ای بینه جوانه زنی در پتانسیل اسمری ۰/۸۶MPa کاهش یافت.

بررسی اثرات متقابل بین پتانسیل اسمری و وزن خشک

۲۸۸
جدول ۲. مقایسه میانگین طول ریشه‌چه و ساقه‌چه در میلی‌مترهای مختلف پتانسیل اسمری در محلول‌های PEG اعدا به دست آمده برابر
طول ریشه‌چه و ساقه‌چه میانگین ۵ عدد بذر جوانه‌زده هستند مقایسه میانگین‌ها به روش دانکن (0.05) صورت گرفته است.

<table>
<thead>
<tr>
<th>پتانسیل اسمری (Mpa)</th>
<th>طول ریشه‌چه (cm)</th>
<th>ساقه‌چه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1/5</td>
<td>۱۲/۶*</td>
<td>۱۴/۲*</td>
</tr>
<tr>
<td>-1/۴</td>
<td>۱۰/۴*</td>
<td>۹/۸*</td>
</tr>
<tr>
<td>-1/۲</td>
<td>۸/۴*</td>
<td>۷/۴*</td>
</tr>
<tr>
<td>-0/۸</td>
<td>۶/۴*</td>
<td>۵/۴*</td>
</tr>
<tr>
<td>-۰/۳</td>
<td>۴/۴*</td>
<td>۵/۸*</td>
</tr>
<tr>
<td>۰/۰*</td>
<td>۷/۰*</td>
<td>۸/۶*</td>
</tr>
<tr>
<td>۱/۴*</td>
<td>۹/۴*</td>
<td>۱۱/۴*</td>
</tr>
<tr>
<td>۲/۳*</td>
<td>۱۲/۴*</td>
<td>۲/۴*</td>
</tr>
<tr>
<td>۳/۰*</td>
<td>۱۳/۴*</td>
<td>۱۱/۴*</td>
</tr>
<tr>
<td>۴/۸*</td>
<td>۱۴/۴*</td>
<td>۵/۴*</td>
</tr>
<tr>
<td>۶/۴*</td>
<td>۱۵/۴*</td>
<td>۸/۶*</td>
</tr>
<tr>
<td>۸/۶*</td>
<td>۱۶/۴*</td>
<td>۱۲/۴*</td>
</tr>
<tr>
<td>۱۰/۸*</td>
<td>۱۷/۴*</td>
<td>۱۴/۴*</td>
</tr>
</tbody>
</table>

جدول ۳. مقایسه میانگین طول ریشه‌چه و ساقه‌چه زنوتیپ‌های مختلف گندم در تخت جوانه‌زنه در محلول‌های PEG اعدا به دست آمده برابر طول ساقه‌چه و ریشه‌چه میانگین طول ریشه‌چه و ساقه‌چه ۵ عدد بذر جوانه‌زده هستند مقایسه میانگین‌ها بر روی دانکن (0.05) صورت گرفته و اعداد با حروف مشترک هم تفاوت معنی دار دارند.

<table>
<thead>
<tr>
<th>زنوتیپ‌های مختلف</th>
<th>طول ریشه‌چه (cm)</th>
<th>ساقه‌چه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سردارین</td>
<td>۴/۵*</td>
<td>۹/۵*</td>
</tr>
<tr>
<td>روشن</td>
<td>۵/۴*</td>
<td>۵/۵*</td>
</tr>
<tr>
<td>امید</td>
<td>۶/۴*</td>
<td>۵/۴*</td>
</tr>
<tr>
<td>آزادی</td>
<td>۶/۵*</td>
<td>۵/۵*</td>
</tr>
<tr>
<td>فلات</td>
<td>۶/۴*</td>
<td>۶/۴*</td>
</tr>
<tr>
<td>قدس</td>
<td>۷/۴*</td>
<td>۷/۴*</td>
</tr>
<tr>
<td>دارا بودنه</td>
<td>۸/۴*</td>
<td>۸/۴*</td>
</tr>
<tr>
<td>۸۵۹۵۲۳-۳</td>
<td>۹/۴*</td>
<td>۹/۴*</td>
</tr>
<tr>
<td>۸۵۹۵۲-۶</td>
<td>۱۱/۴*</td>
<td>۱۱/۴*</td>
</tr>
<tr>
<td>۵۵۹۵۲-۶-۳</td>
<td>۱۱/۴*</td>
<td>۱۱/۴*</td>
</tr>
<tr>
<td>۷۰۵۶۳-۳</td>
<td>۱۳/۴*</td>
<td>۱۳/۴*</td>
</tr>
<tr>
<td>۸۰۵۰۳-۶</td>
<td>۱۵/۴*</td>
<td>۱۵/۴*</td>
</tr>
<tr>
<td>۷۰۰۰۷-۶-۶</td>
<td>۷۰۰۰۷-۶-۶</td>
<td>۷۰۰۰۷-۶-۶</td>
</tr>
</tbody>
</table>

قرار گرفتن
نتایج به دست آمده از مقایسه میانگین صفت طول ریشه‌چه و ساقه‌چه (جدول ۲ و ۳ نشان داده اگر چه صفت طول ریشه‌چه به صورت معنی‌داری تحت تأثیر سطوح پتانسیل اسمری کشیده یا از زنوتیپ‌های مختلف در این شرایط با هم تفاوت معنی دارد نشان داده و به غیر از حساسیت یکسانی را در مواجهه با مسیر رطوبتی از خود نشان دادند. در مورد صفت طول ساقه‌چه زنوتیپ‌های با هم تفاوت معنی‌دار داشته و در این شرایط زنوتیپ‌های اسمری ۵۵۹۵۲-۳/۲-۳ و پلندرین و زنوتیپ بقیه زنوتیپ‌ها ۵۵۹۵۲-۳/۲-۳ و پلندرین و زنوتیپ بقیه زنوتیپ‌ها داشت و بقیه زنوتیپ‌ها نیز در یک سطح پایین تر
جدول 2 میانگین گروه‌های مختلف (اصلاح شده خارجی، اصلاح شده داخلی) در سرعت جوانه‌زنی غیرعادی و مشترک با هم تفاوت معنی‌داری دارند.

<table>
<thead>
<tr>
<th>گروه‌های مختلف</th>
<th>درصد جوانه‌زنی غیرعادی</th>
<th>درصد جوانه‌زنی بذرور</th>
<th>درصد جوانه‌زنی بذرور</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصلاح شده داخلی</td>
<td>79/14/67</td>
<td>82/21/67</td>
<td>82/31/71</td>
</tr>
<tr>
<td>اصلاح شده داخلی</td>
<td>79/14/67</td>
<td>82/21/67</td>
<td>82/31/71</td>
</tr>
<tr>
<td>درصد جوانه‌زنی غیرعادی</td>
<td>79/14/67</td>
<td>82/21/67</td>
<td>82/31/71</td>
</tr>
<tr>
<td>درصد جوانه‌زنی بذرور</td>
<td>79/14/67</td>
<td>82/21/67</td>
<td>82/31/71</td>
</tr>
<tr>
<td>درصد جوانه‌زنی بذرور</td>
<td>79/14/67</td>
<td>82/21/67</td>
<td>82/31/71</td>
</tr>
</tbody>
</table>

فلات کوتاه‌ترین طول ساقه جه چه در این بودند. بیشتر سری‌های جوانه‌زنی از همان سطوح اولیه اعمال تنش رطوبی کاهش می‌یابد. نتایج بدست آمده از جدول ضرایب همبستگی (جدول 5) نشان می‌دهد که بیشتر نبست به سطوح جوانه زنی با نسبت درک دارد و در این مورد بیشتر نبست به سطوح جوانه زنی با نسبت درک نشان می‌دهد. در همین ارتباط ضمناً درج شده و به منظور بهبود در این سطوح اولیه اعمال شده. گروه‌های مختلف نشان داد که درصد جوانه‌زنی به همان گونه که اشکال سطوح اولیه اعمال شده در سطوح اولیه اعمال شده و در این موارد تا سطوح داخلی استفاده از عامل دیده، این می‌تواند با وظیفه انجام شده در این مواد، جدول ضرایب همبستگی بیشتر معنی‌دارتری به این صفت و سایر از ارزیابی عبارت‌های مختلف که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر نبست به سطوح جوانه زنی و این صفت را در ارزیابی عبارت‌های مختلف نشان داده که در این بودند با بیشتر N

(9)
جدول 5 ضرایب همبستگی بین صفات اندمازگیری شده برای زنوتیپ‌های مختلف در سطح مقایسه‌تنش خشکشکی در مرحله جوانانزی. اعداد به دست آمده برای طول و وزن تر خشکشکی و ریشه‌چه میانگین طول و وزن ریشه‌چه و ساقه‌چه 5 عدد به جوانانه‌هدست.

<table>
<thead>
<tr>
<th>جوانانزی</th>
<th>صفات</th>
<th>طول</th>
<th>وزن تر خشکشکی</th>
<th>وزن تر ریشه‌چه</th>
<th>ساقه‌چه</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد جوانانزی عادی</td>
<td>0/100</td>
<td>0/89</td>
<td>0/40</td>
<td>0/65</td>
<td>0/25</td>
</tr>
<tr>
<td>درصد جوانانزی غیرعادی</td>
<td>0/100</td>
<td>0/89</td>
<td>0/40</td>
<td>0/65</td>
<td>0/25</td>
</tr>
<tr>
<td>سرعت جوانانزی (cm)</td>
<td>0/74</td>
<td>0/78</td>
<td>0/60</td>
<td>0/100</td>
<td></td>
</tr>
<tr>
<td>طول ریشه‌چه (cm)</td>
<td>0/30</td>
<td>0/55</td>
<td>0/100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن ریشه‌چه (gr)</td>
<td>0/27</td>
<td>0/50</td>
<td>0/100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن خشکشکی ساقه‌چه (gr)</td>
<td>0/33</td>
<td>0/60</td>
<td>0/100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نیاز به ملاحظه و درک می‌دارد که دو گروه دیگر ضعیف‌تر بودند (جدول 4). ارقام در طول اصلاح‌شده احتمالاً ارقام ایمیت و روش‌های دیگر درصد، سرعت و نسبت به جوانانزی بالایی در مرحله جوانانزی می‌باشد (شکل 1) و نسبت به گروه اصلی در مرحله‌های خارجی زمانی به اختلال برخورده نسبت به زمان کاست و وجود داشته باشد. کاشت‌ها مطمئن به نظر می‌رسد و به تاکید ساختارهای داخلی و خارجی تفاوت‌های آنکاری از این نظر دیده نشد.

نتایج حاصل از جدول ضرایب همبستگی بین صفات درصد، سرعت و پیوند جوانانزی و وزن خشکشکی ریشه‌چه و ساقه‌چه با عملکرد تحت شرایط نزد و کنترل و شاخص‌ها MP و SSI GMP همبستگی مثبت و منفی داشت. ارتباط معنی‌داری را نشان دادند. عدم همبستگی معنی‌دار بین این صفات به این صورت قابل توجهی است که معمولاً در مراحل بعد از جوانانزی تحت تأثیر فاکتورها شناخته و ناشناخته معنی‌دار به پیشنهاد اعمال زیاد فاکتورهایی که در مراحل حساسیت شکل‌گیری عملکرد
جدول ۶. روایت هیپستگی بین درصد و سرعت سیبزندان از اعماق با تعدادی از صفات مورد مطالعه در سطح مزرعه و آزمایش تست جوانه‌زنی در آزمایشگاه با پلی اتیلن گلاکیوکل (PEG)

عاملکد	سرعت سیبزندان در اعماق مختلف	سرعت جوانه‌زنی در اعماق مختلف	بیوماس دانه	تخت نشش خشکی (PEG) خشکی (PEG) خشکی (PEG) (g/m²) (g/m²)		
کشت	۰/۱۰۰	۰/۹۹	۰/۸۹	۰/۸۷	۰/۷۴	۰/۷۴
تخت نشش خشکی (PEG)	۰/۸۹	۰/۸۷	۰/۷۴	۰/۷۴	۰/۷۴	۰/۷۴
تخت نشش خشکی (PEG)	۰/۷۴	۰/۷۴	۰/۷۴	۰/۷۴	۰/۷۴	۰/۷۴

شناسه دهنده معنی‌دار بودن در سطح ۵%

محيط آزمایشگاه در پنالتی‌های اسپور متفاوت و همین‌طور تست درصد در سطح مزرعه در عمل کاشت‌های مختلف (داده‌ها در این مقاله ارائه نشده است) انجام شد. نتایج حاصل از این بررسی نشان داد که استفاده از خصوصیات فیزیولوژیکی بیشتر در مرحله جوانه زنی و سیبزندان نمی‌تواند مانعی جهت تشخیص همبستگی میان ویژگی‌های مقاوم و یا حساس به لحاظ عملکرد اقتصادی در شرایط متغیر محیطی مزرعه باشد و در بین خصوصیات فیزیولوژیکی بررسی شده در تست جوانه زنی بیشتر ضریب همبستگی بالاتری با سایر خصوصیات جوانه زنی و سیبزندان از سطح مزرعه داشت و به عنوان بهترین شاخص جهت بررسی فراورد جوانه زنی شناخته شد.

منابع مورد استفاده

۱. رحیمیان مشهدی، ج. ۱۳۶۹. واکنش گندم در مقابل دمای بالا و نش رطوبت. علوم و صنایع کشاورزی ۴:۲۷-۳۷.
۲. سلیمانی، م. و. سی. می‌سادات. ۱۳۷۸. اثر تنش آب بر خصوصیات جوانه‌زنی گندم. علوم خاک و آب ۱۳:۸۷-۹۷.
۳. صفتی، م. و. غدیری، غ. ۱۳۷۵. اثرات پنالتی‌های مختلف اسپور بر روی جوانه‌زنی و رشد گیاهی گندم. تریستی آزمایشگاه، علوم کشاورزی ایران ۲۷(۲):۵۶-۶۵.