تأثير برخی عناصر غذایی پرمرسف و کم مصرف بر اجزای عملکرد و دیگر صفات زراعی
آفتابگردان در یک خاک آهکی اصفهان

چکیده
آفتابگردان (Helianthus annuus L.) نقش مهمی در تأمین رونف نباتی مورد نیاز کشور دارد و تأمین عناصر غذایی گیاه در خاک کره افزایش عملکرد بالا و کیفیت محصول را افزایش می‌دهد. این آزمایش به منظور بررسی تأثیر تیمارهای کودی عناصر غذایی پرمرسف و کم مصرف بر عملکرد انگور و سایر صفات زراعی آفتابگردان انجام شد. در این آزمایش تأثیر سیژه‌گیری، تیمار کودی به عنوان فاکتور اصلی بر صفات زراعی دو رقم ۳۷ و ۷۱ به کار گرفته شد. نتایج نشان داد که اثر مقایسه معنی‌داری بین تیمارهای کودی و ارتفاع وجود داشت. تأثیر تیمارهای کودی و آبیه به ارتفاع به طور کلی میزان تیمارهای کودی و آبیه به رونف داده،

Mn، Zn، Fe، K، P، N

عملکرد دانه در بوته، عملکرد دانه در واحد سطح در رقم آوروفور گردید. در رقم های سان ۳۳ بیانگر عنصر غذایی N، K و P می‌باشد. بطور مشابه بر مبنای N، Zn، Mn انتی می‌باشد. تأثیر غذایی بیشتر در رنگ های سان ۳۳ معنی‌دار، افزایش کودکنی آماده کردن آن راه نمود. به صورت مخلوط با خاک و با محول‌پاشی بر

Mn به معنی داری بر عملکرد دانه نماید. تأثیر کودهای شیمیایی دارای Mn با Zn بیشتر از اندازه‌گیری عملکرد دانه در رقم های سان ۳۳ معنی‌دار. افزایش معنی‌دار داشت. ویژه که در این رقم به ترتیب فاقدی را به NPK و Fe، NPK+Fe تیمارهای شاهد، Fe به NPK+Fe و NPK به NPK به ۷۲/۸۰۰۰-۸۰۰۰۰ و ۸۰۰۰۰-۹۰۰۰۰ درصد رونف داده. تأثیر تیمارهای کودی و ارتفاع بر روی رونف دانه معنی‌دار بود. بنابراین تغییرات عملکرد و ارتفاع در ۵۰۰۰۰-۵۰۰۰۰ و ۸۰۰۰۰-۹۰۰۰۰ درصد رونف دانه، نشان می‌دهد که تغییرات عملکرد دانه بیشتر و به ترتیب اهمیت تناهی از تغییرات وزن دانه و قطر طبق به بود. به طور کلی به نظر می‌رسد در حال مورد آزمایش اضافه کردن کود آهک دار به خاک از لحاظ اقتصادی حائز اهمیت باشد و می‌تواند موجب افزایش عملکرد دانه و رونف دانه های سان ۳۳ شود.

واژه‌های کلیدی: آفتابگردان، عناصر غذایی پرمرسف و کم مصرف، عملکرد دانه، رونف دانه

۱. دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

355
مقدمه

با توجه به این که بخش زیادی از روش نتایی مورد نیاز کشور
از خارج تأمین می‌شود، افزایش تولید داخلی روش از جمله
آفت‌افزاریان (Heliannus annuus L.) است و می‌تواند نقش مهمی در تأمین روش مورد نیاز کشور
داشته باشد. این گیاه به دلیل سازگاری و ریسی و دارا بودن
پیش‌ترين مقدار روش دانه (400 نشان داده می‌شود و در صورت
محصول دانه روش مطروح می‌باشد به کیفیت روش دانه این نیاز
به‌طور دستی است (13). دانه آفت‌افزاریان همچنین دارای
29 نشان داده می‌باشد در جیره غذای دام‌های مورد
استفاده قرار گرفت.

فراهم نمودن حاصلخیصی مناسب خاک با استفاده از معیار
کودهای شیمیایی و تأمین عناصر غذایی مورد نیاز گیاهی
از جهت‌های مهم دریافت و بهره‌برداری‌های جهت حصول خداک
عملکرد و کیفیت مطلوب محصولات زراعی و حداکثر نسمی
این مدیران آنها را محیط زیست می‌باشد (5). گیاهان زراعی
جهت داشتن رشد و نمو مطلوب نیاز به عناصر غذایی مورد
دارند و بعضی عناصر نظر نیتروژن، فسفور و نیتروژن در مقدار
بین‌بینی زیادی مورد نیاز گیاه هستند و در صورت عدم
عناصر در خاک، رشد و تولید گیاه کاملاً می‌باشد (2 و 3).

در صورت وجود مقدار کافی نیتروژن در خاک، گیاهان
زرعی دارای رشد رونقی سطح بیشتر و عملکرد مناسب
خواهد بود و کم‌ترین فرسایش در مراحل اولیه رشد گیاه می‌تواند
موجب محدودیت رشد و به‌نتیجه‌کاهش عملکرد دانه در
گیاهان زراعی گردد (2). عناصر غذایی کم مصرف نیز برای
رشد بیشتر گیاهان ضروری هستند و در واکنش‌های
پیش‌ترين گیاه‌های سنتی و باکتری‌های
پیش‌ترين گیاه‌های گیاه‌های دانه‌دار دانه. به عنوان مثال عناصر روی برای
تولید هم‌ریزی یافته‌های این انستانس، عنصر بور
برای تقویت سلول و عناصر آهن در تشکیل کلروفیل گیاهی
نقش دارند و تأمین این عنصر غذایی در خاک می‌تواند موجب
تواری افزایش غذایی در گیاه و به‌نمود افزایش تولید و کیفیت

محصول شود (2).
تأثیر برخی عناصر غذایی بر مصرف و کم مصرف بر اجزای عملکرد و دیگر صفتات

موجب افزایش عملکرد دانه در آفات‌گردان شده است (15)،

با توجه به این اطلاعات کافی در مورد نیازهای کودی
آفات‌گردان در منطقه اصلی موجود بود، در ضمین استفاده از
کودهای سه‌پایه و باعث گیاهان به‌عنوان سیاره‌های موشکی جایگاهی
می‌باشد. بیش از اندازه عنوان مصرفی و عوامل زنده‌کاری است، این
آرام‌ماهی با هدف بررسی تأثیر عناصر غذایی بر مصرف و کم
مصرف بر صفای زراعی در عدد هیری‌بر آفات‌گردان انجام شد.

مواد و روش‌ها

آرام‌ماهی در سال 1383 در مزرعه‌ی پژوهشی دانشکده کشاورزی
دانشگاه صنعتی اصفهان، واقع در لرک توقف‌آباد (40 کیلومتری
جنوب غربی اصفهان) انجام شد. طبق طیبندی کویین، منطقه
آرام‌ماهی‌داره اقلیمی خشک بود که در تابستان هوا گرم و
حالت است. مزرعه در حدود از گروه تیپ دویل آرژینید
(Typic Haplargid) و دارای پایاف لورپیس با جرم مخصوص
ظاهری 1/2 گرم بر ساعتی مکعب و pH 7/3 برای می‌باشد.

در این پژوهش تأثیر 13 تیمار کودی (جدول 1) بر صفای
زراعی مختلف از جمله عملکرد دانه و اجزای آن و همچنین
میزان روزنه دانه و رقم آفات‌گردان در قابل طرح بلوه‌های
کامل تصادفی با 3 تراکم و به صورت آرام‌ماهی کرده‌اند،
سمت شرقی مورد بررسی قرار گرفت. ارقام شاهد هیری‌برده
"های‌سان 33" (Hisor (Euroflor) و "امورفور (Euroflor) "بود که در
آرام‌ماهی به عنوان فاکتور فرعی و تیمار‌های کودی به عنوان
فاکتور اصلی ارزیابی شدند. هر کدام از آرام‌ماهی‌شکل 2 ردیف
کشت به طول 2 متر و با فاصله ردیف 60 سانتی‌متر بود.
کشت‌ها به صورت هرمی‌کاری و در ترمینی ماه 1384 روی پشت‌ها انجام شد و پس از استقرار کامل گیاهی‌ها، فاصله
بین زیرکش در روز کشت با نسبت گردیدن حدود 17 سانتی‌متر تنظیم
گردید. عملیات نهایی بست می‌زین آرام‌ماهی (که در حال یافته به
صورت آش‌بود) شامل نخ و زدن در پایین و دو مرتبه دیسک
زدن قبل از کشت و سپس ایجاد پشت‌های انجام شد. به منظور
کنترل علف‌های هرز، قبل از کاشت علف‌کشن ترفلان

<table>
<thead>
<tr>
<th>تیمار کودی</th>
<th>صفت ۱</th>
<th>صفت ۲</th>
<th>صفت ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰ گرم</td>
<td>۱۶ گرم</td>
<td>۲۰ گرم</td>
<td>۲۴ گرم</td>
</tr>
<tr>
<td>۲۰ گرم</td>
<td>۲۰ گرم</td>
<td>۳۰ گرم</td>
<td>۴۰ گرم</td>
</tr>
<tr>
<td>۳۰ گرم</td>
<td>۳۰ گرم</td>
<td>۴۵ گرم</td>
<td>۶۰ گرم</td>
</tr>
<tr>
<td>۴۰ گرم</td>
<td>۴۰ گرم</td>
<td>۶۰ گرم</td>
<td>۸۰ گرم</td>
</tr>
</tbody>
</table>

(ترفلورالین) ((Trifluralin) به میزان ۲/۵ لیتر در هكتار با خاک
مخلوط شد.

تیمار‌های کودی مورد مطالعه و یک سوم کود اوره مربوط
به هر تیمار کودی قبل از کاشت در هکتار اعمال گردید و در
تیمار کودی دیگر به صورت مخلوط پایش انجام شد
(جدول 1). در هر تیمار کودی باقی مانده کود مورد مطالعه از
در مرحله ۱۸ گرم بوده که به مرحله جوانه‌گذاری در صورت
سپر مصرف شد. به منظور ایجاد بکن‌داری در توزیع
کودهای سه‌پایه در هر تیمار آرام‌ماهی، مقادیر کود مورد
استفاده برای هر روز کاشت به صورت جداگانه با مانند نرمال
مخلوط و سپس به‌صورت دستی و یک‌نواخت در عمق حدود
۷ سانتی‌متری پشت‌های قرار گرفته شد و پس از پوشاندن اقدام به
کاشت گردید.

در تیمار‌های محلول پاشی (جدول ۱)، ساکات را به
غلفت ۱۰۰ گرم در یک لیتر آب مفطر و ساکات مغذی با
غلفت ۷۵/۷۵ گرم در یک لیتر آب مفطر و به میزان
۱۵۰ لیتر در هکتار و در مرحله زراعی کیسه‌ای عنی
مرحله‌ای که با ادامه رشد گیاه در زیر گل آذین، گل آذین
پیش از دور سانتی‌متر از برگ‌های اطراف فاصله گرفته بود،
محلول پاشی کردند و سطح برگ‌های گیاه کاملاً خیره
در این آزمایش تعادل روز تا ۷۵/۰۰ سبز شدن گیاه‌های کودی
کرده آرام‌ماهی‌داره طور مشاهده یادانه‌کرده‌بود. در ضمن
تعداد روز تا مراحل R۲، R۶ و R۷ بر اساس توصیف
مراحل رشد آفات‌گردان (۱۹) برای هر کرت آرام‌ماهی ثبت شد.
مرحله R۶ مرحله آخر گیاهی آغاز شد و در این مرحله
گل‌های شعاعی با زده، تمام غلیان طبیعی شامل نهادن و
بیشترین حلقوی غلیان در حال گل‌های انتانی به‌پایان آمد. در
مرحله R۷ گرده انتانی گیاه کامل شد و در این مرحله
شادابی گرده را از دست داد و پدیده غلیان گرده و سپس ریزش
می‌باشد. مرحله R۸ مرحله رسیدگی بهپایگاهی است که در
این مرحله برخاک‌ها زرد و قهوه‌ای شدند و قسمتی اعظم پشت
طبق شروع به نقش‌های شدن نماید (۱۶).
جدول ۱. تیمارهای کودی مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>تیمار کودی</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد (عدم استفاده از هر نوع کود شیمیایی)</td>
<td>T₁</td>
</tr>
<tr>
<td>۱۱۵ کیلوگرم نیترژن از منبع اوره به صورت سرک مصرف شد. قبل از کاشت با خاک مخلوط شد.</td>
<td>T₂</td>
</tr>
<tr>
<td>۲۲ کیلوگرم اکسید فسفر از منبع سوپر فسفات تریل قبل از کاشت با خاک مخلوط شد.</td>
<td>T₃</td>
</tr>
<tr>
<td>۲۴ کیلوگرم اکسید نیترات از منبع سولفات نیتریک</td>
<td>T₄</td>
</tr>
<tr>
<td>همانند T₁ و T₂</td>
<td>T₅</td>
</tr>
<tr>
<td>همانند T₁</td>
<td>T₆</td>
</tr>
<tr>
<td>همانند T₁ و T₂</td>
<td>T₇</td>
</tr>
<tr>
<td>همانند T₁ و T₂ و T₃</td>
<td>T₈</td>
</tr>
<tr>
<td>کود آهن (سکستریم) به میزان ۳۰۰ Kga/ha + سولفات روی به میزان ۶۰ Kga/ha</td>
<td>T₉</td>
</tr>
<tr>
<td>سولفات روی به میزان ۶۰ Kga/ha + سولفات مگنزیوم به میزان ۲۰۰ Kga/ha</td>
<td>T₁₀</td>
</tr>
</tbody>
</table>

جدول ۲. عمق‌های و خطا استاندارد عناصر موجود در خاک محل آزمایش (متوسط ۶ نمونه)

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>آهن (mg/kg)</th>
<th>نیترژن (mg/kg)</th>
<th>فسفر (mg/kg)</th>
<th>پناسیم (mg/kg)</th>
<th>مانگ (mg/kg)</th>
<th>روی (mg/kg)</th>
<th>مس (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۱۵</td>
<td>۸±۴۳</td>
<td>۳۴±۱۱۳</td>
<td>۳۹±۷۷</td>
<td>۳۵±۲۴</td>
<td>۳۰±۳۰</td>
<td>۳۷±۵۰</td>
<td>۳۷±۶۵</td>
</tr>
<tr>
<td>۱۵-۳۰</td>
<td>۸±۴۳</td>
<td>۳۴±۱۱۳</td>
<td>۳۹±۷۷</td>
<td>۳۵±۲۴</td>
<td>۳۰±۳۰</td>
<td>۳۷±۵۰</td>
<td>۳۷±۶۵</td>
</tr>
<tr>
<td>۳۰-۵۰</td>
<td>۸±۴۳</td>
<td>۳۴±۱۱۳</td>
<td>۳۹±۷۷</td>
<td>۳۵±۲۴</td>
<td>۳۰±۳۰</td>
<td>۳۷±۵۰</td>
<td>۳۷±۶۵</td>
</tr>
</tbody>
</table>

(ماده آنتی (٪) = مقدار اختلافی × ۱۰۰/مقدار متوسط)
تأثیر برخی عناصر غذایی بر مصرف و کم‌صرف بر اجزای عملکرد و دیگر صفات

به منظور تعیین ارتفاع بوته در هر واحد آزمایشی، ارتفاع بوته در 10 بوته از سطح زمین تا سطح فوقانی طبق و در مرحله رشدی تیمار افزایشی اندک گیری و متغیر در بسیاری از مقادیر ارتفاع و تیمارهای کودی (جدول 5) نشان داد که تأثیر تیمارهای کودی بر انگشتان صفات از هر کدام از ارقام معنی‌دار با پاسخ در رقیم به تیمارهای کودی از لحاظ برور ان صفات متفاوت بود. به طوری که تیمارهای کودی 24، 25 و 26 موجب کاهش معنی‌دار میانگین صفات از رقیم به تیمارهای کودی 17 در رقیم های سان 33 شد. در صورتی که تیمارهای کودی تأثیر معنی‌داری بر این صفات در رقیم اروفلور نداشته باشد (جدول 5).

میانگین‌های ار متقابل نشان داد که تأثیر تیمارهای کودی بر ار قطار طبق در هر کدام از ارقام معنی‌دار بود (جدول 5)، به طوری که نسبت به شاهد تمام تیمارهای کودی به استاندارد نسبت به شاهد موجب کاهش قطار طبق در رقیم اروفلور شد (جدول 5). در هر های سان 33 تیمارهای کودی موجب افزایش قطار طبق و مقدار افزایش در اثر تیمارهای کودی 24، 25 و 26 و 11 معنی‌دار بود (جدول 5). در پژوهش های گزارش می‌گردد قطار طبق به یک معنی‌دار تحت تأثیر تیمارهای کودی مورد مطالعه آن‌ها قرار نگرفته و افزایش مقدار فسفر در خاک افزایش قطار طبق را در آن‌ها نشان داده است (12).

نتایج و بحث

نتایج تحقیق برخی ویژگی‌های الفبیک و شیمیایی خاک مورد آزمایش در جدول 2 بیان شده است. نتایج تحقیق و ارایاس نشان داد که اثر ار که کلی صفات به استاندارد صفات از رو به رونق و در های سان 33 معنی‌دار بود (جدول 5). رقیم های سان 33 به طور معنی‌داری در دایر میانگین تعداد روز تا مراحل 21، 25، 25 و 25 کمتری نسبت به رقیم اروفلور بود (جدول 5). فرم‌های سان 33 به طور معنی‌داری در رقیم 21، 25، 25 و 25 کمتری نسبت به رقیم اروفلور بود (جدول 5).

نکته مهم این بود که عملکرد دانه در بوته و عملکرد دانه در ار سطح پیشنهادی نسبت به رقیم اروفلور بود (جدول 4). نتایج میانگین این صفات در دو رقیم، ناشی از تفاوت عوامل زئیکی آنها می‌باشد. اثر مقابل
جدول 3. نتایج تجزیه واریانس برای صفات مختلف

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>عامل درجه تغییرات ازدیاد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
</tr>
<tr>
<td>تکرار</td>
<td>2</td>
<td>87.5</td>
<td>0.3</td>
<td>21</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار کودی (T)</td>
<td>12</td>
<td>4.6</td>
<td>87.5</td>
<td>0.3</td>
<td>5.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای</td>
<td>a</td>
<td>4.5</td>
<td>97.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم (V)</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **: به ترتیب معنی دار در سطح احتمال بالای 5% و 1% درصد.
جدول 2: میانگین صفات مختلف در تیمارهای کودی و ارقام

<table>
<thead>
<tr>
<th>تیمار کودی</th>
<th>تعداد روز تا مرحله (cm)</th>
<th>عامل آزمایشی تا 5%</th>
<th>تعداد روز</th>
<th>تعداد روز</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ارتفاع بونه (g)</td>
<td>عرض نازار (g)</td>
<td>عرض نازار (g)</td>
<td>عرض نازار (g)</td>
<td>R_s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td></td>
<td>(گردی)</td>
<td>(گردی)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R_1</td>
<td>R_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>40/72</td>
<td>5589</td>
<td>0.8/6</td>
<td>0.5/6</td>
<td>185/4</td>
<td>83/5</td>
<td>75/5</td>
</tr>
<tr>
<td>T2</td>
<td>43/40</td>
<td>5831</td>
<td>0.8/7</td>
<td>0.6/7</td>
<td>176/4</td>
<td>83/6</td>
<td>75/6</td>
</tr>
<tr>
<td>T3</td>
<td>44/18</td>
<td>5387</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>178/4</td>
<td>83/8</td>
<td>75/8</td>
</tr>
<tr>
<td>T4</td>
<td>45/88</td>
<td>5735</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>178/6</td>
<td>83/6</td>
<td>75/6</td>
</tr>
<tr>
<td>T5</td>
<td>47/40</td>
<td>5031</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>178/1</td>
<td>84/6</td>
<td>76/6</td>
</tr>
<tr>
<td>T6</td>
<td>48/58</td>
<td>5030</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>179/6</td>
<td>85/6</td>
<td>76/6</td>
</tr>
<tr>
<td>T7</td>
<td>51/38</td>
<td>4968</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>180/6</td>
<td>86/6</td>
<td>76/6</td>
</tr>
<tr>
<td>T8</td>
<td>53/10</td>
<td>5176</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>181/0</td>
<td>87/6</td>
<td>77/6</td>
</tr>
<tr>
<td>T9</td>
<td>43/70</td>
<td>5874</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>182/6</td>
<td>87/6</td>
<td>77/6</td>
</tr>
<tr>
<td>T10</td>
<td>45/25</td>
<td>5957</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>186/4</td>
<td>87/6</td>
<td>77/6</td>
</tr>
<tr>
<td>T11</td>
<td>47/18</td>
<td>5599</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>186/10</td>
<td>87/6</td>
<td>77/6</td>
</tr>
<tr>
<td>T12</td>
<td>51/22</td>
<td>5788</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>187/6</td>
<td>87/6</td>
<td>77/6</td>
</tr>
<tr>
<td>T13</td>
<td>48/55</td>
<td>6124</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>189/6</td>
<td>87/6</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>3/50</td>
<td>842</td>
<td>0.8/6</td>
<td>0.6/6</td>
<td>187/6</td>
<td>87/6</td>
<td>77/6</td>
</tr>
</tbody>
</table>

روش 3

<table>
<thead>
<tr>
<th>روش</th>
<th>های سان</th>
<th>ارتفاع</th>
<th>R_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/50</td>
<td>842</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>4/95</td>
<td>855</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>4/95</td>
<td>855</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>4/95</td>
<td>855</td>
<td>0.8</td>
</tr>
</tbody>
</table>

LSD(5%)
جدول ۵. میانگین‌های اثر مقابل تیمار کود و رقم‌برداری مقاتله مختلف

<table>
<thead>
<tr>
<th>رقم تیمار</th>
<th>رقم مرحله B</th>
<th>قطر طبقه (cm)</th>
<th>وزن گزاره (g)</th>
<th>عملکرد دانه (Kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۹/۰۶</td>
<td>۱۵/۲۲</td>
<td>۶۷/۲۷</td>
<td>۴۹/۶</td>
</tr>
<tr>
<td>۲</td>
<td>۸/۷۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۳</td>
<td>۸/۶۱</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۴</td>
<td>۸/۵۰</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۵</td>
<td>۸/۵۰</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۶</td>
<td>۸/۳۳</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۷</td>
<td>۸/۲۸</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۸</td>
<td>۸/۲۸</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۹</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۰</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۱</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۲</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۳</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۴</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۵</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۶</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۷</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۸</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۱۹</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
<tr>
<td>۲۰</td>
<td>۸/۱۷</td>
<td>۱۵/۶۴</td>
<td>۶۵/۱۸</td>
<td>۴۸/۷</td>
</tr>
</tbody>
</table>

LSD(۰/۵)
شده که این افزایش از لحاظ آماری معنی‌دار نبود ولی از لحاظ اقتصادی قابل توجه بود (جدول 5). در مطالعه دیگری نیز افزایش فسفر خاک افزایش عملکرد دانه را در افتاقبازان به دنبال خشکسالی است (11). افزایش قابل توجه عملکرد دانه در تیمار T9 نسبت به T8 در رقم های سان 33 نشان داد که افزودن آهن به خاک موجب افزایش عملکرد دانه در این رقم (NPK +Fe) T9 نسبت به T9 شد. طوری که تیمار T9 در صد و ۴۲ درصد (NPK) افزایش معنی دار عملکرد دانه را به همراه داشت (جدول 5). استفاده از کودهای آهن دار در گیاهان ذرت (7) و سورگوم (11) نیز افزایش معنی دار عملکرد دانه را در این شرایط می‌تواند داشته باشد. مقایسه یافته‌های عملکرد دانه نیز نشان داد که تیمارهای کودی به نسبت به خاک‌های محلول خرد کردن در Mn به کمکی با Zn خاک با محلول پاشی در رقم های سان 33 تأثیری بر یهپود عملکرد دانه نداشت (جدول 5).

نتایج تجزیه رگرسیون و ضرایب همبستگی (جدول 6) نشان داد که وزن هزار دانه و قطر طبق به ترتیب اهمیت از اجزای اصلی عملکرد دانه دارد. با توجه به عدم تأثیر معنی دار تیمارهای کودی بر میزان رونه دانه و عدم وجود همبستگی معنی‌دار بین عملکرد رونه و دانه (جدول 6) و همچنین همبستگی بالای عملکرد دانه با عملکرد دانه به روش استنباط می‌شود که تغییرات عملکرد رونه می‌تواند ناشی از تغییرات عملکرد دانه باشد. در مطالعات دیگر نیز تغییرات عملکرد دانه رونه را در افتاقبازان پیشتر ناشی از تغییرات عملکرد دانه بیان نمودند (5 و 13). در این مطالعه ضریب همبستگی عملکرد دانه رونه با وزن هزار دانه و قطر طبق با برای T8 = 0.997 و T9 = 0.996 بود. در مطالعه دیگری در افتاقبازان نیز قطر طبق و وزن هزار دانه دارای ضریب همبستگی معنی‌دار با برای T8 = 0.973 و T9 = 0.972 بود. قطر طبق با وزن هزار دانه نیز ضریب همبستگی بالایی داشت که با ضریب همبستگی بین این دو صفت در بکار مومب کاوش (9) تا ۲۸٪ عملکرد دانه را به دست آورد. در ستاد افزایش فسفر خاک افزایش عملکرد دانه را در افتاقبازان به دنبال خشکسالی است (11). افزایش قابل توجه عملکرد دانه در تیمار T9 نسبت به T8 در رقم های سان 33 نشان داد که افزودن آهن به خاک موجب افزایش عملکرد دانه در این رقم (NPK +Fe) T9 نسبت به T9 شد. طوری که تیمار T9 در صد و ۴۲ درصد (NPK) افزایش معنی دار عملکرد دانه را به همراه داشت (جدول 5). استفاده از کودهای آهن دار در گیاهان ذرت (7) و سورگوم (11) نیز افزایش معنی دار عملکرد دانه را در این شرایط می‌تواند داشته باشد. مقایسه یافته‌های عملکرد دانه نیز نشان داد که تیمارهای کودی به نسبت به خاک‌های محلول خرد کردن در Mn به کمکی با Zn خاک با محلول پاشی در رقم های سان 33 تأثیری بر یهپود عملکرد دانه نداشت (جدول 5).

نتایج تجزیه رگرسیون و ضرایب همبستگی (جدول 6) نشان داد که وزن هزار دانه و قطر طبق به ترتیب اهمیت از اجزای اصلی عملکرد دانه دارد. با توجه به عدم تأثیر معنی دار تیمارهای کودی بر میزان رونه دانه و عدم وجود همبستگی معنی‌دار بین عملکرد رونه و دانه (جدول 6) و همچنین همبستگی بالای عملکرد دانه با عملکرد دانه به روش استنباط می‌شود که تغییرات عملکرد رونه می‌تواند ناشی از تغییرات عملکرد دانه باشد. در مطالعات دیگر نیز تغییرات عملکرد دانه رونه را در افتاقبازان پیشتر ناشی از تغییرات عملکرد دانه بیان نمودند (5 و 13). در این مطالعه ضریب همبستگی عملکرد دانه رونه با وزن هزار دانه و قطر طبق با برای T8 = 0.997 و T9 = 0.996 بود. در مطالعه دیگری در افتاقبازان نیز قطر طبق و وزن هزار دانه دارای ضریب همبستگی معنی‌دار با برای T8 = 0.973 و T9 = 0.972 بود. قطر طبق با وزن هزار دانه نیز ضریب همبستگی بالایی داشت که با ضریب همبستگی بین این دو صفت در بکار

363
جدول ۶ ضرایب همبستگی بین صفات

<table>
<thead>
<tr>
<th>صفت 1</th>
<th>۹</th>
<th>۸</th>
<th>۷</th>
<th>۶</th>
<th>۵</th>
<th>۴</th>
<th>۳</th>
<th>۲</th>
<th>۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضرایب همبستگی</td>
<td>-۰-۳</td>
<td>۰-۰۹</td>
<td>۰-۰۶</td>
<td>۰-۰۴</td>
<td>۰-۰۲</td>
<td>۰-۰۱</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>صفت 1</th>
<th>۹</th>
<th>۸</th>
<th>۷</th>
<th>۶</th>
<th>۵</th>
<th>۴</th>
<th>۳</th>
<th>۲</th>
<th>۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضرایب همبستگی</td>
<td>-۰-۳</td>
<td>۰-۰۹</td>
<td>۰-۰۶</td>
<td>۰-۰۴</td>
<td>۰-۰۲</td>
<td>۰-۰۱</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مطالعه دیگر (۳) مطرح می‌باشد. در تجربه روسیه نیز وزن هزار دانه و قطر طبقه بندی و هزار دانه و هر کدام ۲۸ درصد و ۲۲ درصد از تغییرات ضرایب همبستگی دانه در هر سطح توجه نمودند. در مطالعات دیگر نیز این اشکال و تعداد دانه در طبقه محتمل اجرا ضرایب همبستگی دانه به ترتیب تاثیر تیمارها کودک (۲۴) و (۲۵) در این مطالعه نیز تغییرات ضرایب همبستگی دانه در هر سطح در بین تیمارها کودک بین‌بینی نشان

از تغییرات وزن و قطر طبقه بود.

به طور کلی نتایج این آزمایش نشان داد که تأثیر کودک‌های

شبه‌پایه بر عکل‌کارکن دانه آنان‌گرمان بسیار بستگی به رقم

دانه، به طوری که افزودن کودک‌های شبه‌پایه به صورت

تاثیر منفی بر عکل‌کارکن دانه در رقم آن‌ها، افزودن

کود دایری عصر به (سطر) به صورت موجب افزایش

منی در عکل‌کارکن دانه در هر سطح ۳۲-۷۳، ۳۲-۷۳ شد. با توجه به این

که تیمار کودک (T1) ضرایب همبستگی (T2) NPK ضرایب همبستگی (T3) ضرایب

از افزایش عکل‌کارکن دانه را موجب شد. نکته این

که تیمار کودک (T1) ضرایب همبستگی (T2) NPK ضرایب همبستگی (T3) ضرایب

از افزایش عکل‌کارکن دانه را موجب شد.

هم‌چنین این ابتدا منظور افزایش تولید بخشی از ارکام آفتابی‌گران تهیه

های سن ۳۲ از لحاظ اقتصادی قابل توجهی بود.

می‌تواند این پژوهش به‌ویژه در بزرگترین حیطه سیاست‌گذاری،

میزان پژوهش بخشی از یک پژوهش بزرگ‌مدلی در قالب پژوهش‌های

محور بودن شهرت تحقیقات ویژه تقویت‌کننده (توتینگ) با شماره تیپ

است و بین‌بسته‌ای از شروع پژوهش‌های علمی کشور و

سازمان مدیریت و برنامه‌ریزی کشور و همچنین از خوده

معاونت پژوهش‌های انجام شده به دلیل فراهم نمودن

زمینه انجام ابتدا پژوهش بسیار سیاست‌گذاری می‌گردد.

