تأثیر برخی عناصر غذایی پرمرصره و کم مصرف بر اجزای عملکرد و دیگر صفات زراعی
آفتابگردان در یک خاک آهکی اصفهان

قدرتلعی سعیدی

چکیده
آفتابگردان (Helianthus annuus L.) نقش مهمی در تأمین منابع تغذیه کشور دارد و تأمین عناصر غذایی گیاه در خاک به حصول عملکرد بالا و کیفیت مشابه دانه آن ضروری می‌باشد. این آزمایش به منظور بررسی تأثیر تیمارهای کودی عناصر غذایی پرمرصره و کم مصرف بر عملکرد دانه و سایر صفات زراعی آفتابگردان انجام شد. در این آزمایش تأثیر سیزده تیمار کودی به عنوان فاکتور اصلی بر صفات زراعی دو رنگ هیربدا آفتابگردان شالیه های سال ۳۳ و ازولور به عنوان فاکتور فرعی در پهنه آزمایش کرده‌این شده در قابل طرح بلوک‌های کامل تصادفی با سه تکرار مورد بررسی قرار گرفت. نتایج نشان داد که اثر مقایسه عناصر از تیمارهای کودی و ارکام وجود داشت و تأثیر تیمارهای کودی واپسی به رقم بود. به طور کلی تیمارهای کودی در عناصر غذایی، Mn، Zn, Fe، K، P، N، کودی داری عناصر غذایی و K, P به صورت مخلوط با خاک و یا محلولی‌پاشی بر عملکرد دانه به ترتیب دریای عملکرد دانه معنی‌داری داشت. تأثیر کودهای شیمیایی دارای Mn یا Zn با اضافه کردن آهون دار (سکترون) به خاک موجب افزایش عملکرد دانه از اجازی عملکرد در رقم های سال ۴۳. شد. ولی تأثیر معنی‌داری در دو رنگ روغن دانه آن تداشت. به طوری که در این رمک به ترتیب داری عملکرد دانه برای ۱۳۴۹، ۱۵۵۸ و ۷۱ کیلوگرم در هکتار و همچنین رنگ دانه به رنگ سبز در ۴۳ staggered و ۴۲۳ درصد بود. تأثیر تیمارهای کودی در دو رنگ روغن دانه معنی‌دار بود. به‌ناراین تغییرات عملکرد روغن در تیمارهای مختلف ناشی از تغییرات عملکرد دانه آهون هم‌بود. ضرایب همبستگی و تجزیه اینگراینی دانش که تغییرات عملکرد دانه بیشتر به ترتیب اهمیت ناشی از تغییرات وزن دانه و فطر طبق بود. به طور کلی به نظر می‌رسد در خاک مورد آزمایش اضافه کردن کود آهون دار به خاک از لحاظ اقتصادی حاصل اهمیت پاشید و می‌تواند موجب افزایش عملکرد دانه، و روغنی در رقم های سال ۳۳ شود.

واژه‌های کلیدی: آفتابگردان، عناصر غذایی پرمرصره و کم مصرف، عملکرد دانه، روغن دانه

۱. دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

355
محصول شود (۲). استفاده هم‌زمان کوده‌های دارای نیتروژن و فسفر در کلروینه‌ی (B. napus L., B. Campestris L.) (۲) و هم‌چنین استفاده از کوده‌های آهن‌دار در گیاه گزینه‌ی (۷) موجب افزایش معنی‌دار عملکرد دانه‌های نهایی است. همچنین نتایج آزمایش‌های کوده‌ای در گیاه کلزا نشان داد که استفاده از کوده‌های شیمیایی دارای گوگرد و یا نیتروژن به صورت جداگانه موجب کاهش عملکرد دانه و میزان رنگ نهایی دانه، ولی استفاده هم‌زمان آن‌ها موجب افزایش عملکرد و درصد رنگ دانه شد (۶). در گیاه کلزا استفاده از مقادیر مختلف نیتروژن تأثیر معنی‌داری بر وزن دانه نداشت، ولی موجب کاهش درصد رنگ دانه و افزایش عملکرد دانه و رنگ دانه (۶). ضمناً افزایش نیتروژن خاک می‌تواند در کلزا از طریق عضویت بالایی فصل همراه باشد، ممکن است تعداد زیادی از طبیعی غذای مناسبی کسانی در آن نشکل شود (۱۷). در مطالعه دیگری میزان نیتروژن مورد نیاز کلزا بستگی ثابت شرایط محیطی بوده است (۴). در گیاه آفلابتیکان نیز استفاده از کوده‌های دارای نیتروژن به میزان ۱۵۰ کیلوگرم در هکتار به نحوی که نیتروژن موجود در خاک ۳۰۰ کیلوگرم در هکتار رسد، موجب افزایش عملکرد دانه و درصد رنگ دانه و نهایتی عملکرد رنگ دانه به عنصی از مناطقی شرایط محیطی شده است (۲۳). در مطالعه دیگری در افتیاکیوند مقادیر مختلف ۶۷ و ۱۰۱ کیلوگرم نیتروژن مورد استفاده قرار گرفته و افزایش نیتروژن موجب افزایش عملکرد دانه شده است (۸). نتایج بعضی مطالعات نشان داد که استفاده از کوده‌های شیمیایی دارای عناصر گازی دیگری نیترود نیترود به میزان ۱۲۰ کیلوگرم، فسفر ۹۰ کیلوگرم و تیتانیم ۶۰ کیلوگرم در هکار موجب افزایش افزایش بوده، عملکرد دانه و قطر طبق در افتیاکیوند سه و کود شیمیایی دارای فسفر نیتروژن مهمتر را در افزایش عملکرد و اجرا عملکرد از جمله فطب طبق در شده است (۱۷). از نمای آن، نیز نیز افزایش استفاده از کوده‌های دارای عناصر غذایی دیگر بیش از ۵۰ تا ۸۰ کیلوگرام در هکادار

نوع انواع خاصی شرایط محیطی می‌باشد. در این‌تطوير نشان داد که نیتروژن به آلوده به بکار در فسفر در رونق دانه ۲۵ تا ۳۵ درصد، به عنوان مهم‌ترین محصول دانه رنگ مطرح می‌باشد و کیفیت رنگ دانه آن نیز بالا است (۲۳). دانه افتیاکیوند نیز در دنیا ۵۰ تا ۱۰۰ درصد رنگ، کمک‌کننده حاصل از رنگ کاهش دانه‌ها می‌تواند در جریان غذای دام‌ها مورد استفاده قرار خرید.
موجب افزایش عملکرد دانه در آفتگانداران شده است (15). با توجه به این اطلاعات کافی در سورد نیازهای کودی آفتگانداران در منطقه اصفهان موجود بود، در ضمن استفاده از کودهای شیمیایی و بسیاری گیاهان به آنها اپی‌پری تک تب شرایط محیطی از جمله خاک منطقه و عوامل زنبیکی است. این آزمایش با هدف بررسی تأثیر عنصر غذایی در مصرف برای مصرف در زراعت دو رنگ هیرید آفتگانداران انجام شد.

مواد و روش‌ها
آزمایش در سال 1383 در مزرعه پژوهشی دانشگاه کشاورزی دانشگاه صنعتی اصفهان. واقع در چاردرود آباد (40 کیلومتری جنوب غربی اصفهان) انجام شد. طبق طبقه‌بندی کودی، منطقه آزمایشی دارای اقلیم خشک، بسیار گرم و تابستانهای گرم و خشک است. مزرعه آزمایشی از گروه تیپیک هایل آرچید (Typic Haplargid) و دارای باتلاق لریسی با جرم مخصوصه pH ظاهری 4/1 گرم بر سانتی متر مکعب و pH برای 6/7-6/8 می‌باشد.

در این پژوهش تأثیر 13 تیمار کودی (جدول 1) بر صفات زراعی مختلف از جمله عملکرد دانه و اجزای آن و همچنین میزان روش دانه و رقم آفتگانداران در قالب طرح یبلوک‌های کامل تصادفی با ۳ تکرار و به صورت آزمایش کرت‌های خرد شده وارم بررسی گرخت. ارامگاه شال و برداشته شده "هایس (33)" و "هورفور (Euroflor)" بود که در این آزمایش به عنوان خاک‌پرور و بسیاری کودی به عنوان فاکتور اصلی آزمایشی شد. در این آزمایش شش ۴ رتبیت کرد (جدول 2) برای کشت به طول ۷۰ سانتی‌متر و با فاصله رعایی ۶ سانتی‌متر بود. کشت با دذر ۳ روزه می‌باشد و در سه ماه ۱۳۸۴ روی پشت‌های انجام شد. از یک استراق کامل گیاه‌های، صفحه و بوته‌ها در روز کمی از آغاز ۱۳ تکر کرده در ۱۷ سانتی‌متر نظیمه گردید. عملیات‌های بستری زبان آزمایش (که) در سال قبل به صورت آبی‌پیمایی بود. شامل بستری زبان برای پرینس‌پس انجام شد. به منظور کنترل عضله‌های مرده قبل از کاشت و بعد از کاشت مصرف شد.

(16)
جدول ۱. تیمارهای کودی مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>تیمار کودی</th>
<th>تیمار</th>
<th>زمان و نحوه مصرف کود</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد (عدم استفاده از هر نوع کود شیمیایی)</td>
<td>T0</td>
<td>یک سوم قبل از کشت با خاک مخلوط شده و دو سوم باقی مانده نیز در مرحله ۱۲-۱۵ برجی و یا شروع جوانه گل</td>
</tr>
<tr>
<td>۱۱۵ کیلوگرم نتیجه از منبع اصلی</td>
<td>T1</td>
<td>به صورت سرک مصرف شد</td>
</tr>
<tr>
<td>نقاط نیز قبل از کشت با خاک مخلوط شده.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نقاط نیز قبل از کشت با خاک مخلوط شده.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۲۴ کیلوگرم اکسید فسفر از منبع سوپر سفاته‌راز</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>همانند</td>
<td>T0 + T1</td>
<td></td>
</tr>
<tr>
<td>همانند</td>
<td>T0 + T2</td>
<td></td>
</tr>
<tr>
<td>همانند</td>
<td>T0 + T3</td>
<td></td>
</tr>
<tr>
<td>همانند + T0 + T1 + T2 + T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>همانند + کود آهن (سکترین) به میزان ۲۰۰ Kg/ha</td>
<td>T4</td>
<td></td>
</tr>
<tr>
<td>سولفات روی به میزان ۶۰ Kg/ha</td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>سولفات منگنز به میزان ۲۰۰ Kg/ha</td>
<td>T6</td>
<td></td>
</tr>
<tr>
<td>سولفات روی به میزان ۱۵۰۰ لیتر در هکتار محلول سنجیده شد.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سولفات منگنز به میزان ۱۵۰۰ لیتر در هکتار محلول سنجیده شد.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>روی به میزان ۱۵۰۰ لیتر در هکتار محلول پاشید.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. مبناگین و خطای استاندارد عناصر موجود در خاک محل آزمایش (متوسط ۶ نمونه)

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>آهن</th>
<th>نیترژن</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>روی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۳</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
</tr>
<tr>
<td>۳-۶</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
</tr>
<tr>
<td>۶-۹</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
</tr>
</tbody>
</table>

ماده آلی (%) | (mg/ kg) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۳۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
</tr>
<tr>
<td>۳-۶۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
</tr>
<tr>
<td>۶-۹۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
<td>۶۰-۷۰</td>
</tr>
</tbody>
</table>

حداکثر محلول پاشی شد.
تأثیر برخی عناصر غذایی بر مصرف عمکرده و دیگر صفات...

به منظور تیمین افزایش ظرفیت در هر واحد آزمایشی، افتراق بیوت در 16 روز از سطح زمین تا سطح فوتوانی طبق و در مرحله رشدگی پیشلولوژی اندکاگیری و متوسط ان منظور شد. برای تیمین ظرفیت طبق در هر واحد آزمایشی نیاز به طبق اندکاگیری و متوسط آن تغییر کردند. وزن هزار دانه نیزار برای هر واحد آزمایشی اندکاگیری شد.

موقعیت که طبقه کاملاً زرد و قهوه‌ای شدن بیونی پژوهش‌های، به منظور تیمین عمکرده دانه در واحد سطح طبقه‌های دو و سه و وسط هر واحد آزمایشی بردگی و سیب خرمنی کوبی و بوجیاری شد. عمکرده دانه در بیونی با توجه به تعداد بیوتیه‌های مسئولی برداشت شده و دانه در واحد آزمایشی محسوب شد. درصد روحانی نیزار با استفاده از روش سوکلینیکی تیمین گردید.

داده‌های موجود بر مبنای توصیف و مطالعه مسئولی و در SAS تجزیه واریانس شدند و برای مقایسه مسئولی و در SAS صورت مدنی دانه بودن اثر عامل اعضا آزمایشی از آزمون حداکثر تفاوت معنی‌دار (LSD) استفاده شد. جهت بررسی روابط بین صفات ضریب همبستگی بین آنها محاسبه شد و به منظور تیمین صفاتی که بیشترین نقش را تکمیل دانه داشتند از تجزیه رگرسیون انجام شد.

نتایج و بحث

نتایج تجربه برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد

آزمایش در جدول 3 بوده است. نتایج تجربه واریانس

نشان داد که اثر رنگ بر کلیه صفات به استاندارد روز تا

5/10 سیب شدن، طبقه کلیه، وزن هزار دانه و درصد روحانی دانه

معنی‌دار بود (جدول 3). رم های سالانه 3/33 بیوتیه‌های

دارای منفی‌کنین تعداد روز تا مراحل R4، R5، R6، R7، R8

کمتری توسط به رم تعداد بود (جدول 2).

رم های سالانه 33 بیوتیه‌های دارای منفی‌کنین افزایش

پیمان برخی و عمکرده دانه در بیونی و عمکرده دانه در واحد سطح بیونی توسط به رم تعداد بود (جدول 4). تفاوت مسئولی این صفات

در دو رم، ناشی از تفاوت عوامل زنتیکی آنها می‌باشد. اثر مقایل

359
جدول 3. نتایج تجزیه واریانس برای صفات مختلف

<table>
<thead>
<tr>
<th>عملکرد دانه (Kg/ha)</th>
<th>وزن هزار دانه (g)</th>
<th>قطر طبقه (cm)</th>
<th>تعداد روز تا مرحله R₁</th>
<th>تعداد روز تا مرحله R₂</th>
<th>تعداد روز تا مرحله R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد روش غنده</td>
<td>عملکرد دانه</td>
<td>در بوته</td>
<td>عملکرد دانه</td>
<td>ارتفاع بوته</td>
<td>(cm)</td>
</tr>
<tr>
<td>روش غنده</td>
<td>عملکرد دانه</td>
<td>در بوته</td>
<td>عملکرد دانه</td>
<td>ارتفاع بوته</td>
<td>(cm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | 1184 | 0.5 | 38/44 | 3,85 | 4/17 | 2/5 | 8.35%
| 2 | 1195 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 3 | 1200 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 4 | 1205 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 5 | 1210 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 6 | 1215 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 7 | 1220 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 8 | 1225 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 9 | 1230 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%
| 10 | 1235 | 0.5 | 39/65 | 3,85 | 4/17 | 2/5 | 8.35%

* و **: به ترتیب معنی‌دار در سطح احتمال 1% و 5% درصد.
جدول 4: میانگین صفات مختلف در تیمارهای کودی و ارقام

<table>
<thead>
<tr>
<th>تیمار کودی</th>
<th>بذر</th>
<th>ارتفاع بذر</th>
<th>وزن بذر</th>
<th>عمیق‌سازی دانه (cm)</th>
<th>قطر طبقه (cm)</th>
<th>تعداد روز مراحل</th>
<th>تعداد روز مراحل (درصدی)</th>
<th>عامل آزمایشی</th>
<th>تعداد روز مراحل (درصدی)</th>
<th>عامل آزمایشی</th>
<th>تعداد روز مراحل</th>
<th>تعداد روز مراحل (درصدی)</th>
<th>عامل آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T2</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T3</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T4</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T5</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T6</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T7</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T8</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T9</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T10</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T11</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T12</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>T13</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
<tr>
<td>LSD(5)</td>
<td>47</td>
<td>137/6</td>
<td>0/4</td>
<td>16/2</td>
<td>83/5</td>
<td>75/5</td>
<td>79/8</td>
<td>6/5</td>
<td>7/3</td>
<td>6/5</td>
<td>9/5</td>
<td>7/3</td>
<td>6/5</td>
</tr>
</tbody>
</table>

روش:

های سان 33
ارفولور 6/9
LSD(5)
جدول 5. میانگین‌های اثر مقابل تیمار کودی و رقم برای صفات مختلف

<table>
<thead>
<tr>
<th>رقم تیمار</th>
<th>تعداد روز تا قطر طبقه (cm)</th>
<th>وزن حصار (g)</th>
<th>عملکرد دانه (Kg/ha)</th>
<th>عملکرد دانه در پنجه (g)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>15/24</td>
<td>27/12</td>
<td>52/04</td>
<td>49/6</td>
<td>33/3</td>
</tr>
<tr>
<td>T1</td>
<td>17/23</td>
<td>55/15</td>
<td>62/15</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T2</td>
<td>15/64</td>
<td>24/62</td>
<td>24/47</td>
<td>28/3</td>
<td>44/7</td>
</tr>
<tr>
<td>T2</td>
<td>17/08</td>
<td>50/27</td>
<td>52/47</td>
<td>50/0</td>
<td>33/3</td>
</tr>
<tr>
<td>T3</td>
<td>15/58</td>
<td>27/12</td>
<td>51/99</td>
<td>48/3</td>
<td>33/3</td>
</tr>
<tr>
<td>T3</td>
<td>16/92</td>
<td>28/95</td>
<td>54/96</td>
<td>48/2</td>
<td>44/7</td>
</tr>
<tr>
<td>T4</td>
<td>16/07</td>
<td>29/90</td>
<td>57/65</td>
<td>58/3</td>
<td>33/3</td>
</tr>
<tr>
<td>T4</td>
<td>16/22</td>
<td>25/12</td>
<td>59/91</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T5</td>
<td>16/98</td>
<td>24/93</td>
<td>61/03</td>
<td>58/3</td>
<td>33/3</td>
</tr>
<tr>
<td>T5</td>
<td>16/77</td>
<td>28/95</td>
<td>50/25</td>
<td>50/3</td>
<td>44/7</td>
</tr>
<tr>
<td>T6</td>
<td>16/12</td>
<td>24/77</td>
<td>58/17</td>
<td>48/2</td>
<td>33/3</td>
</tr>
<tr>
<td>T6</td>
<td>18/13</td>
<td>27/33</td>
<td>50/15</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T7</td>
<td>18/07</td>
<td>25/03</td>
<td>58/94</td>
<td>50/0</td>
<td>33/3</td>
</tr>
<tr>
<td>T7</td>
<td>18/78</td>
<td>20/43</td>
<td>60/16</td>
<td>50/3</td>
<td>44/7</td>
</tr>
<tr>
<td>T8</td>
<td>18/77</td>
<td>24/22</td>
<td>54/02</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T8</td>
<td>17/87</td>
<td>24/18</td>
<td>50/44</td>
<td>50/0</td>
<td>33/3</td>
</tr>
<tr>
<td>T9</td>
<td>19/22</td>
<td>26/33</td>
<td>70/90</td>
<td>49/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T9</td>
<td>19/87</td>
<td>24/93</td>
<td>49/74</td>
<td>49/0</td>
<td>33/3</td>
</tr>
<tr>
<td>T9</td>
<td>18/58</td>
<td>24/90</td>
<td>49/74</td>
<td>49/0</td>
<td>33/3</td>
</tr>
<tr>
<td>T10</td>
<td>17/87</td>
<td>24/77</td>
<td>70/30</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T10</td>
<td>18/18</td>
<td>24/90</td>
<td>50/20</td>
<td>50/0</td>
<td>33/3</td>
</tr>
<tr>
<td>T11</td>
<td>17/26</td>
<td>24/33</td>
<td>50/02</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T11</td>
<td>17/01</td>
<td>26/02</td>
<td>50/02</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T12</td>
<td>15/98</td>
<td>27/03</td>
<td>58/47</td>
<td>49/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T12</td>
<td>15/03</td>
<td>26/02</td>
<td>56/53</td>
<td>49/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T13</td>
<td>17/08</td>
<td>25/17</td>
<td>58/47</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>T13</td>
<td>17/11</td>
<td>24/18</td>
<td>55/25</td>
<td>50/0</td>
<td>44/7</td>
</tr>
<tr>
<td>LSD(1/5)</td>
<td>1111</td>
<td>6/63</td>
<td>1/75</td>
<td>1/12</td>
<td></td>
</tr>
</tbody>
</table>
تأثیر برخی عنصر غذایی بر سرم и گم مصرف بر اجزای عملکرد و دیگر صفات …

شک که این افزایش از لحاظ آماری معنی‌دار نبود ولی از لحاظ اقتصادی قابل توجه بود (جدول 6). در مطالعه دیگر، نیز افزایش فسفر خاک افزایش عملکرد داشت را در آزمایشگاه‌های زیری دنبال داشت (17). افزایش قابل توجه عملکرد دانه در تیمار T9 نسبت به T8 در رقم های سان 33 نشان داد که افزودن آهن به خاک موجب افزایش عملکرد دانه در این رقم (NPK + Fe) تا تیمار 9، طوری که تیمار T8 نسبت به تیمار T9 و T1 (شاهد) به ترتیب 37/5/8 درصد افزایش معنی‌دار عملکرد دانه را به همراه داشت (جدول 6).

استفاده از کودهای آهن در گیاهان دزی (7) و سروری گوم (11) نیز افزایش عملکرد افزایش داشت. مقایسه میانگین‌های عملکرد دانه نیز نشان داد که تیمارهای کودی به نهایی یا هزمان و صورت مخلوط کردن در Mn با Zn تأثیری بر بهبود عملکرد دانه نداشت (جدول 5).

نتایج تجزیه‌رگرسیونی و ضرایب همبستگی (جدول 6) نشان داد که وزن هزار دانه و قطر طبق به ترتیب اهمیت از اجزای اصلی عملکرد دانه داشتند. با توجه به عدم تأثیر معنی‌دار تیمارهای کودی بر میزان روزن دانه و عدم وجود همبستگی معنی‌دار بین عملکرد روزن و درصد روزن دانه (جدول 6) و همچنین همبستگی بالای عملکرد روزن با عملکرد دانه (r = 0.97***)، این استنباط می‌شود که تغییرات عملکرد روزن می‌تواند ناشی از تغییرات عملکرد دانه باشد. در مطالعات دیگر نیز تغییرات عملکرد دانه به روزن را در آزمایشگاه‌ها بیشتر ناشی از تغییرات عملکرد دانه بیان نمودند (1 و 3). در این مطالعه ضریب همبستگی عملکرد دانه در واحده سطح با وزن هزار دانه و قطر طبق بالا و به ترتیب پاراب و r = 0.70**، r = 0.73**، r = 0.74**، r = 0.75** و r = 0.76**، در مطالعه دیگری در آزمایشگاه‌ها نیز قطر طبق و وزن هزار دانه دارای ضریب همبستگی معنی‌دار به ترتیب پاراب و r = 0.87**، r = 0.88** و r = 0.89** یا افزایش آن در کیک از مناطق مورد آزمایش (13) در اثر اضافه کردن کود نیتروژن در دار به خاک نیز مشاهده شد. در این مطالعه تیمار کودی پاسیف به تنهایی و یا هزمان به‌ارتش با ضریب همبستگی بالایی داشت که به پاراب پاسیف و 0.87**، r = 0.88** و r = 0.89** به‌ارتش با ضریب همبستگی بالایی داشت که به پاراب پاسیف و 0.87**، r = 0.88** و r = 0.89**
جدول ۶ ضایای همبستگی بین صفات

<table>
<thead>
<tr>
<th>صفت</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- تعداد روز تا مرحله R3</td>
<td>۱</td>
</tr>
<tr>
<td>۳- تعداد روز تا مرحله R6</td>
<td>۰/۶۲</td>
</tr>
<tr>
<td>۴- تعداد روز تا مرحله رشیدگی</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۵- قطع طبیع</td>
<td>۱</td>
</tr>
<tr>
<td>۶- وزن هزار دانه</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۷- عملکرد دانه در بونه</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۸- عملکرد دانه در واحد سطح</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>۹- درصد روزن دانه</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۱۰- عملکرد روزن در واحد سطح</td>
<td>۰/۱۲</td>
</tr>
</tbody>
</table>

فرض جمع بذیر بودن اثر تیمارها کودی NPK و آهن، انظار می‌رود استفاده همبستگی آنها موجب افزایش عملکرد دانه برای ۲۴٪ نسیب به شاهد شد و این با نتایج به دست آمده ارتفاع داشت. خود تیمار NPK+Fe نسبت به شاهد دارای حدود ۲۴ افزایش عملکرد دانه بود (جدول ۵). نباید این افزودن کود آهن دار (سکسترون) موجب افزایش معنی‌دار عملکرد دانه در رقم های‌سان ۳۳ گرم و به نظر می‌رسد در شرایط مشابه به شرایط ایمن آزمایش، دادن کود آهن دار به خاک موجب افزایش تولید به بیش از آن حاصل می‌گردد نظیر های‌سان ۳۳ از لحاظ اقتصادی قابل نویجه باشد.

سپاسگزاری
این پژوهش به‌خیال یک پروژه ملی در قالب پژوهش‌های تحقیقاتی‌های توجه‌ساز توسط مرکز (توتک) با شماره ثبت ۲۱۲۵۵ توسط تیم‌سازی از شرکای پژوهش‌های علمی کشور و سازمان مدیریت و برنامه‌ریزی کشور و همچنین از جوامع معاونت پژوهشی دانشگاه صنعتی اصفهان به دلیل فراهم نمودن زمینه انجام این پژوهش به‌سیاسگزاری می‌گردد.

